Spelling suggestions: "subject:"topic 3dmodeling"" "subject:"topic bymodeling""
31 |
Growing local food: charting meaning emergence through the dynamics of discourse, rhetoric and framingKarmali, Shazia 28 August 2020 (has links)
This dissertation seeks to understand how new meanings emerge in the context of institutional change. Existing research seeking to understand shifts in meaning has primarily accessed meaning, across numerous contexts, via the three key constructs of discourse, rhetoric, or framing. Within the context of the emergence of the local food movement in Canada, I employ a mixed methods approach using term frequencies, topic modelling and qualitative content analysis, within a computational grounded theory framework for Big Data analysis. My data consists of all articles containing any mention of the term “local food” in popular Canadian press over 37 years from 1978-2014, a database totalling 31,421 articles. My results show that firstly, new meanings pertaining to local food emerged rapidly over the 37-year period. The emergence of a new meaning for local food, associated with the politicization of food production occurred in the second half of my dataset, whereas the first half was marked by connotations of poverty and hunger, associated with the local food bank. Secondly, unexpected actors were found to significantly impact the propulsion of meaning change, by establishing new vocabularies surrounding the term “local food”. Finally, this dissertation shows that the new meanings associated with local food emerged as a result of discursive opportunities, momentarily arising through the confluence of discourse, rhetoric and framing. I propose an emergent process model of meaning change and, further, propose that discursive opportunity structures can be better understood through the metaphor of an emergent property. / Graduate / 2022-08-01
|
32 |
Pretopology and Topic Modeling for Complex Systems Analysis : Application on Document Classification and Complex Network Analysis / Prétopologie et modélisation de sujets pour l'analyse de systèmes complexes : application à la classification de documents et à l'analyse de réseaux complexesBui, Quang Vu 27 September 2018 (has links)
Les travaux de cette thèse présentent le développement d'algorithmes de classification de documents d'une part, ou d'analyse de réseaux complexes d'autre part, en s'appuyant sur la prétopologie, une théorie qui modélise le concept de proximité. Le premier travail développe un cadre pour la classification de documents en combinant une approche de topicmodeling et la prétopologie. Notre contribution propose d'utiliser des distributions de sujets extraites à partir d'un traitement topic-modeling comme entrées pour des méthodes de classification. Dans cette approche, nous avons étudié deux aspects : déterminer une distance adaptée entre documents en étudiant la pertinence des mesures probabilistes et des mesures vectorielles, et effet réaliser des regroupements selon plusieurs critères en utilisant une pseudo-distance définie à partir de la prétopologie. Le deuxième travail introduit un cadre général de modélisation des Réseaux Complexes en développant une reformulation de la prétopologie stochastique, il propose également un modèle prétopologique de cascade d'informations comme modèle général de diffusion. De plus, nous avons proposé un modèle agent, Textual-ABM, pour analyser des réseaux complexes dynamiques associés à des informations textuelles en utilisant un modèle auteur-sujet et nous avons introduit le Textual-Homo-IC, un modèle de cascade indépendant de la ressemblance, dans lequel l'homophilie est fondée sur du contenu textuel obtenu par un topic-model. / The work of this thesis presents the development of algorithms for document classification on the one hand, or complex network analysis on the other hand, based on pretopology, a theory that models the concept of proximity. The first work develops a framework for document clustering by combining Topic Modeling and Pretopology. Our contribution proposes using topic distributions extracted from topic modeling treatment as input for classification methods. In this approach, we investigated two aspects: determine an appropriate distance between documents by studying the relevance of Probabilistic-Based and Vector-Based Measurements and effect groupings according to several criteria using a pseudo-distance defined from pretopology. The second work introduces a general framework for modeling Complex Networks by developing a reformulation of stochastic pretopology and proposes Pretopology Cascade Model as a general model for information diffusion. In addition, we proposed an agent-based model, Textual-ABM, to analyze complex dynamic networks associated with textual information using author-topic model and introduced Textual-Homo-IC, an independent cascade model of the resemblance, in which homophily is measured based on textual content obtained by utilizing Topic Modeling.
|
33 |
Large-scale Exploratory Text VisualisationAxelsson, Wilma, Engström, Nellie January 2023 (has links)
The amount of available text data has increased rapidly in the latest years, making it difficult for an everyday user to find relevant information. To solve this, NLP and visualisation methods have been developed for extracting valuable information from text and presenting it to the user. The aim of this project is to implement a proof-of-concept visualisation prototype for exploring a large amount of Swedish news articles with related metadata and investigate the temporal and relational aspects of the data. The project was divided into three major parts. In the first part, sketches of the visualisation were designed and evaluated through user tests. The second part consisted of designing and implementing a NLP pipeline, using BERTopic, where both Dynamic Topic Modeling (DTM) and Hierarchical Topic Modeling (HTM) were used. Some parameters of the pipeline were evaluated using evaluation metrics and through visual inspection, for instance a Swedish sentence transformer. The final part consisted of implementing and evaluating the visualisation prototype. The project resulted in a web-based visualisation, presenting the NLP results, with two different views: a top 10 topics view and a hierarchical view containing all topics. The prototype has various features, e.g., clicking and hovering for details-on-demand and options for changing and altering the view. The prototype was then evaluated through an internal case study and user tests. For the user tests, there were two groups of participants: people working in the journalism field and people working closely to the NLP field. Both groups thought there was more value in viewing the top 10 topics view than the hierarchical view. Furthermore, the quality of the top 10 topics view was considered higher overall compared to the hierarchical view. In the end, the result of this project is a proof-of-concept visualisation prototype presenting topics of Swedish news articles, over time and in relation to each other. A few possible improvement possibilities include improving the hierarchical relations between the topics and the run time of the topic model and prototype. Also, the prototype may be further improved with additional features, e.g., real-time data, a map, the full text of the articles and a search function. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>
|
34 |
Digital Maturity in the Public Sector and Citizens’ Sentiment Towards Authorities : A study within the initiative Academy of Lifelong Learning, in partnership with RISE and GoogleCramner, Isabella January 2021 (has links)
This study was conducted in partnership with RISE and Google, within the initiative “Academy of Lifelong Learning”, aiming to propel the digital transformation in the Swedish public sector. The study investigated the digital maturity of 18 authorities in terms of maturity level (early, developing maturing), and within the driving areas (1) Citizen Centricity, (2) Leadership, (3) Digital Toolbox and (4) Security and Sustainability. Further, it explored how citizens’ sentiment towards public authorities relates to the organizations’ digital maturity scores. The results of a digital maturity survey showed that 16 of the 18 contributing organizations were developing, whereas two scored just enough to be classified as maturing. The organizations performed best within Security and Sustainability, and the worst within the category Digital Toolbox—where the biggest competence gaps were also identified. To unlock citizens’ sentiment towards the authorities, sentiment analysis was conducted on Facebook data. In a correlation analysis, a significant negative relationship was surprisingly found between (i) maturity score and (ii) sentiment score, as well as between (i) maturity score and (ii) positive comments. Presumably, this can be explained by citizens interacting the most with the more mature organizations and thus expressing their dissatisfaction more. However, more analysis is needed to draw conclusions. / Studien genomfördes i samarbete med RISE och Google inom initiativet ”Akademin för livslångt lärande” (Academy of Lifelong Learning), som syftar till att driva på den digitala transformationen i den svenska offentliga sektorn. Studien undersökte 18 myndigheters digitala mognad med fokus på mognadsnivå (early, developing maturing), och inom de drivande områdena (1) medborgarperspektivet, (2) ledarskap, (3) digitala verktygslådan och (4) säkerhet och hållbarhet. Vidare undersöktes medborgarnas attityder gentemot offentliga myndigheter i relation till organisationernas digitala mognad. Resultatet från mognadsundersökningen visade att 16 av de 18 medverkande organisationerna var developing, medan två organisationer precis kunde klassificeras som mature. Organisationerna presterade bäst inom säkerhet och hållbarhet och sämst inom kategorin digitala verktygslådan—där de största kompetensbristerna även identifierades. För att utvärdera medborgarnas attityder gentemot myndigheterna genomfördes en sentimentanalys baserat på data från Facebook. I en korrelationsanalys hittades överraskande nog en signifikant negativt samband mellan (i) digital mognad och (ii) sentimentpoäng, samt mellan (i) digital mognad och (ii) positiva kommentarer. Detta kan antagligen förklaras med att medborgarna interagerar mer med de mest mogna organisationerna och därmed är mer benägna att utrycka sitt missnöje gentemot dem. Ytterligare analys behövs dock för att kunna dra sådana slutsatser och förklara resultatet.
|
35 |
Nyhetsmedierna om Trumps valkampanj : En diskursanalys av 3652 artiklar genom topic modeling med MALLET / News media on the Trump campaign : A discourse analysis of 3652 news articles using topic modeling through MALLETÅkerlund, Mathilda January 2017 (has links)
The aim of this study was to examine how American news media covered Donald Trump's presidential campaign in the election of 2016, as well as discussing the possible consequences of such reporting on the election results. Using mixed methods, 3652 digital news articles were studied by discourse analysis and topic modeling through MALLET. The study found that a substantial number of articles were dedicated to such non-political news reporting as scandals, portraying an image of Trump as someone who can get away with doing whatever he wants. Furthermore, the results of the study found that media helped to convey Trump’s views of minorities, doing so in particularly by citing him. The media also relied largely on polls. Comparison of the candidates through these polls enhanced the image of the election campaign as nothing more than a horse race, as well as turning up Trumps entertainment value. As the campaign continued, the reporting got more aggressive towards Trump. At the same time there was an element of wanting to balance the critical articles about him by simultaneously writing negatively about other candidates. The study concludes that all of the non-political new stories might have directed focus away from the important policy issues, leading to people voting for candidates without the proper insight into their politics.
|
36 |
LDA based approach for predicting friendship links in live journal social networkParimi, Rohit January 1900 (has links)
Master of Science / Department of Computing and Information Sciences / Doina Caragea / The idea of socializing with other people of different backgrounds and cultures excites the web surfers. Today, there are hundreds of Social Networking sites on the web with millions of users connected with relationships such as "friend", "follow", "fan", forming a huge graph
structure. The amount of data associated with the users in these Social Networking sites has resulted in opportunities for interesting data mining problems including friendship link and interest predictions, tag recommendations among others. In this work, we consider the friendship link prediction problem and study a topic modeling approach to this problem.
Topic models are among the most effective approaches to latent topic analysis and mining of text data. In particular, Probabilistic Topic models are based upon the idea that documents can be seen as mixtures of topics and topics can be seen as mixtures of words. Latent Dirichlet Allocation (LDA) is one such probabilistic model which is generative in nature
and is used for collections of discrete data such as text corpora. For our link prediction
problem, users in the dataset are treated as "documents" and their interests as the document contents. The topic probabilities obtained by modeling users and interests using LDA provide an explicit representation for each user. User pairs are treated as examples and are represented using a feature vector constructed from the topic probabilities obtained with LDA. This vector will only capture information contained in the interests expressed by the
users. Another important source of information that is relevant to the link prediction task is given by the graph structure of the social network. Our assumption is that a user "A"
might be a friend of user "B" if a) users "A" and "B" have common or similar interests
b) users "A" and "B" have some common friends. While capturing similarity between
interests is taken care by the topic modeling technique, we use the graph structure to find common friends. In the past, the graph structure underlying the network has proven to be a
trustworthy source of information for predicting friendship links. We present a comparison of predictions from feature sets constructed using topic probabilities and the link graph
separately, with a feature set constructed using both topic probabilities and link graph.
|
37 |
Techniques d'identification d'entités nommées et de classification non-supervisée pour des requêtes de recherche web à l'aide d'informations contenues dans les pages web visitéesGoulet, Sylvain January 2014 (has links)
Le web est maintenant devenu une importante source d’information et de divertissement pour un grand nombre de personnes et les techniques pour accéder au contenu désiré ne cessent d’évoluer. Par exemple, en plus de la liste de pages web habituelle, certains moteurs de recherche présentent maintenant directement, lorsque possible, l’information recherchée par l’usager. Dans ce contexte, l’étude des requêtes soumises à ce type de moteur de recherche devient un outil pouvant aider à perfectionner ce genre de système et ainsi améliorer l’expérience d’utilisation de ses usagers. Dans cette optique, le présent document présentera certaines techniques qui ont été développées pour faire l’étude des requêtes de recherche web soumises à un moteur de recherche. En particulier, le travail présenté ici s’intéresse à deux problèmes distincts. Le premier porte sur la classification non-supervisée d’un ensemble de requêtes de recherche web dans le but de parvenir à regrouper ensemble les requêtes traitant d’un même sujet. Le deuxième problème porte quant à lui sur la détection non-supervisée des entités nommées contenues dans un ensemble de requêtes qui ont été soumises à un moteur de recherche. Les deux techniques proposées utilisent l’information supplémentaire apportée par la connaissance des pages web qui ont été visitées par les utilisateurs ayant émis les requêtes étudiées.
|
38 |
Nonparametric Discovery of Human Behavior Patterns from Multimodal DataSun, Feng-Tso 01 May 2014 (has links)
Recent advances in sensor technologies and the growing interest in context- aware applications, such as targeted advertising and location-based services, have led to a demand for understanding human behavior patterns from sensor data. People engage in routine behaviors. Automatic routine discovery goes beyond low-level activity recognition such as sitting or standing and analyzes human behaviors at a higher level (e.g., commuting to work). The goal of the research presented in this thesis is to automatically discover high-level semantic human routines from low-level sensor streams. One recent line of research is to mine human routines from sensor data using parametric topic models. The main shortcoming of parametric models is that they assume a fixed, pre-specified parameter regardless of the data. Choosing an appropriate parameter usually requires an inefficient trial-and-error model selection process. Furthermore, it is even more difficult to find optimal parameter values in advance for personalized applications. The research presented in this thesis offers a novel nonparametric framework for human routine discovery that can infer high-level routines without knowing the number of latent low-level activities beforehand. More specifically, the frame-work automatically finds the size of the low-level feature vocabulary from sensor feature vectors at the vocabulary extraction phase. At the routine discovery phase, the framework further automatically selects the appropriate number of latent low-level activities and discovers latent routines. Moreover, we propose a new generative graphical model to incorporate multimodal sensor streams for the human activity discovery task. The hypothesis and approaches presented in this thesis are evaluated on public datasets in two routine domains: two daily-activity datasets and a transportation mode dataset. Experimental results show that our nonparametric framework can automatically learn the appropriate model parameters from multimodal sensor data without any form of manual model selection procedure and can outperform traditional parametric approaches for human routine discovery tasks.
|
39 |
Topic Analysis of Hidden Trends in Patented Features Using Nonnegative Matrix FactorizationLin, Yicong 01 January 2016 (has links)
Intellectual property has gained more attention in recent decades because innovations have become one of the most important resources. This paper implements a probabilistic topic model using nonnegative matrix factorization (NMF) to discover some of the key elements in computer patent, as the industry grew from 1990 to 2009. This paper proposes a new “shrinking model” based on NMF and also performs a close examination of some variations of the base model. Note that rather than studying the strategy to pick the optimized number of topics (“rank”), this paper is particularly interested in which factorization (including different kinds of initiation) methods are able to construct “topics” with the best quality given the predetermined rank. Performing NMF to the description text of patent features, we observe key topics emerge such as “platform” and “display” with strong presence across all years but we also see other short-lived significant topics such as “power” and “heat” which signify the saturation of the industry.
|
40 |
Holy day effects on language: How religious geography, individual affiliation and day of the week relate to sentiment and topics on TwitterKramer, Stephanie 10 April 2018 (has links)
Religious belief and attendance predict improved well-being at the individual level. Paradoxically, geographic locations with high rates of religious belief and attendance are often those with the differentially high rates of societal instability and suffering. Many of the consequences of religiosity are context-based and vary across time, and holy days are naturally-occurring religious cues that have been shown to influence religiously-relevant attitudes and behaviors. I investigated the degree to which personal religiosity and religious geography (i.e. religious demographics with other location variables) individually and interactively predict well-being across days of the week.
In the first study, American Christians demonstrated greater well-being by expressing more positive sentiment in Twitter posts, while American Muslims displayed less well-being. Sundays were generally the most positive day, but American Muslims communicated more happiness on Fridays (the Muslim holy day). In the second study, Christianity did not predict increased well-being in the posts of college students. In the third study, global survey data with measures of religiosity and well-being indicated that the well-being consequences of religious affiliation depend on the religious group and location, and that people tend to be especially positive on their group’s holy day. Study four explored the latent topical content of Twitter posts. Across studies, religious minority status appeared to have a deleterious effect on well-being.
|
Page generated in 0.0568 seconds