• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 656
  • 54
  • 53
  • 46
  • 32
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 857
  • 284
  • 125
  • 123
  • 103
  • 93
  • 91
  • 90
  • 87
  • 75
  • 69
  • 66
  • 61
  • 60
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
821

Analyse fonctionnelle de la protéine Enhancer of zeste, SlEZ2, chez la tomate Solanum lycopersicum

Boureau, Lisa 13 December 2011 (has links)
Analyse fonctionnelle de la protéine Enhancer of Zeste, SlEZ2, chez la tomate, Solanum lycopersicumLes protéines Polycomb, initialement découvertes chez la drosophile, ont récemment caractérisées chez les plantes où elles remplissent des fonctions essentielles au cours du développement de la plante. Chez la drosophile, les protéines polycomb (PcG) agissent sous forme de trois complexes multi-protéiques : PRC1, PRC2 et PhoRC. Seulement, deux de ces complexes ont été identifiés chez les plantes : un orthologue fonctionnel du complexe PRC1 (PRC1-like) et PRC2. Le complexe PRC2 maintien la chromatine dans un état condensé et intervient dans le contrôle du développement des fleurs, des graines, des fruits et des feuilles. Chez la tomate Solanum lycopersicum, le complexe PRC2 est composé de trois protéines polycomb : SlEMF2 (EMbryotic Flower), SlFIE (Fertilization Independent Endosperm) and SlE(Z) (Enhancer of Zeste). Les protéines SlE(Z) portent l’activité histone méthyl transférase qui permet la mise en place de la marque répressive H3K27me3. Chez la plante modèle, Arabidopsis thaliana, cette marque joue un rôle essentiel au cours du développement de la plante Afin d’étudier le rôle du complexe PRC2 dans le développement du fruit et de la plante de tomate, et plus particulièrement de la protéine SlE(Z), nous avons identifié trois gènes codant les protéines SlE(Z) : SlEZ1, SlEZ2 et SlEZ3. Au laboratoire, il a récemment été montré que la protéine SlEZ1 intervient au cours du développement floral (How Kit et al., 2010). L’objectif de ce travail est de déterminer la fonction de la protéine SlEZ2 au cours du développement du fruit et de la plante de tomate. Pour cela, nous avons analysé des plantes transgéniques sous exprimant le gène SlEZ2, orthologue au gène CURLY LEAF d’A. thaliana, par stratégie RNAi. Ce travail indique que la protéine SlEZ2 est impliquée dans la croissance de la plante de tomate, ainsi que dans le développement des feuilles, des fleurs et des fruits. Les plantes transgéniques présentent des phénotypes pléiotropes tels que des fleurs et des feuilles modifiées, un fort taux d’avortement des fruits, des fruits de texture et de couleur altérées ainsi qu’une réduction de la taille des plantes. De plus, nous avons identifiés quatre gènes ciblés par la protéine SlEZ2 dont l’expression est dérégulée dans les feuilles. Il s’agit de deux gènes à MADS box, TAG1 et TAGL1, ainsi que de deux gènes KNOX, LeT6 et TKN4. / Functional analysis SlEZ2, a tomato Enhancer of zeste proteinPolycomb proteins, first discovered in Drosophila, have been identified in plants and play essential functions in plant development. In Drosophila, polycomb proteins (PcG) acts as a complex and three have been identified: PRC1, PRC2 and PhoRC. However, only two polycomb complexes have been identified in plants: like-PCR1 and PRC2. The PCR2 complex maintain chromatin in a closed state and control flower, seed, fruit and leaf development.In tomato Solanum lycopersicum, PRC2 is composed by three polycomb proteins SlEMF2 (EMbryotic Flower), SlFIE (Fertilization Independent Endosperm) and SlE(Z) (Enhancer of Zeste)(Enhancer of Zeste). SlE(Z) proteins have a methyltransferase activity that puts in place an repressive epigenetic mark a trimethylation of lysine 27 histone 3. In plant model, Arabidopsis thaliana, this mark plays an essential role in plant development but little is known about PRC2 role in plant and fruit development of tomato. In order to unravel the function of the E(z) protein in the control of tomato fruit and plant development, we have characterized three E(z) encoding genes, namely SlEz1, SlEz2 and SlEZ3. In a recent work, we reported that SlEZ1 protein plays a role in flower development (How Kit at al., 2010). The aim of this present study was to determine the function of the SlEZ2 protein in plant and fruit development. We present our results focusing on RNAi transgenic plants which underexpressed SlEZ2 gene, homologue of Curly Leaf Arabidopsis gene. This analysis indicates that SlEZ2 protein is implicated in tomato plant growth and affects also leaf, flower and fruit development. Phenotypes include abnormal flowers and leafs, fruit development abortion, altered fruit colour and texture and plant of reduced size. Moreover, we characterize four target genes of SlEZ2 genes in leaves which present a deregulated expression : TAG1, TAGL1, LeT6 and TKN4.
822

Analyse du polymorphisme moléculaire de gènes de composantes de la qualité des fruits dans les ressources génétiques sauvages et cultivées de tomate : recherche d'associations gènes/QTL / Molecular polymorphism analysis of fruit-quality related genes in wild and cultivated genetic ressources : association genes/QTL

Ranc, Nicolas 28 January 2010 (has links)
Chez la tomate, l'amélioration pour la qualité du fruit est rendue difficile par la multiplicité et la complexité des caractères. La cartographie de QTL a permis la caractérisation génétique de ces caractères. L'objectif est maintenant d'identifier les gènes sous-jacents aux QTL. Nous avons utilisé la cartographie par déséquilibre de liaison (DL) dans ce but. Pour éviter les fausses associations entre caractères et polymorphismes moléculaires, la structure génétique a été prise en compte dans l'analyse. La tomate cultivée montre un faible niveau de diversité génétique, ce qui réduit la résolution de cartographie. Le génome de la tomate de type cerise est décrit comme une mosaïque entre celui de la tomate cultivée et de l'ancêtre sauvage. Ce mélange devrait augmenter la résolution des études d'association. Nous avons utilisé une « core collection » focalisée sur des accessions de type cerise pour valider la région génomique contenant un QTL pour le nombre de loges. Deux mutations sont associées avec le caractère. Ces deux SNP ont évolué différemment du reste du chromosome 2, en subissant une sélection balancée qui témoigne de l'augmentation de la diversité morphologique lors de la domestication. L'étude, focalisée sur le chromosome 2, a permis d'analyser l'étendue du DL en fonction de la distance génétique et physique. Des associations, entre polymorphismes et phénotypes étudiés, ont été détectés avec des méthodes prenant en compte la structure génétique. Nous avons montré l'intérêt d'utiliser la structure en mosaïque du génome des accessions de type cerise pour surmonter les limitations de résolution dans les analyses d'associations chez une espèce cultivée autogame. / In Tomato (Solanum lycopersicum), breeding for fruit quality is difficult due to the multiplicity and complexity of the traits. QTL mapping has allowed the genetic characterization of these traits. One of the challenges is now to identify the genes underlying these QTLs. Following this aim, we used linkage-disequilibrium (LD) mapping. To avoid hazardous associations between traits and polymorphisms, the genetic structure has to be taken into account for LD mapping. Cultivated tomato showed low genetic diversity reducing mapping resolution. Cherry type tomato genome is described to be admixture between cultivated tomato and its wild ancestor. Such admixture may increase resolution of association mapping. We used a core collection focused on cherry type accessions to validate a candidate gene for a fruit locule-number QTL. We found that two single nucleotide polymorphisms (SNP) were highly associated with the trait. These two SNP evolved differently from the rest of the chromosome 2. They underwent a balanced selection which testifies a selection for fruit morphology diversity by human. Association mapping, focused on whole chromosome 2, allowed us to assess the extent of linkage disequilibrium over genetic and physical distances. Associations of polymorphisms with phenotypes were detected with structured association methods. We thus showed efficiency of genome admixture to overcome the low-resolution limitation of association mapping for an inbred crop. We validated previously identified QTLs and found associations with new QTLs and new candidate genes. An evolutionary model including bottleneck and gene flow between wild and domesticated forms is also presented.
823

Identification de gènes candidats impliqués dans la régulation de la teneur en acide ascorbique chez la tomate : impacts sur le potentiel antioxydant et la qualité post-récolte du fruit / Identification of candidate genes involved in the regulation of the ascorbic acid content in tomato fruit : impacts on the antioxidant potential and postharvest fruit quality

Bournonville, Celine 03 March 2015 (has links)
L’acide ascorbique (AsA) est un antioxydant essentiel à la fois pour l’homme et les végétaux. L’AsA provenant des plantes représente la source principale de vitamine C dans l’alimentation quotidienne. Au-delà de son impact nutritionnel, augmenter la teneur en AsA dans le fruit de tomate serait susceptible d’influencer la qualité des fruits après la récolte, en termes de conservation mais également de résistance à des pathogènes. Bien que le métabolisme de l’AsA soit bien caractérisé, les mécanismes impliqués dans sa régulation restent jusqu'à présent peu compris. Des études récentes menées sur des feuilles d’Arabisdopsis thaliana montrent que certaines protéines seraient capables de réguler la teneur en AsA, en agissant au niveau transcriptionnel ou post-transcriptionnel. A ce jour, ce type de régulation n’a pas été encore décrit chez les fruits. Dans ce but, une approche de génétique directe a été développée afin d’étudier les mécanismes impliqués dans la régulation de la teneur en AsA et ceci dans le fruit de tomate (Solanum lycopersicum). L’analyse d’une population de mutants EMS de tomate Micro-Tom a permis l’identification de lignées de mutants présentant des teneurs en AsA de 2,5 à 4 fois plus importantes que celles observées dans les fruits de tomate sauvage. La caractérisation de ces lignées a conduit à des résultats prometteurs pour l’étude de la qualité des fruits après la récolte. Une stratégie de NGS-mapping a permis l’identification des mutations causales responsables du phénotype AsA observé. Ainsi, le criblage de mutants EMS a permis la découverte de nouvelles protéines inattendues, permettant de confirmer au niveau moléculaire l’existence d’une interaction directe en la signalisation lumineuse et la régulation de la voie de biosynthèse de l’AsA. / The ascorbic acid (AsA) is an essential antioxidant in both plants and humans. Plant-derived AsA is the major source of vitamin C in the human diet. In addition to its effect on tomato nutritional value, increasing tomato AsA content would likely affect postharvest storage and resistance to pathogens of the fruit. While AsA metabolism is well characterized, the mechanisms involved in its regulation remain poorly understood. Recent studies in Arabidopsis leaves indicate that few regulatory proteins can regulate this pathway at transcriptional and post-transcriptional levels. Still nothing equivalent has been described in fruits. In that aim, a forward genetic approach has been carried out to investigate the regulation of AsA in tomato (Solanum lycopersicum) fruit. The screening of an EMS tomato mutant population in the miniature cultivar Micro-Tom for identifying mutant lines with AsA-enriched fruits was done. Among the 500 M2 mutant families screened, four mutant lines with higher AsA content ranging from 2.5 to 4 fold were selected. These mutant lines have been characterized for postharvest traits quality and showed promising results. A method based on NGS-mapping allowed the identification of the putative AsA-enriched related gene. Thus, the screening of EMS mutants led to original findings such as the discovery of new unexpected proteins regulating AsA in plants, and particularly in fruits. Our work confirms at the molecular level the direct interaction between light signaling component and the regulation of the AsA biosynthesis pathway.
824

Characterization of auxin-ethylene interactions during the tomato fruit development : role of Sl-IAA17 gene / Caractérisation des interactions auxine-éthylène pendant le développement du fruit de tomate : rôle du gène Sl-IAA17

Su, Liyan 10 October 2014 (has links)
Les interactions entre l’auxine et l’éthylène sont complexes et contrôlent divers processus de développement des plantes tels que l’élongation racinaire ou la différentiation des racines secondaires. Mais, il existe peu d’études montrant le rôle des interactions entre ces deux hormones au cours du développement et de la maturation des fruits. Le changement de couleur des fruits chez la tomate est une caractéristique de la maturation qui est associée à la fois à la dégradation des chlorophylles et à l’accumulation des caroténoïdes. Dans ce travail, l’application exogène d’auxine et d’éthylène a montré l’impact de ces deux hormones sur la maturation de la tomate et en particulier sur le changement de couleur des fruits. Nous avons montré que l’acide indol-acétique (IAA) retarde la transition du vert à l’orange/rouge, alors que l’éthylène, apporté sous la forme d’acide 1-aminocyclopropane-1-carboxylique (ACC), son précurseur, accélère la coloration des fruits. Par contre, l’inhibition de l’auxine par le PCIB, un antagoniste de l’auxine, provoque les mêmes effets que l’éthylène. L’analyse des caroténoïdes montre que l’ACC comme le PCIB augmente la teneur en lycopène et diminue la teneur en carotène alors que l’IAA provoque l’effet inverse. L’étude de l’accumulation des ARNs messagers de plusieurs gènes clés de la voie de biosynthèse des caroténoïdes a montré que le gène β-lcy codant pour la lycopène cyclase joue un rôle clé dans le contrôle de la biosynthèse et de l’accumulation des pigments et que son expression est fortement dépendante de l’équilibre auxine-éthylène. D’autre part, nos résultats ont montré que le gène rin joue un rôle important dans le contrôle de l’expression des gènes clés de la voie de biosynthèse des caroténoïdes. Pour avoir une meilleure vision des gènes différentiellement exprimés par l’auxine et l’éthylène au cours de la maturation, l’analyse du transcriptome des fruits traités par de l’ACC et de l’IAA a été réalisée par RNA-Seq au laboratoire. Parmi les facteurs de transcriptions étudiés, le gène Sl-IAA17, un membre de la famille des AUX/IAA, est fortement affecté par l’auxine et l’éthylène. La caractérisation fonctionnelle du gène Sl-IAA17 pendant le développement du fruit a été réalisée en créant des lignées transgéniques sous exprimant ce gène en mettant en œuvre la stratégie des ARNs interférents. Ces lignées présentent un phénotype caractéristique produisant des fruits de plus gros calibre que celui des fruits sauvages. Les analyses histologiques des tissus des fruits ont montré que ce phénotype est associé à un péricarpe plus épais. En microscopie, nous avons constaté que l’augmentation de l’épaisseur du péricarpe dans les lignées transgéniques n’était pas due à un plus grand nombre de cellules mais à l’augmentation de la taille des cellules. Enfin, nous avons observé que l’expansion des cellules dans les fruits transgéniques est étroitement couplée avec des niveaux de ploïdie plus élevés que dans les fruits sauvages, ce qui suggère une stimulation du processus endoréduplication. Ces résultats démontrent très clairement l’existence d’une étroite relation entre la signalisation de l’auxine, le contrôle de la taille du volume cellulaire et le processus d’endoréduplication. En conclusion, les résultats présentés fournissent des connaissances nouvelles sur les interactions entre l’auxine et l’éthylène au cours du développement du fruit et en particulier au cours de la transition fruit immature - fruit mature. De plus, ils apportent des éléments nouveaux sur la connaissance du rôle de la voie de signalisation de l’auxine dans le contrôle du développement des fruits charnus et en particulier sur la fonction de certains membres des AUX/IAA sur la détermination du volume et du poids des fruits. / The interaction between auxin and ethylene are complex and control various processes of plant development, such as root elongation or differentiation of secondary roots. But there are few studies showing the role of interactions between these two hormones during development and maturation of the fruit. The color change in the tomato fruit is a feature of the maturation that is associated with the degradation of the chlorophyll and carotenoid accumulation. In this work, the application of exogenous auxin and ethylene showed the impact of these two hormones in the tomato ripening and in particular the change of fruit color. We have shown that indole-acetic acid (IAA) delays the transition from green to orange / red, while ethylene, supplied as 1-aminocyclopropane-1-carboxylic acid form (ACC), its precursor, accelerated this transition. However the auxin inhibition by p-chlorophenoxy isobutyic acid (PCIB), an auxin antagonist, caused the same effects similar to ethylene. The carotenoid analysis showed that the ACC and PCIB increase the lycopene content and reduced the carotene content while IAA causes the opposite effect. The study of the accumulation of mRNAs for several key genes of the carotenoid biosynthetic pathway has shown that the gene β-lcy encoding lycopene cyclase plays a key role in the control of biosynthesis and accumulation of pigments and that its expression is highly dependent on the auxin-ethylene balance. In addition, our results showed that the rin gene plays an important role in controlling the expression of the key carotenoid biosynthetic pathway genes. To get a better view of differentially expressed genes by auxin and ethylene during ripening, transcriptome analysis of fruits treated with ACC and IAA was performed by a preliminary RNA-Seq approach. Among the transcription factors studied in the laboratory, the gene Sl-IAA17, a member of the family of Aux/IAA was affected by auxin and ethylene. Functional characterization of Sl-IAA17 gene during fruit development was performed by creating transgenic lines under-expressing this gene by RNAi. These lines display a phenotype producing bigger fruit than wild type. Histological analysis of the tissues showed that fruit phenotype is associated with a thicker pericarp. By microscopy, we observed that increasing the thickness of the pericarp in the transgenic lines was not due to a greater number of cells but to the increase in cell size. Finally, we observed that cell expansion in transgenic fruit is tightly coupled with higher ploidy levels than wild fruits, suggesting a stimulation of the endoreduplication process. These results clearly demonstrate the existence of a close relationship between the auxin signal, the control cell size, fruit volume and the endoreduplication process. In conclusion, the results provide new insights into the interactions between auxin and ethylene during fruit development and in particular during the transition immature fruit, mature fruit. In addition, they provide new information on the understanding of the role of the signaling pathway of auxin in controlling the development of fleshy fruits and in particular on the basis of certain members of the AUX/IAA on regulating volume and fruit weight.
825

Caractérisation fonctionnelle des inhibiteurs de Cyclin-Dependent Kinase (CDK) dans le fruit de tomate (Solanum lycopersicum) / Functional characterization of Cyclin-Dependent Kinase (CDK) inhibitors in tomato fruit (Solanum lycopersicum)

Nafati, Mehdi 18 June 2010 (has links)
Au sein de l’unité mixte de recherche 619 de l’Institut National de Recherche Agronomique, le groupe « Organogénèse du Fruit et Endoréduplication » étudie les acteurs moléculaires prenant part au contrôle du cycle cellulaire dans le fruit de tomate. L’objet de la présente thèse est l’étude de l’inhibiteur du cycle cellulaire Kip-Related Protein, et son rôle durant le développement du fruit. Identification de motifs protéiques fonctionnels chez l’Inhibiteur de Kinase Cycline-Dependent SlKRP1 chez Solanum lycopersicum : Leur rôle dans les interactions avec des partenaires du cycle cellulaire Les Kip-related proteins (KRPs) jouent un rôle majeur dans la régulation du cycle cellulaire. Il a été montré qu’ils inhibent les complexes CDK/Cyclin et ainsi bloquent la progression du cycle cellulaire. Malgré leur manque d’homologie avec leurs homologues animaux au delà de leur motif de liaison CDK/Cyclin, localisé à l’extrémité C-terminal de la protéine dans les séquences de plante, des études antérieurs ont montré la présence de motifs conservés spécifiques aux plantes chez certaines KRPs. Nous n’avons cependant que peu d’information concernant leur fonction. Nous montrons ici que les KRPs sont distribués en deux sous groupes phylogénétiques, et que chaque sous-groupe dispose de courts motifs spécifiques conservés. Les KRPs du sous-groupe 1 disposent ainsi de six motifs conservés entre eux. Utilisant SlKRP1, qui appartient au sous-groupe 1, nous avons identifié des motifs responsables de la localisation de la protéine et de ses interactions protéine-protéine. Nous montrons que le motif 2 est responsable de l’interaction avec CSN5, une sous-unité du complexe signalosome, et que le motif 5 a un effet redondant avec le motif 3 pour ce qui est de la localisation sub-cellulaire de la protéine. Nous montrons de plus que SlKRP1 est capable de guider SlCDKA1 et SlCycD3;1 vers le noyau, et ce même en l’absence du motif de liaison CDK/Cycline précédemment référencé. Ce nouveau site d’interaction est probablement localisé dans la partie centrale de la séquence de SlKRP1. Ces résultats apportent de nouveaux indices quant au rôle de la partie encore méconnue de cette protéine. La surexpression de SlKRP1 dans le mésocarpe de tomate détruit la proportionnalité entre endoréduplication et taille cellulaire Le fruit est un organe spécialisé résultant du développement de l’ovaire après pollinisation et fertilisation, et qui offre un environnement adéquat pour la maturation des graines et leur dispersion. De part leur importance en nutrition humaine et leur importance économique, les espèces à fruit charnu ont été le sujet d’étude développementales principalement orientée vers la formation de l’ovaire, la mise à fruit et la maturation du fruit. La phase de croissance du fruit a été beaucoup moins étudiée, bien que la division cellulaire et la croissance cellulaire prenant place durant cette période soient cruciales à la détermination de la taille finale du fruit, ainsi que de sa masse et sa forme. Le développement du mésocarpe du fruit de tomate se déroule par la succession d’une phase de division cellulaire suivie d’une phase d’expansion cellulaire associée à l’endoréduplication, menant à la formation de cellules géantes (jusqu’à 0,5mm) avec des niveaux de ploïdie pouvant atteindre 256C. Bien qu’une relation évidente entre endoréduplication et croissance cellulaire ait été montrée par de nombreux exemples chez les plantes, le rôle exact de l’endoréduplication n’a toujours pas été élucidé, étant donné que la plupart des expériences induisant une modification du niveau d’endoréduplication dans la plante affectaient aussi la division cellulaire. Nous avons étudié la cinétique du dévelopement du mésocarpe de tomate au niveau morphologique et cytologique et avons étudié l’effet de la diminution du niveau d’endoréduplication sur le dévelopement du fruit en sur-exprimant l’inhibiteur du cycle cellulaire Kip-Related Protein 1 (SlKRP1) spécifiquement dans les cellules en croissance du mésocarpe de tomate. Nous montrons une proportionnalité directe entre endoréduplication et taille cellulaire durant le développement normal du fruit, ce qui nous a permis de construire un modèle de développement du mésocarpe définissant l’épaisseur du péricarpe en ne prenant en compte que le nombre de divisions cellulaires et le nombre de tours d’endoréduplication. De façon surprenante, les mésocarpes de tomate affectés dans leur niveau d’endoréduplication par la sur-expression de SlKRP1 ne sont pas affectés au niveau de la taille des cellules ou du fruit, ni dans leur contenu métabolique. Nos résultats démontrent pour la première fois qu’alors que le niveau de ploïdie est étroitement lié avec la taille des cellules et du fruit, l’endoréduplication n’est pas responsable de la croissance cellulaire du mésocarpe de tomate. / Within the Joint Research Unit 619 of the National Institute of Agronomic Research (INRA), the group "Organogenesis of the Fruit and endoreduplication" examines the molecular players involved in cell cycle control in tomato fruit. The purpose of this thesis is the study of the cell cycle inhibitor Kip-Related Protein and its role during fruit development. Identification of protein motifs in the functional inhibitor of Cyclin-Dependent Kinase in Solanum lycopersicum SlKRP1: Their role in interactions with partners in the cell cycle The Kip-related proteins (KRPs) play a major role in the regulation of cell cycle. It has been shown to inhibit the CDK / Cyclin and thus block cell cycle progression. Despite their lack of homology with their counterparts in animals beyond their binding motif CDK / Cyclin, located at the C-terminal protein sequences in the plant, previous studies have shown the presence of conserved motifs plant specific in some KRPs, but there is little information about their function. We show here that the KRPs are distributed into two phylogenetic groups, and that each subgroup has specific short conserved motifs. The KRPs from subgroup 1 have six conserved motifs. Using SlKRP1, which belongs to subgroup 1, we have identified the motifs responsible for the localization of the protein and protein-protein interactions. We demonstrate that the pattern 2 is responsible for the interaction with CSN5, a subunit of the signalosome complex, and that the motif 5 is redundant with motif 3 with respect to the sub-cellular localization of the protein. We also show that SlKRP1 is capable of guiding SlCDKA1 and SlCycD3; 1 to the nucleus, even in the absence of CDK / cyclin binding motif previously referenced. This new site of interaction is probably located in the central part of the sequence of SlKRP1. These results provide new clues about the role of the little-known part of this protein. Overexpression of SlKRP1 in tomato mesocarp disrupts the proportionality between endoreduplication and cell size The fruit is a specialized organ which results from the ovary after pollination and fertilization, and provides a suitable environment for seed maturation and dispersal. Because of their importance in human nutrition and economic importance, fleshy fruit species have been the subject of study mainly focused on the developmental formation of the ovary, fruit set and fruit ripening. The stage of fruit growth has been much less studied, although cell division and cell growth taking place during this period are crucial to determining the final size of the fruit, as well as its mass and shape. The development of tomato fruit mesocarp occurs by the estate of a phase of cell division followed by a phase of cell expansion associated with endoreduplication, leading to the formation of giant cells (up to 0.5 mm) with ploidy levels of up to 256C. Although a clear relationship between endoreduplication and cell growth has been shown by many examples in plants, the exact role of endoreduplication has still not been elucidated, since most of the experiments leading to a change in the level of endoreduplication in plants also affected cell division. We studied the kinetics of the development of tomato mesocarp morphologically and cytologically and studied the effect of the reduced level of endoreduplication in the development of the fruit over-expressing the cell cycle inhibitor Kip-Related Protein 1 (SlKRP1) specifically in the growing cells of the tomato mesocarp. We show a direct proportionality between endoreduplication and cell size during normal development of the fruit, which allowed us to build a model for development of mesocarp defining the thickness of the pericarp by taking into account the number of cell divisions and the number of rounds of endoreduplication. Surprisingly, the tomato mesocarps affected in their level of endoreduplication by over-expression of SlKRP1 are not affected in terms of cell size and fruit, or on their metabolic content. Our results demonstrate for the first time that while the level of ploidy is closely linked with cell size and fruit, endoreduplication is not responsible for the cell growth of tomato mesocarp.
826

Caractérisation du chromoplaste de tomate par approche protéomique / Characterization of tomato fruit chromoplasts by proteomic approach

Barsan, Cristina Ioana 10 November 2010 (has links)
La maturation des fruits est un processus complexe, principalement régulé par l'hormone végétal éthylène, qui entraîne d'importants changements métaboliques et physiologiques, ayant pour résultat la dispersion des graines. Le changement le plus visible qui se produit pendant la maturation des fruits est le changement de couleur. L'organite responsable de ce phénomène est le chromoplaste, lieu d’accumulation des caroténoïdes. Toutefois, ce n'est pas son unique rôle. Il a été montré qu’il est aussi impliqué dans la biosynthèse des lipides, de l’amidon, des vitamines et des arômes. Parce que la plupart des protéines (95%) qui composent le protéome du chromoplaste sont codées par le noyau, l’approche génomique n'est pas suffisante pour connaître les fonctions de chromoplaste dans la synthèse des métabolites d'intérêt. La protéomique de haut débit associée à la bio- nformatique a été utilisée pour caractériser le chromoplaste de tomate. L’analyse du protéome de chromoplastes de fruits de tomate rouges a révélé la présence de 988 protéines correspondantes à 802 unigènes d’Arabidopsis, dont 209 n’ont pas été répertoriés jusqu'à présent dans des banques de données plastidiales. Ces données ont révélé plusieurs caractéristiques du chromoplaste. Les protéines du métabolisme des lipides et de trafic sont bien représentées, y compris toutes les protéines de la voie de la lipoxygénase nécessaire à la synthèse des arômes volatiles dérivés de lipides. Les protéines impliquées dans la synthèse de l'amidon coexistent avec plusieurs protéines qui dégradent l'amidon. Les chromoplastes ne contiennent plus les protéines de biosynthèse de la chlorophylle mais contiennent des protéines impliquées dans la dégradation de la chlorophylle. Aucun des protéines impliquées dans le mécanisme de transport thylacoïdal n’ont été trouvées. Étonnamment, les chromoplastes contiennent l'ensemble des protéines du cycle de Calvin, y compris la Rubisco, ainsi que la voie des pentoses phosphates (OxPPP). L'analyse de l'évolution du transcriptome des gènes codant pour des protéines chromoplastiques a été réalisée. Ces données ont confirmé la réduction de la photosynthèse et le maintien du cycle de Calvin, ainsi que la biosynthèse de l'amidon et des lipides. Des analyses biochimiques complémentaires ont montré dans des chromoplastes isolés la présence d’une activité de deux enzymes importantes dans la biosynthèse des arômes (lipoxygénase et l'alcool déshydrogénase). Par ailleurs, à l’aide du couplage de protéines à la GFP et à leur expression dans des protoplastes, nous avons montré que des protéines ne présentant pas de peptide signal peuvent être localisées dans le chromoplaste. Enfin, un protocole d'isolement des plastes de fruits de tomate à différents stades de maturation a été mis au point et les fractions plastidiales ainsi obtenues ont été caractérisées par la microscopie confocale à balayage laser. La transition du chloroplaste à chromoplaste est un processus qui n'a jamais été décrit par la protéomique. Ce travail est en cours et devrait répondre à certaines questions concernant les changements qui ont lieu dans l'organite, et apporter des informations nouvelles pour la compréhension de la maturation des fruits. / Fruit ripening is a complex process, mainly regulated by the fruit hormone ethylene, resulting in significant metabolic and physiological changes, having as outcome seed dispersal. The most flagrant change taking place during ripening is the change in color. The organelle responsible for this is the chromoplast, the place of carotenoids accumulation. However this is not its unique role. It was found to be involved in lipid, starch, vitamins and aroma biosynthesis. Due to the fact that most proteins (95%) composing the chromoplast are codified by the nucleus knowledge on gene expression and genome sequences is not useful in the investigation of the functions of chromoplast in the synthesis of the metabolites of interest. High- hroughput proteomics associated with bio-informatics was used to characterize the tomato chromoplast and to reveal its intimate structure. Analysis of the proteome of red fruit chromoplasts revealed the presence of 988 proteins corresponding to 802 Arabidopsis unigenes, among which 209 had not been listed so far in plastidial data banks. These data revealed several features of the chromoplast. Proteins of lipid metabolism and trafficking were well represented, including all the proteins of the lipoxygenase pathway required for the synthesis of lipid-derived aroma volatiles. Proteins involved in starch synthesis co- xisted with several starch-degrading proteins and starch excess proteins. Chromoplasts lacked proteins of the chlorophyll biosynthesis branch and contained proteins involved in chlorophyll degradation. None of the proteins involved in the thylakoid transport machinery were discovered. Surprisingly, chromoplasts contain the entire set of Calvin cycle proteins including Rubisco, as well as the oxidative pentose phosphate pathway (OxPPP). The analysis of the evolution of the transcriptome of chromoplastic protein-encoding genes was performed. This data confirmed the reduction of the photosynthesis and the maintenance of the Calvin cycle, and of the lipid and starch biosynthesis. Further analysis is performed showing the activity of two important actors in the aroma biosynthesis (lipoxygenase and alcohol dehydrogenase). Several proteins with possible chromoplastic location were coupled with the GFP and expressed in the single cell system. A protocol for isolating tomato fruit chloroplasts and immature chromoplasts was described along with the characterization of the plastidial fractions by confocal microscopy. The transition of the chloroplast to chromoplast is a process that was never described by means of proteomics. This work answers some questions regarding the changes that take place in the organelle, and brings novel information for the understanding of fruit ripening process
827

Atividade antifúngica de óleos essenciais contra Alternaria solani sorauer, causador da pinta preta do tomateiro

Tomazoni, Elisa Zorz 14 December 2012 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico
828

Estudio de la Capacidad Organogénica en tomate y especies relacionadas: Localización de QTLS implicados y estudio de la influencia del Etileno

Trujillo Moya, Carlos 02 September 2013 (has links)
La regeneración de plantas a partir de explantes es la base de partida para poder aplicar tecnologías tales como la obtención de plantas haploides o la transformación genética. Este carácter presenta una amplia variabilidad inter e intraespecífica. Así, incluso dentro de la misma especie, podemos encontrarnos genotipos recalcitrantes cuya falta o escasa regeneración limita la aplicación de estas técnicas. Además del componente genético, otros factores que condicionan el éxito de la regeneración son: las condiciones fisiológicas del material de partida, los componentes del medio de cultivo, los reguladores de crecimiento, la temperatura, la luz, etc¿ La falta de información acerca de qué factores determinan que este proceso se produzca por una u otra vía morfogenética (la vía organogénica o la embriogénica) y la incertidumbre de cuantos genes están implicados, indica la necesidad de investigación básica de este proceso. El objetivo principal de este trabajo se centra en incrementar el conocimiento de la base genética así como la localización de QTLs implicados en la regeneración por la vía organogénica que es la predominante en tomate. Para ello, se han utilizado dos poblaciones de mapeo (F2, BC1) obtenidas por la Dra. Gisbert. La población F2 se obtuvo a partir de la autofecundación de una planta F1, resultante del cruce de una planta de tomate (S. lycopersicum L.) seleccionada por su escasa capacidad regenerativa (Anl27) y la accesión PE-47 de S. pennellii Correll. con alta capacidad de regeneración. Por su parte, la población BC1 se obtuvo a partir del cruce (Anl27 x F1). Con estos materiales se ha realizado una caracterización fenotípica y genotípica en clones de cada genotipo, que se han mantenido en cultivo in vitro. Utilizando el programa informático MapQTL¿ se han identificado seis QTL implicados en la regeneración localizados en los cromosomas 1, 3, 4, 7 y 8. Cinco de los QTLs (SpRg-1, Rg-3, SpRg-4a, SpRg- 4b, SpRg-7) proceden del tomate silvestre S. pennellii y uno (SlRg-8) procede de S. lycopersicum. El porcentaje de varianza explicada por cada QTL va desde el 7,4% al 27%, dentro del rango común (6-26%) registrado en el mapeo genético de QTLs relacionados con la regeneración in vitro en otros cultivos. SpRg-1 es el mayor responsable de la respuesta morfogenética mientras que SpRg-7 promueve el desarrollo del brote hacia una planta completa. Por otra parte los QTLs detectados en los cromosomas 8 (SlRg-8) y 4 (SpRg-4a, SpRg-4b) podrían contener genes que influyen en la formación de yemas y su desarrollo, respectivamente. Finalmente Rg-3, situado en la mitad del cromosoma 3 y ligado al gen de la invertasa ácida, se presenta como un alelo putativo del gen Rg detectado en S. peruvianum (Rg-1) y S. chilense (Dunal) Reiche. (Rg-2). Además del genotipo, el tipo y combinación de reguladores de crecimiento son importantes para el éxito de los protocolos de regeneración. En tomate, los reguladores de crecimiento más utilizados son las citoquininas, o la combinación de estas con auxinas. Otros reguladores como el etileno se han estudiado poco y los trabajos publicados muestran conclusiones dispares. Con el fin de estudiar la influencia del etileno en la regeneración se han realizado ensayos con dos compuestos liberadores de etileno (Ácido 1-aminociclopropano-1- carboxílico ¿ACC¿ y ácido 2-Cloroetil fosfónico ¿Ethephon¿) y dos inhibidores de etileno: AgNO3, que inhibe la acción del etileno; y CoCl2, que inhibe la producción de etileno. Los resultados obtenidos muestran que la concentración y el momento de la aplicación son dos factores fundamentales a tener en cuenta para el éxito de la respuesta organogénica. En concreto, la aplicación de inhibidores de etileno y su consecuente disminución tiene un efecto negativo sobre la regeneración en tomate ya que se disminuye y se retrasa la respuesta. Así mismo, las plantas regenerantes obtenidas presentan tamaño reducido, pudiendo aparecer vitrificación y malformaciones. Por otra parte, la suplementación de etileno puede mejorar la regeneración. Así, el número de plantas regeneradas a partir de explantes de S. pennellii se duplicó en los medios con ACC respecto al medio control. Si la aplicación de ACC se realiza tras la inducción de las yemas, pasados 10 días, el rendimiento total será mayor. Este resultado indica que éste compuesto podría ser utilizado para mejorar la regeneración en aquellos genotipos donde una vez formadas las yemas, el desarrollo de estas hacia plantas es el paso limitante. Por otra parte, las plantas regenerantes obtenidas muestran buen desarrollo, por lo que la suplementación de etileno no afecta al posterior crecimiento de las plantas regeneradas. Finalmente se ha estudiado la capacidad organogénica de las especies silvestres de tomate derivadas del complejo S. peruvianum L. sensu lato (s.l.): Solanum arcanum Peralta., Solanum huaylasense Peralta., Solanum corneliomulleri J. F. Macbr. y Solanum peruvianum L. sensu stricto (s.s.). Estas especies pueden tener un papel fundamental en la mejora, sobre todo de resistencias a factores bióticos. Sin embargo, debido a las barreras de hibridación que existen entre éstas y el tomate cultivado, no se han explotado en su totalidad en la mejora del cultivo. Para realizar cruces se ha recurrido a la fusión de protoplastos y el rescate de embriones. Sin embargo, no se ha estudiado la capacidad organogénica de las especies derivadas del complejo Peruvianum, lo que limita la aplicación de estas técnicas. En este trabajo se ha encontrado variabilidad intra e interespecífica en la capacidad organogénica de las especies silvestres derivadas de este complejo. En general, todas las accesiones ensayadas de S. corneliomulleri y S. huaylasense mostraron una elevada capacidad regenerativa y se han identificado accesiones recalcitrantes en S. arcanum (LA-2185) y S. peruvianum s.s (ECU-106 y CH-20). En este trabajo, también se ha realizado un análisis morfológico de las hojas que ha determinado que el número de foliolos y el nivel de dentición de los mismo pueden ser utilizados en la identificación in vitro de las especies del complejo. Sin embargo, el área de foliolo solo permite distinguir a S. arcanum del resto de especies del complejo. Finalmente se ha observado que las accesiones cuyas hojas tienen mayor número de foliolos y mayor nivel de dentición tienen una mayor regeneración. / Trujillo Moya, C. (2013). Estudio de la Capacidad Organogénica en tomate y especies relacionadas: Localización de QTLS implicados y estudio de la influencia del Etileno [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31665 / TESIS
829

Interacción de Giberelinas y Auxinas en la fructificación del tomate

Serrani Yarce, Juan Carlos 06 June 2008 (has links)
El efecto de la aplicación de giberelinas (GAs) y auxinas durante la fructificación y desarrollo del fruto, ha sido investigado en tomate (Solanum lycopersicum L.) cv Micro-Tom. Los resultados indican que constituye un sistema adecuado para el estudio de la regulación hormonal en tomate. Para evitar la competencia entre frutos dentro del mismo racimo, solo un fruto por racimo y hasta dos racimos por planta se utilizaron en los experimentos. Ovarios no polinizados (emasculados) se desarrollaron partenocárpicamente en respuesta a la aplicación de GA3 > GA1 = GA4 > GA20, aunque no de GA19, y de diferentes auxinas tales como los ácidos indolacético (IAA), naftalenacético (NAA) y 2,4-diclorofenoxiacético (2,4-D), siendo este último el más eficiente. La morfología de los frutos inducidos por auxinas y giberelinas es diferente. En los frutos tratados con GA3 el tejido locular se desarrolla pobremente dejando las cavidades loculares vacías, mientras que los frutos tratados con 2,4-D presentan pseudoembriones y cavidades loculares llenas. A nivel interno, el GA3 indujo células de mayor tamaño en el mesocarpo interno, lo cual estaba correlacionado con un mayor nivel de ploidía (mayor MCV, mean C value), mientras el 2,4-D favoreció las divisiones celulares, por lo que el número de capas celulares en el pericarpo fue superior al tratamiento con GA3 y al polinizado. Los frutos polinizados tuvieron un mayor tamaño y peso que los frutos inducidos con GA3 aunque ambos fueron más pequeños y de menor peso que los tratados con 2,4-D. El grosor del pericarpo de los frutos inducidos con GA3 y 2,4-D no mostró diferencias hasta 20 días después de antesis, por lo que el tener menos células en el pericarpo (frutos inducidos con GA3) podría ser compensado teniendo un mayor tamaño celular. El uso de inhibidores de biosíntesis de GAs tales como el pablobutrazol (PCB) y LAB 198999 disminuyó la fructificación y desarrollo del fruto, efecto revertido con la aplicación de GA3. Sin embargo, en frut / Serrani Yarce, JC. (2008). Interacción de Giberelinas y Auxinas en la fructificación del tomate [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/2242 / Palancia
830

Generación de líneas T-DNA de tomate (Solanum Lycopersicon cv.p73) e identificación de mutantes de inserción.

Angarita Díaz, Mª del Pilar 17 February 2012 (has links)
El empleo de herramientas genómicas ayudará a superar dos de los retos que todavía subsisten en el campo de la mejora molecular (i.e., vía transformación): la identificación de los genes que realmente controlan los caracteres de interés agronómico y la detección de señales de regulación que permitan modular la expresión de los transgenes a nivel espacial y temporal. Entre las vías para lograr tales objetivos, destaca la mutagénesis insercional por T-DNA, que en los últimos años se ha convertido en una herramienta básica para la identificación y etiquetado de genes, así como para el análisis de su función. En efecto, la disrupción de un gen endógeno o la integración del T-DNA en la vecindad del mismo pueden ocasionar la anulación o alteración de función, dando una valiosa información sobre el papel de un cierto gen en un carácter dado. Otra aplicación de la mutagénesis insercional por T-DNA estriba en la detección de elementos de regulación mediante el empleo de los denominados "sistemas trampa" (trapping) que permiten detectar secuencias reguladoras y asignar una función a partir de datos de expresión del delator que mimetiza la expresión del gen endógeno. El aspecto más relevante de estas aproximaciones es que, tras la identificación de un cierto gen, éste queda etiquetado por el T-DNA, lo que facilita su clonación. El principal objetivo de esta Tesis Doctoral ha sido la generación una colección de líneas de inserción por T-DNA en tomate y la identificación de mutantes afectados en caracteres relacionados con el desarrollo. En concreto, se han generado más de 1200 líneas T-DNA y se han obtenido sus descendencias TG2. La caracterización de estas líneas en TG1 ha conducido a la detección de 255 mutantes (de tipo dominante, semidominante o aditivo) afectados en caracteres vegetativos y/o reproductivos. Asimismo, se ha caracterizado una pequeña muestra de progenies TG2 (en concreto 37) lo que ha permitido la identificación de 6 mutantes recesivos. / Angarita Díaz, MDP. (2009). Generación de líneas T-DNA de tomate (Solanum Lycopersicon cv.p73) e identificación de mutantes de inserción [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14718 / Palancia

Page generated in 0.0309 seconds