• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 20
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 61
  • 61
  • 24
  • 21
  • 19
  • 19
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Mixed-Level-Simulation heterogener Systeme mit VHDL-AMS durch Multi-Architecture-Modellierung

Schlegel, Michael 04 October 2005 (has links)
Die Simulation heterogener Systeme auf hoher Abstraktionsebene gewinnt auf Grund der zunehmenden Komplexität technischer Systeme stetig an Bedeutung. Unter heterogenen Systemen versteht man technische Systeme, die aus analoger und digitaler Elektronik, aus Komponenten verschiedener physikalischer Domänen wie mechanischen Strukturen, thermischen und optischen Komponenten sowie aus Software bestehen können. Genügte es bisher, die einzelnen Komponenten für sich in ihrer eigenen Domäne mit einem speziellen Simulator zu simulieren, so ist es heute unerläßlich, auch die Interaktionen zwischen den Komponenten zu erfassen. Um solche Systeme mit einer einheitlichen Beschreibungsform erfassen zu können, entstand aus der digitalen Hardwarebeschreibungssprache VHDL die Systembeschreibungssprache VHDL-AMS. Bei der Modellierung eines Systems muß das tatsächliche Verhalten der Komponenten abstrahiert werden, um mathematisch erfaßbar und in begrenzter Zeit simulierbar zu sein. Der Grad der Abstraktion beeinflußt jedoch die Genauigkeit der Simulationsergebnisse wesentlich. Dabei muß bzw. kann das Verhalten in unterschiedlichen Komponenten unterschiedlich stark abstrahiert werden, um noch akzeptable Simulationsgenauigkeiten erzielen zu können. VHDL-AMS erlaubt die Beschreibung von Komponenten auf unterschiedlichen Abstraktionsniveaus. Man kann die unterschiedlich abstrakten Modelle der Komponenten aber nur schwer in einer Systemsimulation gemeinsam simulieren, da unterschiedlich abstrakte Modelle auch unterschiedlich abstrakte Schnittstellen aufweisen, so daß die Modelle nur mühsam miteinander verbunden werden können. Ein Austausch eines abstrakten Modells einer Komponente gegen ein weniger abstraktes Modell oder umgekehrt ist mit vielen fehleranfälligen und zeitaufwendigen Anpassungsschritten verbunden. Im Rahmen dieser Arbeit wird ein methodischer Ansatz vorgestellt, der es auf der Basis einer Vereinheitlichung der Modellschnittstellen ermöglicht, unterschiedlich abstrakte Modelle gemeinsam zu simulieren und einzelne Modelle gegen abstraktere oder weniger abstrakte Modelle ohne nennenswerten Zeit- und Modellierungsaufwand auszutauschen. Es werden die zu verwendenden Interfaceobjekte und Datentypen für digitale, analoge elektrische und nichtelektrische Schnittstellen unter VHDL-AMS und SystemC-AMS vorgestellt. Ebenso werden Methoden vorgestellt, die digitales, ereignisdiskretes Verhalten auf konservative elektrische Schnittstellen bzw. nichtkonservatives analoges Verhalten auf digitale Schnittstellen abbilden. Weiterhin wird erläutert, wie sich digitale Protokolle über Abstraktionsebenen hinweg übertragen lassen und ein modifizierter Top-Down Design-Flow vorgestellt. Die Demonstration der Anwendbarkeit der Methode erfolgt anhand eines Beispiels.
52

Etude et modélisation comportementale de « front-end » analogiques pour des environnements « fond de puits ».

Baccar, Sahbi 14 November 2012 (has links)
Cette thèse s’inscrit dans le domaine de la modélisation des circuits analogiques et mixtes.Le travail part d’une problématique industrielle concernant les circuits électroniques utilisés dansles systèmes de forage pétrolier pour des besoins d’instrumentation et mesures. Ce travail de recherche concerne les circuits du front-end analogique que nous trouvons dans cette application industrielle. Nous examinons et nous essayons de trouver des modèles pour décrire l’effet des hautes températures sur les circuits électroniques dans un forage pétrolier. Ces circuits font partie des circuits industriels conventionnels. Ils ont généralement une température maximale de fonctionnement qui ne dépasse pas 125°C. Même si la température modifie le comportement de ces circuits, il existe des techniques d’adaptation qui permettent de compenser l’effet de la température sur ces circuits. Cependant, pour bien réussir la phase de la conception, il faut d’abord bien caractériser le comportement des différents circuits industriels utilisés en haute température. Il faut également trouver des modèles exacts qui décrivent le comportement de ces circuits en haute température. Or nous savons que la majorité des circuits industriels analogiques et mixtes sont décrits par des modèles de type SPICE. Par un choix de l’entreprise Schlumberger, notre partenaire industriel qui a financé ce travail, nous nous sommes intéressés dans notre étude à un composantspécifique présent dans la majorité des circuits analogiques et mixtes d’instrumentation :l’amplificateur opérationnel (l’AOP).Le travail commence par une étude des spécifications du circuit ainsi que le modèle SPICE.Une étude de la structure de ce modèle et sa simulation ont montré la non-précision du modèle audelàde 125°C. L’étude de validité du modèle a concerné le paramètre de la tension de décalage etle paramètre taux de rejection du mode commun. Nous avons interprété la différence des résultatsentre les mesures et la simulation de la tension de décalage. Nous avons constaté la limitation quereprésente l’approche structurelle par modélisation SPICE. Pour cette raison, nous avonssélectionné l’approche de modélisation comportementale pour les différents avantages qu’elleprésente. Ces avantages répondent à nos besoins et conviennent les mesures qui ont été effectuées.Nous avons sélectionné le langage VHDL-AMS et l’environnement Cadence ADVanceMS. Pourdéveloppé les modèles, nous avons alors énuméré les différents paramètres de performance d’unAOP. Nous avons validé la représentation de chaque paramètre par un circuit de test approprié.Dans un deuxième temps, nous avons approximé la variation de ces paramètres en température pardes équations polynomiales et exponentielles pour développer le modèle précis en HT. Le modèlea été validé par un circuit de test similaire au circuit expérimental. De bons résultats ont ététrouvés. L’erreur moyenne entre simulation VHDL-AMS et mesures n’a pas dépassé 3,11%. Dansle denier chapitre, nous avons simulé des circuits d’une chaine d’instrumentation. Nous avonssimulé l’effet de la température sur un capteur piézo-résistif (pont de Wheatstone). Trois architectures d’un amplificateur d’instrumentation ont été également modélisées e en se basant surle modèle VHD-AMS de l’AOP. / This work is dealing with the modelling of analogue and mixed signal circuits. Moreprecisely, we focus on modelling the circuits of an analogue front-end which is used in down-holedrilling industry for instrumentation and measurement purposes. This research had as a goal tomodel the temperature increasing effect in the behaviour of each circuit of the considered frontend.The studied circuits belong to the family of “conventional” circuits. Most of these circuitsoperate in a temperature which does not exceed 125°C. Even if the behaviour of the circuit changesdue to an increasing of the temperature, there are some well-know techniques that enable thecompensation of such effects. However, in order to obtain a precise simulation in the design phase,it is very important to have accurate models that describe the temperature increasing effect. Asmost of the commercial circuits models are written in SPICE, it is necessary first to review theaccuracy of SPICE models in high temperature (HT). This work focus on a specific circuit: theoperational amplifier (opamp). This device is present in many instrumentation circuits. Obtainingan accurate op-amp model in HT will help us develop accurate models of these circuits byconsidering their architectural description which is based on the opamp model.The work starts with the study of the structure of the SPICE model of the considered opamp.This study enables us to confirm the non-validity of the SPICE model in HT. The validity studyconsists in comparing the SPCE simulation results of two parameters (the voltage offset and thecommon mode rejection ratio) to measurement results. Moreover, we present an interpretation tothe difference that was observed in this comparison. After comparing different modellingapproaches, we select the behavioural modelling one. The VHDL-AMS was used to develop thenew precise opamp model in HT. The simulation is performance in Cadence/ADVanceMSenvironment. The representation of each opamp parameter is validated by a specific circuit. Thismodel is developed in two steps. In the first step, we develop an opamp model in which there is noconsideration of the temperature effect. In the second step, dependence of each parameter to thetemperature is described by a polynomial or exponential function. This function is the result of thefitting process of the measurement results. These equations are inserted in the VHDL-AMS model.All parameters are again validated in each temperature. The test-circuit is the same circuit used inthe experimental test of the opamp parameters. The average error between measurement andsimulation does not exceed 3.11%. In the last chapter, we simulate some circuits of the theanalogue front-end of an acquisition system. We simulate for example the effect of the temperatureeffect on the accuracy of a Wheatstone bridge. Three architecture of an instrumentation amplifierwere also modelled and simulated in different temperature of [20°C, 220°C] in the basis of thedeveloped opamp model.
53

Interopérabilité de modèles dans le cycle de conception des systèmes électromagnétiques via des supports complémentaires : VHDL-AMS et composants logiciels ICAr / Interoperability of models in the design cycle of electromagnetic systems through complementary supports : VHDL-AMS language and ICAr software components

Rezgui, Abir 25 October 2012 (has links)
Cette thèse aborde les formalismes pour la modélisation multi-physique en support au cycle en V deconception. Ce travail a été réalisé dans le cadre du projet ANR–MoCoSyMec, selon la méthodologie duprototypage virtuel fonctionnel (PVF) et illustré sur des systèmes électromagnétiques.Nous nous sommes principalement intéressés au langage VHDL-AMS, en tant que support aux différentsniveaux de modélisation apparaissant dans le cycle en V de conception. Cela nous a conduits à traiter laportabilité et l’interopérabilité en VHDL-AMS de diverses méthodes et outils de modélisation. Nous avonsproposé et validé, via le formalisme des composants logiciels ICAr, des solutions aux limites de l’utilisation deVHDL-AMS pour modéliser certains phénomènes physiques reposants sur des calculs numériques.Nous avons étendu la norme ICAr pour supporter des modèles dynamiques décrits par des équationsdifférentielles algébriques (DAE) ; et pour des besoins de co-simulation, nous pouvons également y associer unsolveur. Ces développements sont désormais capitalisés dans le framework CADES.Enfin, nous avons proposé une architecture pour le portage de modèles d’un formalisme à un autre. Elle a étédéfinie et mise en oeuvre plus particulièrement pour des modèles magnétiques réluctants (Reluctool) et desMEMS magnétiques (MacMMems) vers le VHDL-AMS.Ces formalismes et méthodologies sont mis en oeuvre autour du PVF d’un contacteur électromagnétique. / This PhD report deals with modeling formalisms for multi-physical systems in the design V- cycle. Thiswork was carried out within the French ANR-MoCoSyMec project, according to the methodology of functionalvirtual prototyping (PVF) and illustrated with electromagnetical systems.The work focuses on the VHDL-AMS modeling language, as a support for several modeling levels appearingin the design V-cycle. In this work, the portability and interoperability problems have been studied, usingVHDL-AMS, for various modeling methods and tools. Solutions have been proposed and validated for use limitsof VHDL-AMS language, specifically for the modeling of some physical phenomena using numericalcomputations, through the software component formalism called ICAr.The ICAr software component standard has been extended to support dynamic models described throughdifferential algebraic equations (DAE). It has also been extended for co-simulation purposes in which a solver isassociated to the dynamic model inside the ICAr component. These developed solutions are now available in theframework CADES.Finally, architecture has been proposed for the transforming of models from a professional formalism intoanother, specifically into VHDL-AMS. It has been designed and implemented for reluctant magnetic models(RelucTool) and magnetic MEMS (MacMMems).These formalisms and methodologies are implemented around the functional virtual prototyping (PVF) of anelectromagnetic contactor.
54

Interopérabilité de modèles dans le cycle de conception des systèmes électromagnétiques via des supports complémentaires : VHDL-AMS et composants logiciels ICAr

Rezgui, Abir 25 October 2012 (has links) (PDF)
Cette thèse aborde les formalismes pour la modélisation multi-physique en support au cycle en V deconception. Ce travail a été réalisé dans le cadre du projet ANR-MoCoSyMec, selon la méthodologie duprototypage virtuel fonctionnel (PVF) et illustré sur des systèmes électromagnétiques.Nous nous sommes principalement intéressés au langage VHDL-AMS, en tant que support aux différentsniveaux de modélisation apparaissant dans le cycle en V de conception. Cela nous a conduits à traiter laportabilité et l'interopérabilité en VHDL-AMS de diverses méthodes et outils de modélisation. Nous avonsproposé et validé, via le formalisme des composants logiciels ICAr, des solutions aux limites de l'utilisation deVHDL-AMS pour modéliser certains phénomènes physiques reposants sur des calculs numériques.Nous avons étendu la norme ICAr pour supporter des modèles dynamiques décrits par des équationsdifférentielles algébriques (DAE) ; et pour des besoins de co-simulation, nous pouvons également y associer unsolveur. Ces développements sont désormais capitalisés dans le framework CADES.Enfin, nous avons proposé une architecture pour le portage de modèles d'un formalisme à un autre. Elle a étédéfinie et mise en oeuvre plus particulièrement pour des modèles magnétiques réluctants (Reluctool) et desMEMS magnétiques (MacMMems) vers le VHDL-AMS.Ces formalismes et méthodologies sont mis en oeuvre autour du PVF d'un contacteur électromagnétique.
55

Étude et modélisation compacte d'un transistor MOS SOI double-grille dédié à la conception

Diagne, Birahim 16 November 2007 (has links) (PDF)
Nous proposons un modèle compact du transistor MOS double-grille silicium sur isolant (SOI) en mode de fonctionnement symétrique. Le modèle est basé sur le formalisme EKV et offre les caractéristiques suivantes : une expression analytique simple décrivant le comportement statique et dynamique du dispositif, des relations « directes » entre charges–tensions et tensions–courant, une méthode de calcul numérique robuste et rapide, une implémentation aisée du modèle dans un langage de haut niveau tel que VHDL-AMS permettant ainsi une simulation rapide et précise des caractéristiques électriques.<br />Le modèle prend en compte non seulement les effets de petites géométries tels que l'abaissement de la barrière de potentiel induit par le drain, le partage de charge, la dégradation de la pente sous le seuil ainsi que la réduction de la mobilité des porteurs, mais également les effets dynamiques extrinsèques.<br />Il a été validé pour des dispositifs de longueur de canal de 60nm. Sa validation a été effectuée par comparaison de ses résultats avec ceux obtenus sur le simulateur de composants Atlas/SILVACO.
56

Vers l'autonomie énergétique des réseaux de capteurs embarqués : conception et intégration d'un générateur piézoélectrique et d'un micro dispositif de stockage capacitif en technologie silicium

Durou, Hugo 10 December 2010 (has links) (PDF)
Les réseaux de capteurs communiquant sans fil offrent des possibilités extrêmement intéressantes pour l'application de surveillance de santé de structures, et particulièrement dans le secteur aéronautique. Cependant les capteurs qui constituent chaque noeud du réseau ne disposent pas de ressources énergétiques permanentes et leur autonomie énergétique sur de longues périodes est un problème. Avec la réduction de la consommation des composants électroniques et des capteurs, une solution possible et explorée depuis une dizaine d'années par nombreuses équipes consiste à récupérer l'énergie disponible dans son environnement, de la stocker et la gérer pour alimenter le capteur. Nous proposons dans cette thèse d'exploiter le potentiel énergétique des vibrations mécaniques d'une structure aéronautique pour alimenter un capteur de surveillance de santé de structure aéronautique. Notre contribution porte sur la conception et l'intégration sur silicium d'un générateur piézoélectrique miniature et d'un micro dispositif de stockage capacitif. Concernant le générateur piézoélectrique, l'élaboration d'un modèle à éléments finis (COMSOL) couplées avec une description SPICE du circuit de charge, a permis de concevoir - une structure optimisée consistant en 4 poutres monomorphes (Si/PZT) capable de générer des puissance électrique > ?W et des tension > V en dépit de puissance mécaniques incidentes faibles : vibrations de 0,1g-0,5g @40-80 Hz. Ce dispositif a ensuite été réalisé sur silicium à l'aide de technologies MEMS et de l'usinage laser femtoseconde. Le dispositif de stockage conçu et intégré sur silicium est un condensateur à double couche électrochimique. Les différentes briques technologiques développées concernent l'optimisation des géométries d'électrodes, le dépôt de la matière active et l'encapsulation hermétique de l'électrolyte organique en atmosphère anhydre. Un modèle VHDL-AMS des deux éléments (récupérateur et stockage) réalisés est proposé et une simulation du systè me sur un cas d'utilisation simple est comparée à l'expérience.
57

Design of a low-power 60 GHz transceiver front-end and behavioral modeling and implementation of its key building blocks in 65 nm CMOS / Conception et modélisation d'une tête RF à faible consommation pour un émetteur-récepteur à 60 GHz en CMOS 65 nm

Kraemer, Michael M. 03 December 2010 (has links)
La réglementation mondiale, pour des appareils de courte portée, permet l’utilisation sans licence de plusieurs Gigahertz de bande autour de 60 GHz. La bande des 60 GHz répond aux besoins des applications telles que les réseaux de capteurs très haut débit autonome en énergie,ou les transmissions à plusieurs Gbit/s avec des contraintes de consommation d’énergie. Il y a encore peu de temps, les interfaces radios fonctionnant dans la bande millimétrique n’étaient réalisables qu’en utilisant des technologies III-V couteuses. Aujourd’hui, les avancées des technologies CMOS nanométriques permettent la conception et la production en masse des circuits intégrées radiofréquences (RFIC) à faible coût.Cette thèse s’inscrit dans des travaux de recherches dédiés à la réalisation d’un système dans un boîtier (SiP, System in Package) à 60 GHz contenant à la fois l’interface radio (bande de base et circuits RF) ainsi qu’un réseau d’antennes. La première partie de cette thèse est dédiée la conception de la tête RF de l’émetteur-récepteur à faible consommation pour l’interface radio. Les blocs clefs de cette tête RF (amplificateurs, mélangeurs et un oscillateur commandé en tension) sont conçus, réalisés et mesurés en utilisant la technologie CMOS 65 nm de ST Microelectronics. Des éléments actifs et passifs sont développés spécifiquement pour l’utilisation au sein de ces blocs. Une étape importante vers l’intégration de la tête RF complète de l’émetteur-récepteur est l’assemblage de ces blocs de base afin de réaliser une puce émetteur et une puce récepteur. A ce but, une tête RF pour le récepteur a été réalisée. Ce circuit présent une consommation et un encombrement plus réduit que l’état de l’art.La deuxième partie de cette thèse présente le développement des modèles comportementaux des blocs de base conçus. Ces modèles au niveau système sont nécessaires afin de simuler le comportement du SIP, qui devient trop complexe si des modèles détaillés du niveau circuitsont utilisés. Dans cette thèse, une nouvelle technique modélisant le comportement en régime transitoire et régime permanent ainsi que le bruit de phase des oscillateurs commandés en tension est proposée. Ce modèle est implémenté dans le langage de description de matérielVHDL-AMS. La technique proposée utilise des réseaux de neurones artificiels pour approximer la caractéristique non linéaire du circuit. La dynamique est décrite dans l’espace d’état. Grâce à ce modèle, il est possible de réduire d’une façon drastique le temps de calcul des simulations système tout en conservant une excellente précision / Worldwide regulations for short range communication devices allow the unlicensed use of several Gigahertz of bandwidth in the frequency band around 60GHz. This 60GHz band is ideally suited for applications like very high data rate, energy-autonomous wireless sensor networks or Gbit/s multimedia links with low power constraints. Not long ago, radio interfaces that operate in the millimeter-wave frequency range could only be realized using expensive compound semiconductor technologies. Today, the latest sub-micron CMOS technologies can be used to design 60GHz radio frequency integrated circuits (RFICs)at very low cost in mass production. This thesis is part of an effort to realize a low power System in Package (SiP) including both the radio interface (with baseband and RF circuitry) and an antenna array to directly transmit and receive a 60GHz signal. The first part of this thesis deals with the design of the low power RF transceiver front-end for the radio interface. The key building blocks of this RF front-end (amplifiers, mixers and a voltage controlled oscillator (VCO)) are designed, realized and measured using the 65nm CMOS technology of ST Microelectronics. Full custom active and passive devices are developed for the use within these building blocks. An important step towards the full integration of the RF transceiver front-end is the assembly of these building blocks to form basic transmitter and receiver chips. Circuits with small chip size and low power consumption compared to the state of the art have been accomplished.The second part of this thesis concerns the development of behavioral models for the designed building blocks. These system level models are necessary to simulate the behavior of the entire SiP, which becomes too complex when using detailed circuit level models. In particular, a novel technique to model the transient, steady state and phase noise behavior of the VCO in the hardware description language VHDL-AMS is proposed and implemented. The model uses a state space description to describe the dynamic behavior of the VCO. Its nonlinearity is approximated by artificial neural networks. A drastic reduction of simulation time with respect to the circuit level model has been achieved, while at the same time maintaining a very high level of accuracy
58

Metody pro řešení spínaných obvodů / Methods for Analysis of Switched Circuits

Kovář, Jan January 2012 (has links)
The dissertation deals with simulations of the DC-DC converters in their basic configurations (Buck, Boost, Buck-boost, Cuk, SEPIC). In the first part of the thesis derivation of transfer functions Line-to-Output (LTO) and Control-To-Output (CTO) can be found. These symbolic responses are derived for three types of basic converters (Buck, Boost, Buck-boost) using well-known average model [1]. Derived expressions are very complicated. For reduction of these expressions symbolic approximation method was used, however the generality is lost. The average model was used to for decreasing the computational effort of analysis of DC-DC converters in the time domain. For these simulations VHDL-AMS language was used. The main topic of the thesis is harmonic balance method, which was adapted to DC-DC converters. Because conditions and assumptions for LTO and CTO functions are very different, harmonic balance method was derived into two variants. For obtaining of LTO response, duty cycle of switching signal can be considered as constant in time. Spectrum of this signal is simple as follows from well-known sinc function. For obtaining of CTO response PWM modulation must be used. Compared to sinc function spectrum of PWM modulation is richer (contains more combination frequencies). Many types of PWM modulation is described in [31]. For simulation PWM modulation with uniform sampling in two variants (single and double edge) was used. Non-ideal switching of PWM switch was modeled by PWM pulse with defined slew rate. Last section deals with comparison of all derived functions (LTO, CTO, modulation type, defined slew rate) with well-known averaged model.
59

Modélisation à haut niveau de systèmes hétérogènes, interfaçage analogique /numérique / High level modeling of heterogeneous systems, analog/digital interfacing.

Cenni, Fabio 06 April 2012 (has links)
L’objet de la thèse est la modélisation de systèmes hétérogènes intégrant différents domaines de la physique et à signaux mixtes, numériques et analogiques (AMS). Une étude approfondie de différentes techniques d’extraction et de calibration de modèles comportementaux de composants analogiques à différents niveaux d’abstraction et de précision est présentée. Cette étude a mis en lumière trois approches principales qui ont été validées par la modélisation de plusieurs applications issues de divers domaines: un amplificateur faible bruit (LNA), un capteur chimique basé sur des ondes acoustiques de surface (SAW), le développement à plusieurs niveaux d’abstraction d’un capteur CMOS vidéo, et son intégration dans une plateforme industrielle. Les outils développés sont basés sur les extensions AMS du standard IEEE 1666 SystemC mais les techniques proposées sont facilement transposables à d’autres langages tels que VHDL-AMS ou Verilog-AMS utilisés en conception de dispositifs mixtes. / The thesis objective is the modeling of heterogeneous systems. Such systems integrate different physical domains (mechanical, chemical, optical or magnetic) therefore integrate analog and mixed- signal (AMS) parts. The aim is to provide a methodology based on high-level modeling for assisting both the design and the verification of AMS systems. A study on different techniques for extracting behavioral models of analog devices at different abstraction levels and computational weights is presented. Three approaches are identified and regrouped in three techniques. These techniques have been validated through the virtual prototyping of different applications issued from different domains: a low noise amplifier (LNA), a surface acoustic wave-based (SAW) chemical sensor, a CMOS video sensor with models developed at different abstraction levels and their integration within an industrial platform. The flows developed are based on the AMS extensions of the SystemC (IEEE 1666) standard but the methodologies can be implemented using other Analog Hardware Description Languages (VHDL-AMS, Verilog-AMS) typically used for mixed-signal microelectronics design.
60

Design of a low-power 60 GHz transceiver front-end and behavioral modeling and implementation of its key building blocks in 65 nm CMOS

Kraemer, Michael 03 December 2010 (has links) (PDF)
Worldwide regulations for short range communication devices allow the unlicensed use of several Gigahertz of bandwidth in the frequency band around 60 GHz. This 60GHz band is ideally suited for applications like very high data rate, energy-autonomous wireless sensor networks or Gbit/s multimedia links with low power constraints. Not long ago, radio interfaces that operate in the millimeter-wave frequency range could only be realized using expensive compound semiconductor technologies. Today, the latest sub-micron CMOS technologies can be used to design 60GHz radio frequency integrated circuits (RFICs) at very low cost in mass production. This thesis is part of an effort to realize a low power System in Package (SiP) including both the radio interface (with baseband and RF circuitry) and an antenna array to directly transmit and receive a 60GHz signal. The first part of this thesis deals with the design of the low power RF transceiver front-end for the radio interface. The key building blocks of this RF front-end (amplifiers, mixers and a voltage controlled oscillator (VCO)) are designed, realized and measured using the 65nm CMOS technology of ST Microelectronics. Full custom active and passive devices are developed and characterized for the use within these building blocks. An important step towards the full integration of the RF transceiver front-end is the assembly of these building blocks to form a basic receiver chip. Circuits with small chip size and low power consumption compared to the state of the art have been accomplished. The second part of this thesis concerns the development of behavioral models for the designed building blocks. These system level models are necessary to simulate the behavior of the entire SiP, which becomes too complex when using detailed circuit level models. In particular, a novel technique to model the transient, steady state and phase noise behavior of the VCO in the hardware description language VHDL-AMS is proposed and implemente d. The model uses a state space description to describe the dynamic behavior of the VCO. Its nonlinearity is approximated by artificial neural networks. A drastic reduction of simulation time with respect to the circuit level model has been achieved, while at the same time maintaining a very high level of accuracy.

Page generated in 0.0174 seconds