• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • Tagged with
  • 10
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrafast photoinduced phase transitions in complex materials probed by time-resolved resonant soft x-ray diffraction

Trabant, Christoph January 2014 (has links)
In processing and data storage mainly ferromagnetic (FM) materials are being used. Approaching physical limits, new concepts have to be found for faster, smaller switches, for higher data densities and more energy efficiency. Some of the discussed new concepts involve the material classes of correlated oxides and materials with antiferromagnetic coupling. Their applicability depends critically on their switching behavior, i.e., how fast and how energy efficient material properties can be manipulated. This thesis presents investigations of ultrafast non-equilibrium phase transitions on such new materials. In transition metal oxides (TMOs) the coupling of different degrees of freedom and resulting low energy excitation spectrum often result in spectacular changes of macroscopic properties (colossal magneto resistance, superconductivity, metal-to-insulator transitions) often accompanied by nanoscale order of spins, charges, orbital occupation and by lattice distortions, which make these material attractive. Magnetite served as a prototype for functional TMOs showing a metal-to-insulator-transition (MIT) at T = 123 K. By probing the charge and orbital order as well as the structure after an optical excitation we found that the electronic order and the structural distortion, characteristics of the insulating phase in thermal equilibrium, are destroyed within the experimental resolution of 300 fs. The MIT itself occurs on a 1.5 ps timescale. It shows that MITs in functional materials are several thousand times faster than switching processes in semiconductors. Recently ferrimagnetic and antiferromagnetic (AFM) materials have become interesting. It was shown in ferrimagnetic GdFeCo, that the transfer of angular momentum between two opposed FM subsystems with different time constants leads to a switching of the magnetization after laser pulse excitation. In addition it was theoretically predicted that demagnetization dynamics in AFM should occur faster than in FM materials as no net angular momentum has to be transferred out of the spin system. We investigated two different AFM materials in order to learn more about their ultrafast dynamics. In Ho, a metallic AFM below T ≈ 130 K, we found that the AFM Ho can not only be faster but also ten times more energy efficiently destroyed as order in FM comparable metals. In EuTe, an AFM semiconductor below T ≈ 10 K, we compared the loss of magnetization and laser-induced structural distortion in one and the same experiment. Our experiment shows that they are effectively disentangled. An exception is an ultrafast release of lattice dynamics, which we assign to the release of magnetostriction. The results presented here were obtained with time-resolved resonant soft x-ray diffraction at the Femtoslicing source of the Helmholtz-Zentrum Berlin and at the free-electron laser in Stanford (LCLS). In addition the development and setup of a new UHV-diffractometer for these experiments will be reported. / In der Datenspeichertechnologie werden bisher hauptsächlich ferromagnetische Materialien eingesetzt. Da mit diesen aber physikalische Grenzen erreicht werden, werden neue Konzepte gesucht, um schnellere und kleinere Schalter, größere Datendichten und eine höherere Energieeffizienz zu erzeugen. Unter den diskutierten Materialklassen finden sich komplexen Übergangsmetalloxide und Materialien mit antiferromagnetischer Kopplung. Die Anwendbarkeit solcher Materialien hängt stark davon ab, wie schnell sich deren Eigenschaften verändern lassen und wieviel Energie dafür eingesetzt werden muss. Die vorliegende Arbeit beschäftigt sich mit ultraschnellen, Nicht-Gleichgewicht-Phasenübergängen genau in solchen Materialien. In Übergangsmetalloxiden führt die enge Kopplung zwischen den unterschiedlichen Freiheitsgraden zu einem effektiven niederenergetischen Anregungsspektrum. Diese Anregungen sind oft verknüpft mit spektakulären makroskopischen Eigenschaften, wie z.B. dem kolossalen Magnetowiderstand, Hochtemperatur-Supraleitung, Metall- Isolator-Übergang, die oft von nanoskaliger Ordnung von Spins, Ladungen, orbitaler Besetzung sowie Gitterverzerrungen begleitet sind. Dadurch werden diese Materialien interessant für Anwendbarkeit. Magnetit, ein Prototyp eines solchen funktionalen Materials zeigt einen Metall-Isolator-Übergang bei T = 123 K. Untersucht man die Ladungs- und orbitale Ordnung sowie die Struktur nach einer optischen Anregung, so findet man, dass die elektronische Struktur und Gitterverzerrung, die kennzeichnend für die Tieftemperaturphase sind, innerhalb der Zeitauflösung des Experiments von 300 fs zerstört wird. Der eigentliche Metall-Isolator-Übergang zeigt sich erst nach 1.5 ps. Die Ergebnisse zeigen, dass MITs in funktionalen Materialien bis zu tausend Mal schneller geschaltet werden können als in vorhandenen Halbleiter-Schaltern. Seit kurzem rücken auch ferrimagnetische und antiferromagnetische Materialen in den Fokus des Interesses. Es wurde im Ferrimagnet GdFeCo gezeigt, dass der Transfer von Drehimpuls zwischen zwei entgegengesetzten Subsystemen mit unterschiedlichen Zeitkonstanten zu einem Umschalten der Magnetisierung führt. Zudem wurde vorhergesagt, dass Demagnetisierungsdynamiken in antiferromagnetischen Materialien schneller ablaufen soll als in ferromagnetischen, da kein Drehimpuls aus dem Spinsystem abgeführt werden muss. Damit wir mehr über antiferromagnetische Dynamik erfahren haben wir zwei unterschiedliche Antiferromagneten untersucht, um sie mit den bekannten FM zu vergleichen. Im metallischen AFM Holmium fanden wir, dass die magnetische Ordnung schneller und zehnmal energieeffizienter zerstört werden kann als in vergleichbaren FM Metallen. In Europium-Tellurid, einem antiferromagnetischem Halbleiter, haben wir den Zerfall der magnetischen Ordnung im Hinblick auf Wechselwirkungen mit der Struktur untersucht. Wir fanden auf kurzen Zeitskalen eine eher entkoppelte Dynamik. Eine Ausnahme ist ein schneller Beitrag zur Gitterdynamik, den wir mit dem Wegfall von Magnetostriktion erklären. Die hier gezeigten Ergebnisse wurden mit Hilfe zeitaufgelöster resonanter weicher Röntgenbeugung an der Femtoslicing Strahlungsquelle des Helmholtz-Zentrums Berlin und am freien Elektronenlaser LCLS gemessen. Zusätzlich wird über die Entwicklung und den Bau eines UHV-Diffraktometers für diese Experimente berichtet.
2

Ultra-fast magnetic soft-bodied robots and high-motility visible light-driven micro robots

Wang, Xu 14 December 2021 (has links)
Magnetfelder und sichtbares Licht präsentieren zwei Operationen externe Reize für eine schnelle, ferngesteuerte, zuverlässige und heilende der Kleinrobotik weicher und harter Körper. Umden Anforderungen verschiedener Anwendungen gerecht zu werden, wurden selbstfahrende Bewegungen und komplexere Bewegungsmuster mit kleinen Robotern in der Längenskala von Mikro-bis Zentimeter demonstriert. In Bezug auf die begrenzte Betätigungsleistung und die mangelhafte Untersuchung der nicht linearen Dynamik von Hochgeschwindigkeitsbewegungsmustern in magnetischen weichen Robotern und der durch Niedrigenergie verursachten ineffizienten Bewegung von Mikrorobotern unter sichtbarem Licht konzentriert sich diese Arbeit auf drei Hauptthemen: ultraschnelle Roboter mit weichem Körper, angetrieben durch ein Magnetfeld, hoch-bewegliche, durch sichtbares Licht angetriebene Janus-Mikroroboter aus Silber/Silberchlorid (Ag/AgCl), sowie betätigt aktivierter effizienter Ausschluss zwischen plasmonischen Ag/AgCl-Mikrorobotern und passiven Partikeln mittels sichtbares Licht. Im ersten Teil der Arbeit wird wir eine Reihe von simulationsgesteuerten, leichten, langlebigen, nicht angegeschlossee und ultraschnellen magnetischen Robotern mit weichem Körper, demonstriert die Deformationen mit großer Amplitude (Drehw-inkel > 90◦) bei hohen Frequenzen von bis zu 100 Hz ausführen. Unsere Roboter können mit einem sehr kleinen Magnetfeld von nur 0.5 mT angetrieben werden, was 20-mal weniger ist als das der allgemeine Magnetroboter. Desweiteren werde ein numerisches Modell entwickelt, welches das grundlegende Verständnis dieser nicht linearen Dynamik in ultraschnellen weichen Robotern erklärt. Ein inspirierendes, blütenförmiges, weiches Roboterdesign mit ultraschneller Betätigung kann eine leb ende Fliege in 35msfür einen Moment einwickeln. Die Schließgeschwindigkeit ist etwa achtmal höher als die der Venusfliegenfalle. Wenn unsere mehrarmigen Roboter mit weichem Körper in einem bestimmten Bereich hoher Frequenzen reagieren, zeigen sie eine stark nicht lineare dynamische Betätigung, die als “Kreuzklatsch” - Bewegung bezeichnet wird, die durch Simulation vorhergesagt und durch Experimente beobachtet wird. Unsere multifunktionalen Roboter mit weichem Körper können mit externen Magneten laufen, schwimmen, schweben und Fracht transportieren. Weiterhin wird demonstrieren die Bewegung von Janus-Polystyrolpartikel (PS)/Ag/ AgCl-Mikrorobotern vorgestellt, die große Verschiebungen in reinem Wasser unter blauem Licht zeigen, und mögliche Verwendung in menschlichem Speichel, phosphatgepufferter Salzlösung (PBS) und Rhodamin B (RhB) Lösungen. Finden der auf Janus Ag/AgCl basierende Mikroroboter kann die mittlere quadratische Verschiebung (MSD) in reinem Wasser in 8 s auf einen bemerkenswerten Wert von 800 μm2 steigern, welcher etwa siebenmal höher ist als die zuvor in der Literatur angegebenen MSDWerte für AgCl-basierte Mikroroboter. Es wird zudem eine Untersuchung experimentelle, unter Verwendung numerischer Simulationen, der Bewegung einzelner Janus-Partikel in kleinen (bestehend aus 2 und 3 einzelnen Janus-Partikeln) und großen Clustern (bestehend aus vielen einzelnen Janus-Partikeln) vorgestellt. Die höchsten Bewegungsgeschwindigkeiten und größten MSD-Werte wurden bei einzelnen Janus-Partikeln beobachtet. Mit zunehmender Anzahl von Einzelpartikeln, die einen aktiven Mikroroboter bilden, nehmen die detektierten Geschwindigkeiten und die MSD. Infolge der Aufhebung der Eigenbitgeschwindigkeiten der Janus-Partikelbestandteile aufgrund ihrer zufälligen Anordnung in den Baugruppen ab. Diese Studie kann dazu genutzt werde, umneue Designs von Mikrorobotern mit sichtbarem Licht zu realisieren, welche auf dem Oberflächenplasmonresonanzeffekt (SPR) basieren, sowie fortschrittliche Anwendungen zu entwickeln, die für die biomedizinischen und ökologischen Wissenschaften relevant sind. Anschließend wird eine Reihe von des welche Lichte aktivierende kollektiven Verhaltensweisen zwischen aktiven Ag/AgCl-basierten Mikrorobotern (Einzel-, Doppel-, Dreifach- und Cluster), durch sichtbares und passiven PS-Partikeln in reinemWasser. Bei Beleuchtung mit sichtbarem Licht lösen die Janus-Mikroroboter eine selbstfahrende Bewegung aus und schließen die umgebenden PS-Partikeln aus. Die ausschließliche Wirkung der passiven PS-Partikel ist bei großen Clustern von Janus-Partikeln aufgrund der starken Strömung der Produkte der chemischen Reaktion aus großen Clustern viel stärker als bei einzelnen Mikrorobotern. Dieses komplexe gemischte System mit beweglichen passiven und aktiven Objekten bietet Einblick in den interaktiven Effekt zwischen den PS-Partikeln und bietet vielversprechende Auswirkungen auf den licht aktivierten Antriebstransport und die chemische Erfassung.
3

Ultrafast Soft Mode Dynamics in Ferroelectrics studied with Femtosecond X-Ray Diffraction

Hernandez, Antonio 22 January 2020 (has links)
Ferroelektrische Materialien sind ein Schlüsselbereich der aktuellen Forschung und weisen zahlreiche wichtige technologische Anwendungen auf. Diese Klasse kristalliner Feststoffe zeichnet sich üblicherweise durch eine Vielzahl von para- und ferroelektrischen Phasen auf. Letztere sind dadurch charakterisiert, dass sie auch in Abwesenheit eines äußeren Feldes eine spontane elektrische Polarisation aufweisen. Diese Eigenschaft hat ihren Ursprung in der besonderen elektronischen Struktur ferroelektrischer Materialien, die sich aus einer großen Vielfalt von Gittergeometrien und mikroskopischen Ladungsdichteverteilungen ergibt. Auf atomarer Ebene sind die komplexen Eigenschaften der Ferroelektrika bis jetzt jedoch nur teilweise verstanden. Insbesondere die Verbindung zwischen mikroskopischen elektronischen Ladungsverteilungen und der daraus resultierenden makroskopischen elektrischen Polarisation wirft eine entscheidende, momentan noch offene Frage auf. Die Ladungsdynamik und ihr Zusammenspiel mit Gitteranregungen, insbesondere Softmoden, sind auf atomaren Längen- und Zeitskalen ungelöst. In dieser Arbeit wird das Potenzial der Femtosekunden-Röntgenpulverbeugung aufgezeigt, diese Frage zu adressieren. Diese Methode ermöglicht im Rahmen dieser Arbeit die Bestimmung transienter elektronischer Ladungsdichtekarten für das prototypische ferroelektrische Ammoniumsulfat direkt unterhalb seiner Curie-Temperatur nach einer optischen Anregung. Die Analyse der experimentellen Daten deckte eine bislang unbekannte niederfrequente Gitteroszillation mit einer Periode von 3 ps und nukleare Verschiebungen im Sub-Picometer-Bereich auf, die Ladungsverschiebungen auf einer 100-pm-Längenskala induzieren. Dies sind klare Merkmale, die auf die Anregung einer Softmode hinweisen. Schließlich wird zum ersten Mal die Dynamik der makroskopischen Polarisationsänderung abgeleitet, die eine oszillatorische Umkehr der Polarität aufweist und für ultraschnelle Schaltanwendungen geeignet ist. / Ferroelectrics are an area of current research, with important technological applications such as ferroelectric random access memories, infrared cameras or medical ultrasound equipment. This class of crystalline solids do not commonly only exhibit a ferroelectric phase, but rather go through an abundant variety of para- and ferroelectric phases that depend on the temperature. The ferroelectric phases present a spontaneous electric polarization even in the absence of an external field, in contrast to paraelectric phases and also exhibit a hysteresis loop in analogy to ferromagnets. This macroscopic feature has its origin in their peculiar electronic structure, which results from a rich diversity of lattice geometries and complex microscopic charge distributions. At the atomic level, however, the intricate characteristics of ferroelectrics are only partially understood. The link between microscopic charge distributions and macroscopic electric polarization poses a crucial question to be solved. The interplay of charge dynamics and lattice excitations are still unresolved on atomic length and time scales. In this thesis, femtosecond X-Ray powder diffraction is used to find solutions for these unanswered questions. This method allows for the experimental determination of time-resolved charge density maps from where the structural, charge and polarization dynamics are can be derived. These maps are determined for the photoexcited ferroelectric ammonium sulphate just below its Curie temperature. Data analysis has revealed a newly discovered low frequency lattice oscillation with a 3ps period and sub-picometer nuclear displacements that is related to periodic charge relocations on a 100pm length scale, which is a feature indicative of soft mode behavior. Finally, the dynamics of the variation of polarization are derived for the first time, showing an oscillatory reversal of polarity that holds potential for ultrafast switching applications.
4

Beam Dynamics and Instrumentation for MeV Electron Scattering with an SRF Photoinjector

Alberdi Esuain, Beñat 18 October 2024 (has links)
Das Verständnis der inneren Vorgänge in der Materie, einschließlich des komplizierten Tanzes von Elektronen, Atomen und Molekülen, hat Forscher schon lange fasziniert. Elektronen werden seit der Erfindung des Elektronenmikroskops zur Untersuchung von Materie eingesetzt, aber erst in jüngster Zeit haben Fortschritte in der Elektronenquellen- und Beschleunigertechnologie die Erzeugung von Elektronenstrahlen mit hoher Helligkeit und Energien im Megaelektronenvoltbereich ermöglicht. Diese Entwicklungen versprechen die Beobachtung des Verhaltens von Materie auf atomarer Ebene. Die Forschung in dieser Dissertation konzentriert sich auf die Bereitstellung von Elektronenstrahlen im Megaelektronenvoltbereich, die für die Untersuchung von Materialien geeignet sind. Angesichts der Herausforderungen, die sich aus den für solche Experimente erforderlichen niedrigen Intensitäten und geringen Emittanzen ergeben, werden die notwendigen Modifikationen an der Strahllinie des SRF-Photoinjektors untersucht. Anschließend wird eine experimentelle Kampagne durchgeführt, um spezielle Strahldiagnosetechniken zur Echtzeitüberwachung des Strahls zu testen. Darüber hinaus werden die Fähigkeiten des Beschleunigers zur Durchführung zeitaufgelöster Elektronenstreuexperimente mit Auflösungen auf atomarer Zeitskala untersucht. Unsere Ergebnisse zeigen das Potenzial des SRF-Photoinjektors und ähnlicher Beschleuniger, ultraschnelle Elektronenstreuexperimente mit beispielloser zeitlicher Auflösung durchzuführen. Darüber hinaus können diese Beschleuniger genutzt werden, um lokalisierte Prozesse mit räumlichen Auflösungen von über 10 Nanometern zu beobachten, indem ein geeignetes Design der Elektronenoptik verwendet wird, für das ein innovativer Ansatz vorgeschlagen wird. Durch die Untersuchung der Grenzen der aktuellen Beschleunigertechnologie bei der Durchführung von Materieuntersuchungsexperimenten mit relativistischen Elektronen werden die Grenzen dieses Feldes in neue Richtungen verschoben. / Understanding the inner workings of matter, including the intricate dance of electrons, atoms, and molecules, has long captivated researchers. Electrons have been employed to probe matter since the advent of the electron microscope, but it has not been until recently that advancements in electron source and accelerator technology have enabled the production of high-brightness electron beams with megaelectronvolt energies. These developments hold promise for enabling the observation of matter’s behaviors at atomic scales. The research in this dissertation focuses on delivering megaelectronvolt electron beams suitable for the investigation of materials. Considering the challenges posed by the low intensities and small emittances required for such experiments, the necessary modifications to the SRF Photoinjector's beamline are studied. An experimental campaign is then conducted to test dedicated beam diagnostic techniques for real-time monitoring of the beam. Furthermore, the accelerator’s capabilities for conducting time-resolved electron scattering experiments with resolutions at atomic temporal scales are investigated. Our findings reveal the potential of the SRF Photoinjector and similar accelerators to perform ultrafast electron scattering experiments with unprecedented temporal resolutions. Additionally, these accelerators can be utilized to observe localized processes with spatial resolutions surpassing 10 nanometers by using an appropriate design of electron optics, for which an innovative approach is proposed. By studying the limitations of current accelerator technology in conducting matter-probing experiments with relativistic electrons, the boundaries of this field are pushed toward new frontiers.
5

Lichtinduzierte Primärprozesse in reversibel photoschaltbaren fluoreszierenden Proteinen: Zeitaufgelöste Spektroskopie von Padron0.9 und rsFastLime / Primary Light-Induced Reaction Steps of Reversibly Photoswitchable Fluorescent Proteins: Time-Resolved Spectroscopy of Padron0.9 and rsFastLime

Walter, Arne 09 July 2014 (has links)
No description available.
6

Raumzeitliche Dynamik optisch angeregter Elektron-Loch-Plasmen in Galliumarsenid / Spatio-temporal kinetics of optically generated electron-hole plasmas in GaAs

Ziebold, Ralf 25 October 2000 (has links)
No description available.
7

Nonlinear terahertz spectroscopy in one and two dimensions

Kühn, Wilhelm 25 February 2011 (has links)
Die vorliegende Dissertation behandelt Grundlagen und Anwendungen der nichtlinearen Terahertzspektrospie (THz). Diese Arbeit zeigt erstmalig, dass sich die Inversion des Quantenkaskadenlasers nach einer Störung schon innerhalb von hundert Femtosekunden wieder erholt. Außerdem wurde der exakte Generationsprozess von THz Impulsen in einem Laser-induzierten zwei-Farben Plasma untersucht. Durch Vergleich mit Simulationen wird eindeutig der Ionisationsstrom im Plasma als Quelle der THz Strahlung identifiziert. Neue Spektroskopiemethoden in ein und zwei Zeitdimensionen werden entwickelt und auf verschiedene Halbleiterstrukturen angewendet. So wird das elektrische Feld des THz-Impulses für Hochfeld-Transportexperimente genutzt. Im quanten-kinetischen Regime entkoppelt die Elektronbewegung von den Phononmoden des Kristalls, und quasi-ballistischer Transport wird möglich. Wir entwickeln ein dynamisches Polaronmodell, welches sowohl die experimentellen Ergebnisse auf kurzen Zeitskalen als auch Literaturwerte auf langen Zeitskalen zuverlässig reproduziert. Bei niedrigen Temperaturen von 80 K tritt zusätzlich THz-induziertes Interbandtunneln in GaAs auf. Die temperaturabhängige Tunnelrate hängt dabei wesentlich von der Dekohärenzrate des induzierten Prozesses ab. Desweiteren wird eine kollineare 2D THz Spektroskopiemethode entwickelt und erstmals an Quantentrogstrukturen angewendet. Eine komplizierte, nichtkollineare Strahlgeometrie ist prinzipiell nicht notwendig. Die eingeführten Frequenzvektoren erklären das zugrundeliegende N-Wellen Mischen analog zum Raum auch in der Zeit. So werden mit einer kollinearen Strahlgeometrie alle nichtlinearen Signale simultan gemessen werden. Mit diesem Konzept wurden Rabi-Oszillationen an Intersubbandübergängen in Signale verschiedener nichtlinearer Ordnung zerlegt. Die ersten 2D Korrelationsspektren im THz-Bereich demonstrieren die energetischen Kopplungen zwischen verschiedenen polaronischen Zuständen in einer Doppel-Quantentrogstruktur. / The presented thesis concerns fundamentals and applications of nonlinear terahertz (THz) spectroscopy. It is demonstrates that the a gain recovery time of a quantum cascade laser (QCL) amounts only to several hundred femtoseconds. We explored the generation process of THz pulses within a laser-induced two-color plasma and identified the ionisation current as the origin of the THz radiation. Novel methods of THz spectroscopy in one and in two dimensions are developed and applied to different semiconductor heterostructures. We use the electric field of THz pulses for high-field transport experiments. Within this quantum-kinetic regime, the electron velocity decouples from phonon modes of the crystal lattice and quasi-ballistic transport becomes feasible during the first hundreds of femtoseconds. We develop a dynamic polaron model, which reproduces the experimental results on short time scales as well as the published values on long time scales. At low temperatures of 80 K, we find additional THz-induced interband tunneling in GaAs. The temperature dependent tunneling rate depends essentially on the decoherence time of the induced process. Furthermore, a novel method of collinear 2D THz spectroscopy is developed and applied to quantum well structures. Frequency vectors are introduced to explain the underlying process of N-wave mixing not in space, but in time. This allows for a collinear beam geometry to measure all nonlinear signals simultaneously. We used this new method to decompose Rabi oscillations on intersubband transitions into nonlinear signals of different order. The first 2D correlation spectra in the THz frequency range demonstrate energetic couplings between polaronic states within an asymmetric double quantum well structure. Another experiment displays for the first time the 2D correlation spectrum of a 2pi Rabi flop on the intersubband transition of a multiple quantum well structure.
8

Ultraschnelle optoelektronische und Materialeigenschaften von Stickstoff-haltigem GaAs

Sinning, Steffen 03 March 2006 (has links) (PDF)
This work summarizes properties of nitrogen containing GaAs, which are relevant for optoelectronic application and allow a deeper insight in the physics of this material. In the first part the dependence of the banggap energy of nitrogen implanted GaAs on several process parameters (implanted nitrogen concentration, implantation temperature, annealing duration and temperature) is investigated. The second part focuses on the relaxation dynamics of highly excited carriers. For this, the carrier relaxation dynamics in nitrogen implanted GaAs, in epitaxially grown GaAsN and in (pure) GaAs are investigated by means of pump probe measurements on a femtosecond time scale. The comparision of experimental results to calculated scattering rates leads to relevant informations of scattering mechanisms and electronic properties. / Diese Arbeit widmet sich Eigenschaften von Stickstoff-haltigem Gallium-Arsenid, die sowohl für das physikalische Verständnis als auch für optoelektronische Anwendungen dieses Materials relevant sind. Im ersten Teil dieser Arbeit wird die Abhängigkeit der Bandlücken-Energie von verschiedenen Prozess-Parametern (Stickstoffkonzentration, Implantationstemperatur, Ausheildauer und -temperatur) in Stickstoff-implantiertem GaAs untersucht. Der zweite Teil konzentriert sich auf die Relaxationsdynamik hoch angeregter Ladungsträger. Neben dem oben bereits angesprochenen Material wird in Anrege-Abfrage-Experimenten mit Femtosekunden-Zeitauflösung zusätzlich epitaktisch gewachsenes GaAsN und (Stickstoff-freies) GaAs untersucht. Die Berechnung der Streuraten und der Vergleich mit experimentell gewonnenen Daten liefert wesentliche Informationen über beteiligte Steumechanismen und elektronische Eigenschaften.
9

Ultraschnelle, lichtinduzierte Primärprozesse im elektronisch angeregten Zustand des Grün Fluoreszierenden Proteins (GFP) / Ultrafast Elementary Events in the Excited State of Green Fluorescent Protein (GFP)

Winkler, Kathrin 24 January 2003 (has links)
No description available.
10

Ultraschnelle optoelektronische und Materialeigenschaften von Stickstoff-haltigem GaAs

Sinning, Steffen 04 January 2006 (has links)
This work summarizes properties of nitrogen containing GaAs, which are relevant for optoelectronic application and allow a deeper insight in the physics of this material. In the first part the dependence of the banggap energy of nitrogen implanted GaAs on several process parameters (implanted nitrogen concentration, implantation temperature, annealing duration and temperature) is investigated. The second part focuses on the relaxation dynamics of highly excited carriers. For this, the carrier relaxation dynamics in nitrogen implanted GaAs, in epitaxially grown GaAsN and in (pure) GaAs are investigated by means of pump probe measurements on a femtosecond time scale. The comparision of experimental results to calculated scattering rates leads to relevant informations of scattering mechanisms and electronic properties. / Diese Arbeit widmet sich Eigenschaften von Stickstoff-haltigem Gallium-Arsenid, die sowohl für das physikalische Verständnis als auch für optoelektronische Anwendungen dieses Materials relevant sind. Im ersten Teil dieser Arbeit wird die Abhängigkeit der Bandlücken-Energie von verschiedenen Prozess-Parametern (Stickstoffkonzentration, Implantationstemperatur, Ausheildauer und -temperatur) in Stickstoff-implantiertem GaAs untersucht. Der zweite Teil konzentriert sich auf die Relaxationsdynamik hoch angeregter Ladungsträger. Neben dem oben bereits angesprochenen Material wird in Anrege-Abfrage-Experimenten mit Femtosekunden-Zeitauflösung zusätzlich epitaktisch gewachsenes GaAsN und (Stickstoff-freies) GaAs untersucht. Die Berechnung der Streuraten und der Vergleich mit experimentell gewonnenen Daten liefert wesentliche Informationen über beteiligte Steumechanismen und elektronische Eigenschaften.

Page generated in 0.0654 seconds