• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 62
  • 61
  • 27
  • 22
  • 15
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • 1
  • Tagged with
  • 408
  • 88
  • 78
  • 74
  • 70
  • 62
  • 62
  • 51
  • 46
  • 40
  • 37
  • 36
  • 36
  • 35
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Blood-Brain Barrier during cerebral maturation : impact of neuro-inflammation on the regulation of drug-efflux/influx transporters / Barrière Hémato-Encéphalique au cours de la Maturation Cérébrale : impact de la Neuro-Inflammation sur la Régulation des Transporteurs d’Efflux/Influx des Médicaments

Harati, Rania 05 December 2012 (has links)
L’échec thérapeutique des maladies cérébrales est lié, entre autres, à la présence de barrières entre le sang et le Système Nerveux Central (SNC), en particulier la Barrière Hémato-Encéphalique (BHE). La BHE est une structure neuro-vasculaire localisée au niveau des MicroVaisseaux Cérébraux (MVC) limitant l’entrée des molécules thérapeutiques dans le cerveau. Ce rôle barrière est dû à plusieurs facteurs, dont principalement, l’existence du côté luminal et/ou abluminal de la BHE de plusieurs transporteurs d’efflux, dont les transporteurs de type ABC (ATP Binding Casette) et SLC (SoLute Carrier) et qui sont à l’origine des phénomènes de résistance aux médicaments. Les études de recherche actuelles visent à identifier les voies de signalisation régulant l’activité de ces protéines d’efflux afin d’optimiser la pharmacothérapie cérébrale. Mais la majorité de ces études sont effectuées chez l’adulte. Très peu de données existent chez l’enfant.Cette étude a été réalisé dans la perspective de 1) Etudier l’ontogenèse des transporteurs ABC et SLC de la BHE au cours de la maturation cérébrale, 2) Elucider le rôle fonctionnel de quatre transporteurs d’efflux ((P-glycoproteine (P-gp), Breast Cancer Resistance Protein (bcrp), Organic Anion Transporter 3 (oat3), and Transporting Peptide 1a4 (oatp1a4) transporters) dans le cerveau des enfants et 3) Elucider les mécanismes qui régulent leur expression fonctionnelle dans des conditions normales et pathologiques, notamment inflammatoires, parce que des modifications dans les composantes structurales et fonctionnelles de l'unité neurovasculaire ont été rapportées dans une longue liste de pathologies du SNC chez les enfants et les adultes. Nos résultats ont montré l’existence de différences fonctionnelles, en terme de passage de molécules, entre la BHE pédiatrique et celle adulte. De plus, cette étude a mis en évidence une régulation différentielle liée à l'âge des transporteurs d'efflux de médicaments de la barrière dans des conditions normales et inflammatoires.Ces résultats fournissent des preuves sur l’intérêt de prendre en compte les propriétés spécifiques de la BHE pédiatrique et la distinguer de la BHE adulte lors des définitions des stratégies thérapeutiques destinées à traiter les maladies cérébrales chez les enfants. / One major reason of CNS pharmacotherapy’s impediment is the existence of “barriers” between blood and CNS, especially the Blood-Brain Barrier (BBB), a neurovascular structure localized at the level of brain microvasculature. Main factors responsible for this barrier function are drug efflux transporters type ABC (ATP-Binding Cassette) and SLC (SoLute Carrier) expressed at BBB level and known to be at the origin of multi-drug resistance phenomenon. Recent researches aim at unraveling the signaling mechanisms regulating these transporters in order to modulate their activity and improve pharmacotherapy in brain diseases. For years, these transporters have been studied in adult organism. But, there is a wide spread belief that the BBB in embryo, fetus, new born and infant is “immature”, implying caution in giving drugs to infants. However, current knowledge on the functional status of the BBB in immature organism remains very limited.This study was performed in the aim of understanding: 1) The ontogenesis of ABC and SLC transporters during brain maturation, 2) the functional role of four BBB drug efflux transporters (P-glycoprotein (P-gp), Breast Cancer Resistance Protein (bcrp), Organic Anion Transporter 3 (oat3), and Transporting Peptide 1a4 (oatp1a4) transporters) in children’s brain, and 3) the mechanisms that regulate their functional expression under normal and pathological conditions, mostly under inflammatory conditions, because indeed alterations in structural and functional components of the BBB have been reported in a long list of CNS pathologies in adults. Our results showed changing properties of the BBB during ontogenesis, as well as an age-related differential regulation of BBB drug efflux transporters under normal and inflammatory conditions.These findings highlight the importance of considering an age-related response of CNS to drugs and of taking into account the specific properties of juvenile BBB during definition of therapeutic strategies designed to treat childhood brain diseases, and this in the clinical perspective of developing new drugs with enhanced efficacy in children’s CNS.
392

Acompanhamento molecular de pacientes com leucemia mielóide crônica tratados com mesilato de imatinibe e avaliação dos mecanismos de resistência ao tratamento: mutação do gene BCR-ABL e expressão dos genes MDR1 e BCRP / Molecular monitoring of patients with chronic myeloid leukemia treated with imatinib mesylate and evaluation of treatment resistance mechanisms: mutation of BCR-ABL and expression of MDR1 and BCRP genes

Nardinelli, Luciana 25 March 2009 (has links)
A leucemia mielóide crônica (LMC) é caracterizada pela translocação (9;22) que dá origem ao gene quimérico BCR-ABL. Este gene codifica uma proteína com atividade tirosina quinase, p210, constitutivamente ativa. O três mecanismos envolvidos na patogênese da LMC são o aumento da proliferação celular, alteração da adesão celular ao estroma e matriz medular e inibição da apoptose. A introdução do mesilato de imatinibe (MI), um inibidor de tirosina quinase, revolucionou o tratamento da LMC levando pacientes em fase crônica a remissões duráveis, porém uma parcela destes não responde ou perde a resposta ao longo do tratamento. Os mecanismos de resistência ao MI podem ser classificados como independentes de BCR-ABL (a1- glicoproteína ácida e genes de resistência a múltiplas drogas) ou dependentes de BCR-ABL (superexpressão de BCR-ABL e mutações do domínio quinase do gene ABL). Objetivo: avaliar a presença de mutações no domínio quinase do gene ABL e a expressão dos genes de resistência a múltiplas drogas MDR1 e BCRP em amostras pré-tratamento com MI, acompanhar estes pacientes mensalmente através da quantificação de transcritos BCR-ABL e quando ocorrer resistência reavaliar a presença de mutações do domínio quinase do ABL e a expressão dos genes de resistência a múltiplas drogas. Material e Métodos: Foram avaliados 61 pacientes com LMC em fase crônica. A pesquisa de mutações do domínio quinase foi realizada pela técnica de seqüenciamento direto e a expressão relativa dos genes de resistência a múltiplas drogas foi avaliada por PCR em tempo real. A quantificação absoluta do número de transcritos BCR-ABL foi realizada pela técnica de PCR em tempo real utilizando-se o sistema Taqman de sondas de hibridização. Resultados: Nas amostras pré-tratamento dos 61 pacientes estudados não foram detectadas mutações. Quando relacionamos o aumento da expressão dos genes MDR1 e BCRP à resposta citogenética completa aos 12 meses de tratamento não houve diferença estatística significativa (p>0,05). Quanto ao número de transcritos BCR-ABL, observamos que os pacientes que apresentaram menos de 1% pela escala internacional aos 3 meses de tratamento atingiram a RMM em período menor (7 meses) do que os que apresentaram mais de 1% (12 meses) com diferença estatística significativa (p = 0,03). Conclusões: As mutações do domínio quinase do gene BCR-ABL nas amostras pré-tratamento não foram detectadas ou pela sensibilidade da técnica de seqüenciamento direto (10%) ou porque tais mutações são mais freqüentes nas fases acelerada e blástica. A expressão dos genes de resistência a múltiplas drogas (MDR1) e BCRP) em pacientes com LMC-FC ao diagnóstico não apresentou correlação com o aparecimento de resistência secundária ao MI. Além disso a quantificação mensal dos transcritos BCR-ABL aos 3 meses pode ser considerada um marcador com valor prognóstico. / Chronic myeloid leukemia is characterized by t(9;22) translocation. The chimeric gene BCR-ABL encodes a p210BCRABL protein with constitutive tyrosine kinase activity which is directly related to CML pathogenesis. The imatinib mesylate, a tyrosine kinase inhibitor, is the first-choice treatment for patients in chronic phase but some patients show primary resistance or relapse after initial response. The mechanisms of resistance to the imatinib mesylate treatment are BCR-ABL dependent (amplification of BCR-ABL and mutation of kinase domain of BCR-ABL) or independent of BCR-ABL (1-acid glycoprotein and expression of multidrug resistance genes). Objective: The objective of this work was to evaluate the mechanisms of resistance (kinase domain mutation and MDR1 and BCRP genes expression) to imatinib mesylate in pretreatment samples, quantify of BCR-ABL transcript on a monthly follow up plan, and to re-evaluate the mechanisms of resistance in the absence or loss of treatment response. Patients and Methods: We have evaluated 61 pretreatment samples derived from chronic phase CML patients. The number of BCR-ABL transcripts was quantified by RTQ-PCR with taqman probes and MDR1 and BCRP expression were evaluated by RTQ-PCR with Syber Green. Mutations within the BCR-ABL kinase domain were screened by direct sequencing and we also have screened the T315I mutation in pretreatment samples by allele-specific PCR. Results:We detected no mutations in the 61 pretreatment samples. The correlation analysis between the expression of MDR1/BCRP genes and the cytogenetic response at 12 months of treatment revealed no significant statistical difference (p = > 0.05). The results of BCR-ABL quantification in the follow up of our cohort indicated that patients who had transcripts <1% by the international scale at 3 months of therapy are more likely to achieve rapid MMR (median of 7 months) than those who had >1% (median of 12 months) (p = 0,03). Conclusions: As expected, the kinase domain mutations of BCR-ABL in pretreatment samples of CML chronic phase patients are not detectable by direct sequencing because of the sensitivity of the assay (10%) and also because these mutations are more common in accelerated phase and blast crisis. About the expression of multidrug resistance genes MDR1 and BCRP, they showed no correlation with secondary resistance to imatinib mesylate. And finally the number of BCR-ABL transcripts at 3 months of treatment can be considered a marker with prognostic value.
393

Nuclear Factor (Erythroid 2-like) Factor 2 (Nrf2) as Cellular Protector in Bile Acid and Retinoid Toxicities

Tan, Kah Poh 26 February 2009 (has links)
Exposure to toxic bile acids (BA) and retinoic acids (RA) is implicated in toxicities related to excessive oxidative stress. This thesis examined roles and mechanisms of the oxidative stress-responsive nuclear factor (erythroid 2-like) factor 2 (Nrf2) in adaptive cell defense against BA and RA toxicities. Using liver cells and mouse models, many antioxidant proteins known to be Nrf2 target genes, particularly the rate-limiting enzyme for glutathione (GSH) biosynthesis, i.e., glutamate-cysteine ligase subunits (GCLM/GCLC), were induced by BA [lithocholic acid (LCA)] or RA (all-trans, 9-cis and 13-cis) treatment. Evidence for increased Nrf2 transactivation by LCA and all-trans-RA was exemplified in HepG2 by: (1) reduced constitutive and inducible expression of GCLM/GCLC upon Nrf2 silencing via small-interfering RNA; (2) increased inducible expression of GCLM/GCLC genes by Nrf2 overexpression, but overexpression of dominant-negative Nrf2 decreased it; (3) increased nuclear accumulation of Nrf2 as signature event of receptor activation; (4) enhanced Nrf2-dependent antioxidant-response-element (ARE) reporter activity as indicative of increased Nrf2 transactivation; and (5) increased Nrf2 occupancy to AREs of GCLM and GCLC. Additionally, in BA-treated HepG2 cells, we observed concomitant increases of many ATP-binding cassette (ABC) transporters (MRPs 1-5, MDR1 and BCRP) in parallel with increased cellular efflux. Nrf2 silencing in HepG2 cells decreased constitutive and inducible expression of MRP2, MRP3 and ABCG2. However, Nrf2-silenced mouse hepatoma cells, Hepa1c1c7, and Nrf2-/- mice had decreased constitutive and/or inducible expression of Mrps 1-4, suggesting species differences in Nrf2-dependent regulation of hepatic ABC transporters. Protection by Nrf2 against BA and RA toxicities was confirmed by observations that Nrf2 silencing increased cell susceptibility to BA- and RA-induced cell death. Moreover, Nrf2-/- mice suffered more severe liver injury than the wildtype. Increased GSH and efflux activity following increased GCLM/GCLC and ABC transporters, respectively, can mitigate LCA toxicity. Activation of MEK1-ERK1/2 MAPK was shown to primarily mediate Nrf2 transactivation and LCA-induced expression of antioxidant proteins and Nrf2-dependent and -independent ABC transporters. In conclusion, Nrf2 activation by BA and RA led to coordinated induction of antioxidant and ABC proteins, thereby counteracting resultant oxidative cytotoxicity. The potential of targeting Nrf2 in management of BA and RA toxicities merits further investigation.
394

Nuclear Factor (Erythroid 2-like) Factor 2 (Nrf2) as Cellular Protector in Bile Acid and Retinoid Toxicities

Tan, Kah Poh 26 February 2009 (has links)
Exposure to toxic bile acids (BA) and retinoic acids (RA) is implicated in toxicities related to excessive oxidative stress. This thesis examined roles and mechanisms of the oxidative stress-responsive nuclear factor (erythroid 2-like) factor 2 (Nrf2) in adaptive cell defense against BA and RA toxicities. Using liver cells and mouse models, many antioxidant proteins known to be Nrf2 target genes, particularly the rate-limiting enzyme for glutathione (GSH) biosynthesis, i.e., glutamate-cysteine ligase subunits (GCLM/GCLC), were induced by BA [lithocholic acid (LCA)] or RA (all-trans, 9-cis and 13-cis) treatment. Evidence for increased Nrf2 transactivation by LCA and all-trans-RA was exemplified in HepG2 by: (1) reduced constitutive and inducible expression of GCLM/GCLC upon Nrf2 silencing via small-interfering RNA; (2) increased inducible expression of GCLM/GCLC genes by Nrf2 overexpression, but overexpression of dominant-negative Nrf2 decreased it; (3) increased nuclear accumulation of Nrf2 as signature event of receptor activation; (4) enhanced Nrf2-dependent antioxidant-response-element (ARE) reporter activity as indicative of increased Nrf2 transactivation; and (5) increased Nrf2 occupancy to AREs of GCLM and GCLC. Additionally, in BA-treated HepG2 cells, we observed concomitant increases of many ATP-binding cassette (ABC) transporters (MRPs 1-5, MDR1 and BCRP) in parallel with increased cellular efflux. Nrf2 silencing in HepG2 cells decreased constitutive and inducible expression of MRP2, MRP3 and ABCG2. However, Nrf2-silenced mouse hepatoma cells, Hepa1c1c7, and Nrf2-/- mice had decreased constitutive and/or inducible expression of Mrps 1-4, suggesting species differences in Nrf2-dependent regulation of hepatic ABC transporters. Protection by Nrf2 against BA and RA toxicities was confirmed by observations that Nrf2 silencing increased cell susceptibility to BA- and RA-induced cell death. Moreover, Nrf2-/- mice suffered more severe liver injury than the wildtype. Increased GSH and efflux activity following increased GCLM/GCLC and ABC transporters, respectively, can mitigate LCA toxicity. Activation of MEK1-ERK1/2 MAPK was shown to primarily mediate Nrf2 transactivation and LCA-induced expression of antioxidant proteins and Nrf2-dependent and -independent ABC transporters. In conclusion, Nrf2 activation by BA and RA led to coordinated induction of antioxidant and ABC proteins, thereby counteracting resultant oxidative cytotoxicity. The potential of targeting Nrf2 in management of BA and RA toxicities merits further investigation.
395

Studies of the expression and characterization of various transport systems at RBE4 cells, an in vitro model of the blood-brain barrier / Studien zur Expression und Charakterisierung verschiedener Transport Systeme an RBE4 Zellen, einem in vitro Modell der Blut-Hirn Schranke

Friedrich, Anne 05 July 2003 (has links) (PDF)
The purpose of this study was the investigation of several transport systems expressed at the BBB. The identification and functional characterization of such transport systems is essential to provide a basis for strategies to regulate drug disposition into the brain. Immortalized rat brain endothelial cells (RBE4 cells) have been used in this study as an in vitro model of the BBB. The present study has shown that the RBE4 cells are a suitable model of the BBB for transporter studies. These cells do express the amino acid transport systems L and y+, which are known to be present at the BBB. The uptake of L-tryptophan, a neutral amino acid transported by system L, exhibited a half saturation constant (Kt) of 31 µM and a maximal velocity rate (Vmax) of about 1 nmol/mg/min in RBE4 cells. The kinetic constants of the L-arginine uptake, representing system y+ transport activity, into RBE4 cells were determined with a Kt value of about 55 µM and a Vmax of 0.56 nmol/mg/min. Furthermore the expression of two sodium dependent transporters, the 5-HT transporter (SERT) and the organic cation/carnitine transporter OCTN2, was shown at the RBE4 cells. Uptake studies with radiolabeled 5-HT exhibited a saturable, sodium dependent transport at RBE4 cells with a Kt value of about 0.40 µM and a Vmax of about 52 fmol/mg/min. L-carnitine and TEA (tetraethylammonium) are known to be transported by the OCTN2 transporter. The uptake of L-carnitine into RBE4 cells was shown to be sodium dependent and saturable with a Kt value of 54 µM and a maximal velocity of about 3.6 pmol/mg/min. In contrast, the organic cation TEA follows a sodium independent uptake mechanism at RBE4 cells. Also a sodium independent choline uptake into the cells was discovered but the molecular identity remained unknown. This saturable choline transport exhibited a Kt value of about 22 µM and a maximal velocity of about 52 pmol/mg/min.
396

Étude structure/fonction des cotransporteurs Na+/glucose

Sasseville, Louis 06 1900 (has links)
Cette thèse porte sur l’étude de la relation entre la structure et la fonction chez les cotransporteurs Na+/glucose (SGLTs). Les SGLTs sont des protéines membranaires qui se servent du gradient électrochimique transmembranaire du Na+ afin d’accumuler leurs substrats dans la cellule. Une mise en contexte présentera d’abord un bref résumé des connaissances actuelles dans le domaine, suivi par un survol des différentes techniques expérimentales utilisées dans le cadre de mes travaux. Ces travaux peuvent être divisés en trois projets. Un premier projet a porté sur les bases structurelles de la perméation de l’eau au travers des SGLTs. En utilisant à la fois des techniques de modélisation moléculaire, mais aussi la volumétrie en voltage imposé, nous avons identifié les bases structurelles de cette perméation. Ainsi, nous avons pu identifier in silico la présence d’une voie de perméation passive à l’eau traversant le cotransporteur, pour ensuite corroborer ces résultats à l’aide de mesures faites sur le cotransporteur Na/glucose humain (hSGLT1) exprimé dans les ovocytes. Un second projet a permis d’élucider certaines caractéristiques structurelles de hSGLT1 de par l’utilisation de la dipicrylamine (DPA), un accepteur de fluorescence dont la répartition dans la membrane lipidique dépend du potentiel membranaire. L’utilisation de la DPA, conjuguée aux techniques de fluorescence en voltage imposé et de FRET (fluorescence resonance energy transfer), a permis de démontrer la position extracellulaire d’une partie de la boucle 12-13 et le fait que hSGLT1 forme des dimères dont les sous-unités sont unies par un pont disulfure. Un dernier projet a eu pour but de caractériser les courants stationnaires et pré-stationaires d’un membre de la famille des SGLTs, soit le cotransporteur Na+/myo-inositol humain hSMIT2 afin de proposer un modèle cinétique qui décrit son fonctionnement. Nous avons démontré que la phlorizine inhibe mal les courants préstationnaires suite à une dépolarisation, et la présence de courants de fuite qui varient en fonction du temps, du potentiel membranaire et des substrats. Un algorithme de recuit simulé a été mis au point afin de permettre la détermination objective de la connectivité et des différents paramètres associés à la modélisation cinétique. / This thesis is about the structure/function relationship in Na+/glucose cotransporters (SGLTs). SGLTs are membrane proteins which use the Na+ transmembrane electrochemical gradient to accumulate their substrates within the cell. As an introduction, a short review of the current state of the field will be followed by a presentation of the different technics used in this work. This work can be divided in three main projects. In the first project, we investigated the structural basis of water permeation through SGLTs. By using molecular modeling technics, we have identified, in silico, a passive permeation pathway used by water to go through the cotransporter across the membrane. Using voltage-clamp volumetric measurement, we were able to corroborate these findings for hSGLT1 expressed in oocytes. A second project allowed elucidation of some of hSGLT1 structural characteristics through the use of dipicrylamine (DPA), a fluorescence acceptor whose repartition in the lipid membrane is voltage-dependant. Use of DPA concomitantly with voltage-clamp fluorescence and FRET (fluorescence resonance energy transfer) has clearly demonstrated the extracellular localisation of part of the 12-13 loop which was previously assumed to be intracellular. In addition, we have shown that hSGLT1 forms a dimeric structure where the subunits are linked by a disulfide bridge. A last project aimed at characterizing the steady-state and pre-steadystate currents of a member of the SGLT family named hSMIT2 (human Na/myo-inositol transporter 2). We showed that phlorizin is a poor inhibitor of pre-steady state currents following depolarisation, and the presence of a time, membrane potential and substrate dependent leak current. A simulated annealing algorithm was developed in order to allow objective determination of both the connectivity and the parameters associated with the optimal kinetic model.
397

Biological Roles of the Vitamin D Receptor in the Regulation of Transporters and Enzymes on Drug Disposition, Including Cytochrome P450 (CYP7A1) on Cholesterol Metabolism

Chow, Edwin C. Y. 15 August 2013 (has links)
Nuclear receptors play significant roles in the regulation of transporters and enzymes to balance the level of endogenous molecules and to protect the body from foreign molecules. The vitamin D receptor (VDR) and its natural ligand, 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3], was shown to upregulate rat ileal apical sodium dependent bile acid transporter (Asbt) to increase the reclamation of bile acids, ligands of the farnesoid X receptor (FXR). FXR is considered to be an important, negative regulator of the cholesterol metabolizing enzyme, Cyp7a1, which metabolizes cholesterol to bile acids in the liver. In rats, decreased Cyp7a1 and increased P-glycoprotein/multidrug resistance protein 1 (P-gp/Mdr1) expressions pursuant to 1,25(OH)2D3 treatment was viewed as FXR effects in which hepatic VDR protein is poorly expressed. In contrast, changes in rat intestinal and renal transporters such as multidrug resistance associated proteins (Mrp2, Mrp3, and Mrp4), Asbt, and P-gp after administration of 1,25(OH)2D3 were attributed directly as VDR effects due to higher VDR levels expressed in these tissues. Higher VDR expressions were found among mouse hepatocytes compared to those in rats. Hence, fxr(-/-) and fxr(+/+) mouse models were used to discriminate between VDR vs. FXR effects in murine livers. Hepatic Cyp7a1 in mice was found to be upregulated with 1,25(OH)2D3 treatment, via the derepression of the short heterodimer partner (SHP). Putative VDREs, identified in mouse and human SHP promoters, were responsible for the inhibitory effect on SHP. The increase in hepatic Cyp7a1 expression and decreased plasma and liver cholesterol were observed in mice prefed with a Western diet. A strong correlation was found between tissue Cyp7a1 and P-gp changes and 1,25(OH)2D3 plasma and tissue concentrations, confirming that VDR plays an important role in the disposition of xenobiotics and cholesterol metabolism. Moreover, renal and brain Mdr1a/P-gp were found to be directly upregulated by the VDR in mice, and concomitantly, increased renal and brain secretion of digoxin, a P-gp substrate, in vivo. The important observations: the cholesterol lowering and increased brain P-gp efflux activity properties suggest that VDR is a therapeutic target for treatment of hypercholesterolemia and Alzheimer’s diseases, since beta amyloid, precursors of plague, are P-gp substrates.
398

Biological Roles of the Vitamin D Receptor in the Regulation of Transporters and Enzymes on Drug Disposition, Including Cytochrome P450 (CYP7A1) on Cholesterol Metabolism

Chow, Edwin C. Y. 15 August 2013 (has links)
Nuclear receptors play significant roles in the regulation of transporters and enzymes to balance the level of endogenous molecules and to protect the body from foreign molecules. The vitamin D receptor (VDR) and its natural ligand, 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3], was shown to upregulate rat ileal apical sodium dependent bile acid transporter (Asbt) to increase the reclamation of bile acids, ligands of the farnesoid X receptor (FXR). FXR is considered to be an important, negative regulator of the cholesterol metabolizing enzyme, Cyp7a1, which metabolizes cholesterol to bile acids in the liver. In rats, decreased Cyp7a1 and increased P-glycoprotein/multidrug resistance protein 1 (P-gp/Mdr1) expressions pursuant to 1,25(OH)2D3 treatment was viewed as FXR effects in which hepatic VDR protein is poorly expressed. In contrast, changes in rat intestinal and renal transporters such as multidrug resistance associated proteins (Mrp2, Mrp3, and Mrp4), Asbt, and P-gp after administration of 1,25(OH)2D3 were attributed directly as VDR effects due to higher VDR levels expressed in these tissues. Higher VDR expressions were found among mouse hepatocytes compared to those in rats. Hence, fxr(-/-) and fxr(+/+) mouse models were used to discriminate between VDR vs. FXR effects in murine livers. Hepatic Cyp7a1 in mice was found to be upregulated with 1,25(OH)2D3 treatment, via the derepression of the short heterodimer partner (SHP). Putative VDREs, identified in mouse and human SHP promoters, were responsible for the inhibitory effect on SHP. The increase in hepatic Cyp7a1 expression and decreased plasma and liver cholesterol were observed in mice prefed with a Western diet. A strong correlation was found between tissue Cyp7a1 and P-gp changes and 1,25(OH)2D3 plasma and tissue concentrations, confirming that VDR plays an important role in the disposition of xenobiotics and cholesterol metabolism. Moreover, renal and brain Mdr1a/P-gp were found to be directly upregulated by the VDR in mice, and concomitantly, increased renal and brain secretion of digoxin, a P-gp substrate, in vivo. The important observations: the cholesterol lowering and increased brain P-gp efflux activity properties suggest that VDR is a therapeutic target for treatment of hypercholesterolemia and Alzheimer’s diseases, since beta amyloid, precursors of plague, are P-gp substrates.
399

The role of Organic Cation Transporters in the pharmacokinetics of clinically relevant DNA damaging agents : in vivo and in silico studies

Papaluca, Arturo 03 1900 (has links)
No description available.
400

Correlação da expressão de GLUT1, HK1, HK2 e HK3 com alta captação de 18/F-FDG em hiperplasia macronodular adrenal primária / Correlation between GLUT1, HK1, HK2 and HK3 expression and high 18F-FDG uptake in primary macronodular adrenal hyperplasia

Isadora Pontes Cavalcante 03 October 2014 (has links)
Introdução: Hiperplasia Macronodular Adrenal Primária (PMAH) é uma causa rara de Síndrome de Cushing (SC), caracterizada por macronódulos funcionantes geralmente acometendo ambas as glândulas adrenais. Recentemente, o exame 18F-FDG PET/CT detectou três pacientes com PMAH apresentando captação aumentada de 18F-FDG. No entanto, ainda não foi elucidado o mecanismo pelo qual a PMAH apresentaria uma alta captação de 18F-FDG. Objetivos: Os objetivos deste estudo foram investigar se a expressão de GLUT1, HK1, HK2 e/ou HK3 estão relacionados à alta captação de 18F-FDG na PMAH e comparar estas expressões com tecidos adrenais provenientes de pacientes com AAC e CAA. Métodos: 12 pacientes com PMAH que realizaram 18F-FDG-PET/CT, previamente à adrenalectomia. A captação de 18F-FDG foi quantificada como maximum standardized uptake value (SUVmax). Expressão do RNAm foi investigada através de RT-PCR e a expressão proteica através de técnicas de imunoistoquímica. Expressão gênica e proteica dos pacientes com PMAH foi comparada com 15 pacientes com AAC e 10 pacientes com CAA. As correlações foram realizadas através do teste de coeficiente de correlação de Pearson e as comparações, através do teste Kruskal-Wallis, seguido do ajuste de Dunn. Significância estatística foi considerada quando p < 0.05. Resultados: Todos os pacientes com PMAH apresentaram alta captação de 18F-FDG, cujo SUVmáx variou de 3.3 a 8.9 e o tamanho do maior nódulo variou de 3.5 a 15cm. Foi observada forte correlação positiva entre o tamanho do maior nódulo e o SUVmáx nos pacientes com PMAH. No entanto, não foi estabelecida correlação entre a expressão de GLUT1, HK1, HK2 e HK3 e o SUVmáx nos pacientes com PMAH. A expressão do SLC2A1 e HK2 foi significativamente maior nos pacientes com CAA do que nos pacientes com AAC e PMAH. Conclusões: A captação aumentada de 18F-FDG na PMAH não está relacionada ao aumento da expressão de GLUT1, HK1, HK2 e HK3. Estudos futuros serão necessários para elucidar a via glicolítica que é responsável pelo metabolismo da glicose na PMAH / Introduction: Primary macronodular adrenal hyperplasia (PMAH) is a rare cause of Cushing\'s syndrome, characterized by functioning adrenal macronodules and increased cortisol production. Recently, integrated 18F-FDG-PET/CT examination revealed an increased 18F-FDG uptake in patients with PMAH. However, it is still unclear the mechanism by which PMAH would present with a high 18F-FDG uptake in PET/CT. Objectives: The aim of this study was to investigate whether GLUT1, HK1, HK2 and/or HK3 expression would account for the high18F-FDG uptake in PMAH and compare these expressions with ACA and ACC adrenal tisuue. Methods: 12 patients undergoing adrenalectomy for PMAH with previous 18F-FDG-PET/CT. 18F-FDG uptake was quantified as the maximum standardized uptake value (maxSUV). mRNA expression was investigated through quantitative RT-PCR and protein expression was investigated using immunohistochemical studies. PMAH gene and protein expression were compared to 15 patients with ACA and 10 with ACC. Correlations were performed through Pearson\'s correlation coefficient test and comparisons through Kruskal-Wallis test, followed by Dunn adjust. Statistical significance was considered when p < 0.05. Results: All patients with PMAH presented with high 18F-FDG uptake, the range of SUVmax in these patients varied from 3.3 to 8.9 and the nodule sizes varied from 3.5 to 15 cm. There was a strong positive correlation between the nodule size and 18F-FDG uptake. However, no correlation could be established between gene and protein expression of GLUT1, HK1, HK2 and HK3 and 18F-FDG uptake. SLC2A1 and HK2 expression was significantly higher in patients with CCA than in patients with AAC and PMAH. Conclusions: Increased 18F-FDG uptake in PMAH does not arise from the overexpression of GLUT1, HK1, HK2 or HK3. Further investigation is required to elucidate the glycolytic pathway involved in glucose metabolism in PMAH

Page generated in 0.0478 seconds