• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 76
  • 16
  • Tagged with
  • 246
  • 246
  • 98
  • 97
  • 68
  • 58
  • 53
  • 45
  • 43
  • 41
  • 38
  • 38
  • 37
  • 36
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Estimations a posteriori pour l'équation de convection-diffusion-réaction instationnaire et applications aux volumes finis

Chalhoub, Nancy 17 December 2012 (has links) (PDF)
On considère l'équation de convection-diffusion-réaction instationnaire. On s'intéresse à la dérivation d'estimations d'erreur a posteriori pour la discrétisation de cette équation par la méthode des volumes finis centrés par mailles en espace et un schéma d'Euler implicite en temps. Les estimations, qui sont établies dans la norme d'énergie, bornent l'erreur entre la solution exacte et une solution post-traitée à l'aide de reconstructions H(div, Ω)-conformes du flux diffusif et du flux convectif, et d'une reconstruction H_0^1(Ω)-conforme du potentiel. On propose un algorithme adaptatif qui permet d'atteindre une précision relative fixée par l'utilisateur en raffinant les maillages adaptativement et en équilibrant les contributions en espace et en temps de l'erreur. On présente également des essais numériques. Enfin, on dérive une estimation d'erreur a posteriori dans la norme d'énergie augmentée d'une norme duale de la dérivée en temps et de la partie antisymétrique de l'opérateur différentiel. Cette nouvelle estimation est robuste dans des régimes dominés par la convection et des bornes inférieures locales en temps et globales en espace sont également obtenues.
72

Méthodes de domaine fictif pour des problèmes elliptiques avec conditions aux limites générales en vue de la simulation numérique d'écoulements diphasiques.

Ramière, Isabelle 26 September 2006 (has links) (PDF)
Ce travail est dédié à la mise en place de deux méthodes originales de type domaine fictif pour la résolution de problèmes elliptiques (de type convection-diffusion) avec des conditions aux limites générales et éventuellement mixtes : Dirichlet, Robin ou Neumann. <br />L'originalité de ces méthodes consiste à utiliser le maillage du domaine fictif, généralement non adapté à la géométrie du domaine physique, pour définir une frontière immergée approchée sur laquelle seront appliquées les conditions aux limites immergées. Un même schéma numérique générique permet de traiter toutes les conditions aux limites générales. Ainsi, contrairement aux approches classiques de domaine fictif, ces méthodes ne nécessitent ni l'introduction d'un maillage surfacique de la frontière immergée ni la modification locale du schéma numérique. Deux modélisations de la frontière immergée sont étudiées. Dans la première modélisation, appelée interface diffuse, la frontière immergée approchée est l'union des mailles traversées par la frontière originelle. Dans la deuxième modélisation, la frontière immergée est approchée par une interface dite fine s'appuyant sur les faces de cellules du maillage. Des conditions de transmissions algébriques combinant les sauts de la solution et du flux sont introduites sur cette interface fine. Pour ces deux modélisations, le problème fictif à résoudre ainsi que le traitement des conditions aux limites immergées sont détaillés. Un schéma aux éléments finis Q1 est utilisé pour valider numériquement le modèle à interface diffuse alors qu'un nouveau schéma aux volumes finis est développé pour le modèle à interface fine et sauts immergés. Chaque méthode est combinée avec un algorithme de raffinement de maillage multi-niveaux (avec résidu de solution ou du flux) autour de la frontière immergée afin d'améliorer la précision de la solution obtenue. <br />Parallèlement, une analyse théorique de convergence en maillage non adapté au domaine physique a été effectuée pour une méthode d'éléments finis Q1. Cette étude démontre l'ordre de convergence des méthodes de domaine fictif mises en place.<br />Parmi les nombreuses applications industrielles possibles, une simulation sur une maquette d'échangeur de chaleur dans les centrales nucléaires permet d'apprécier la performance des méthodes mises en oeuvre.
73

Dimensionnement pour des critères dynamiques et énergétiques de systèmes mécatroniques comportant des sous-systèmes à paramètres répartis approche par méthode inverse /

Derkaoui, Abdechafik Scavarda, Serge. Bideaux, Eric January 2006 (has links)
Thèse doctorat : Automatique Industrielle : Villeurbanne, INSA : 2005. / Titre provenant de l'écran-titre. Bibliogr. p. 281-293.
74

Développement d'une nouvelle modélisation de la loi de choc dans les codes de transport neutronique multigroupes

Calloo, Ansar 10 October 2012 (has links) (PDF)
Dans le cadre de la conception des réacteurs, les schémas de calculs utilisant des codes de cal- culs neutroniques déterministes sont validés par rapport à un calcul stochastique de référence. Les biais résiduels sont dus aux approximations et modélisations (modèle d'autoprotection, développement en polynômes de Legendre des lois de choc) qui sont mises en oeuvre pour représenter les phénomènes physiques (absorption résonnante, anisotropie de diffusion respec- tivement). Ce document se penche sur la question de la pertinence de la modélisation de la loi de choc sur une base polynômiale tronquée. Les polynômes de Legendre sont utilisés pour représenter la section de transfert multigroupe dans les codes déterministes or ces polynômes modélisent mal la forme très piquée de ces sections, surtout dans le cadre des maillages énergétiques fins et pour les noyaux légers. Par ailleurs, cette représentation introduit aussi des valeurs négatives qui n'ont pas de sens physique. Dans ce travail, après une brève description des lois de chocs, les limites des méthodes actuelles sont démontrées. Une modélisation de la loi de choc par une fonction constante par morceaux qui pallie à ces insuffisances, a été retenue. Cette dernière nécessite une autre mod- élisation de la source de transfert, donc une modification de la méthode actuelle des ordonnées discrètes pour résoudre l'équation du transport. La méthode de volumes finis en angle a donc été développée et implantée dans l'environ- nement du solveur Sn Snatch, la plateforme Paris. Il a été vérifié que ses performances étaient similaires à la méthode collocative habituelle pour des sections représentées par des polynômes de Legendre. Par rapport à cette dernière, elle offre l'avantage de traiter les deux représenta- tions des sections de transferts multigroupes : polynômes de Legendre et fonctions constantes par morceaux. Dans le cadre des calculs des réacteurs, cette méthode mixte a été validée sur différents motifs : des cellules en réseau infini, des motifs hétérogènes et un calcul de réflecteur. Les principaux résultats sont : - un développement polynômial à l'ordre P 3 est suffisant par rapport aux biais résiduels dus aux autres modélisations (autoprotection, méthode de résolution spatiale). Cette modéli- sation est convergée au sens de l'anisotropie du choc sur les cas représentatifs des réacteurs à eau légère. - la correction de transport P 0c n'est pas adaptée, notamment sur les calculs d'absorbant B4 C.
75

Modélisations et calculs pour la cicatrisation osseuse. Application à la modélisation d'un bioréacteur.

Uzureau, Alexandre 11 December 2012 (has links) (PDF)
Ce manuscrit de thèse décrit en profondeur un modèle de cicatrisation osseuse qui est ensuite couplé avec un modèle de dynamique des fluides pour modéliser la croissance osseuse en bioréacteur (unité reproduisant les conditions de culture in vivo). Le modèle proposé est un modèle de dynamique des populations décrivant l'évolution spatio-temporelle des cellules souches mésenchymateuses, des ostéoblastes, de la matrice osseuse et d'un facteur de croissance. Pour ce modèle, nous avons montré à l'aide d'approximations de Faedo-Galerkin qu'il admettait au moins une solution faible physiquement admissible (concentrations positives et majorées). Le point délicat de cette démonstration réside dans l'obtention des estimations d'énergie, la difficulté provient du fait que certaines populations n'admettent pas de termes spatiaux. Nous avons ensuite proposé un schéma numérique pour des maillages admissibles. La discrétisation est classique hormis pour le terme d'haptotaxie (non linéaire) qui est discrétisé par un schéma de type décentré amont mais vérifiant en plus une propriété de monotonie. Nous avons montré l'existence et la convergence des solutions discrètes physiquement admissibles vers une solution faible physiquement admissible. Grâce à ce schéma, nous avons réalisé différentes simulations qui nous ont permis de valider le modèle. Pour modéliser la culture osseuse en bioréacteur, nous avons couplé le modèle précédent avec un modèle de dynamique des fluides en milieu poreux. Ce couplage prend en compte les effets des contraintes de cisaillement sur la différenciation ostéoblastique et le transport des populations par l'écoulement du milieu de culture.
76

Étude de schémas numériques pour les écoulements diphasiques en milieu poreux déformable pour des maillages quelconques : application au stockage de déchets radioactifs

Angelini, Ophélie 10 November 2010 (has links) (PDF)
Les écoulements diphasiques en milieu poreux sont des phénomènes complexes et qui concernent de nombreux problèmes industriels. EDF travaille sur la faisabilité et la sécurité d'un stockage en couche géologique profonde de déchets nucléaires. Dans ce domaine la simulation des écoulements diphasiques en milieu poreux est particulièrement importante dans au moins trois domaines : tout d'abord lors de la phase de ventilation des galeries du stockage qui pourrait désaturer la roche présente et ainsi en modifier ses propriétés de rétention, mais également lors de la phase de resaturation des matériaux et enfin lors de l'arrivée de l'eau sur les parties métalliques contenues dans le stockage qui entraînera alors des phénomènes de corrosion et un dégagement d'hydrogène. Dans ce contexte, EDF souhaite se doter de méthodes numériques performantes et robustes ne nécessitant pas de conditions restrictives sur la forme des mailles. Ce travail s'inscrivant dans cette problématique, est consacré dans un premier temps au développement du schéma volumes finis SUSHI (Scheme Using Stabilization and Hybrid Interfaces) dans le code de mécanique d'EDF, Code_Aster afin de modéliser les écoulements diphasique en milieu poreux. Ce schéma a été développé en 2D et en 3D. Parallèlement une nouvelle formulation qui permet de traiter de manière uniforme les écoulements en milieu saturé et insaturé pour des problèmes miscibles et immiscibles est proposée. Différentes études modélisant des difficultés liées aux problématiques du stockage de déchets radioactifs en couches géologiques profondes ont été traitées. On peut citer l'étude d'un bi-matériau qui met en avant le ré-équilibrage capillaire d'un matériau par un autre possédant des propriétés et des conditions initiales en saturation très hétérogènes. On citera également l'étude de l'injection d'hydrogène dans un milieu initialement saturé en eau pure qui est tirée du benchmark " Ecoulement diphasique " proposé par le GNR MOMAS. Cette étude avait pour objectif de mettre en évidence le bon traitement de l'apparition d'une phase dans un milieu saturé et donc la pertinence de notre nouvelle formulation à traiter d'une manière unifié un problème d'écoulement saturé et un problème d'écoulement insaturé
77

Méthodes de volumes finis d'ordre élevé en maillages non coïncidents pour les écoulements dans les turbomachines / High-order finite volume with conservative mismatch interface for turbomachinery flows

Maugars, Bruno 09 February 2016 (has links)
Les travaux de cette thèse, réalisés au sein de l’équipe CLEF/DMFN de l’ONERA (Office National d’ Etudes et de Recherches Aérospatiales) en partenariat avec le laboratoire DynFluid et le CIRT (Consortium Industrie-Recherche en Turbomachines) s’inscrivent dans une demarche d’amélioration des outils de simulations pour les turbomachines. Compte tenu de ce contexte, l’objectif de cette étude est de développer de nouvelles méthodes pour le traitement des raccords non coincidents dans les turbomachines qui soit à la fois d’ordre elevé et conservatifs. Les développements proposés sont validés et composés de configurations de difficulté croissante. / A high-order and conservative method is developed for the numerical treatment of interface conditions in patched grids, based on the use of a ctitious grid methodology. The proposed approach is compared with a non-conservative interpolation of the state variables from the neighbouring domain for selected internal fow problems.
78

Modélisation numérique de l’écoulement de suspensions de fibres souples en régime inertiel. / Numerical modeling of long flexible fibers in inertial flows.

Kunhappan, Deepak 15 June 2018 (has links)
Un modèle numérique décrivant le comportement de fibres souples en suspension dans un écoulement de fluide en régime inertiel a été développé au moyen d'un couplage entre la méthode des éléments discrets et la méthode des volumes finis. Chaque fibre est discrétisée en plusieurs éléments de type poutre permettant de prendre en compte une déformation (flexion, torsion, allongement) et un mouvement de corps rigide. Les équations du mouvement des fibres sont résolues au moyen d'un schéma explicite du second ordre (temps et espace). Le mouvement de la phase fluide est décrit par les équations de Navier-Stokes, qui sont discrétisées et résolues au moyen d'un schéma aux volumes finis non structurés, d'ordre 4 (temps et espace). Le couplage entre la phase solide (discrète) et la phase fluide (continue) est obtenue par une pseudo méthode IBM (Immersed Boundary Method) dans laquelle l'effort hydrodynamique est calculé analytiquement. Plusieurs modèles de force hydrodynamique issus de la littérature sont analysés et leur validité ainsi que leurs limites sont identifiées. Pour des nombres de Reynolds (Re) correspondant au régime inertiel (0.01 < Re < 100, Re défini à l'échelle de la fibre), des formulations non-linéaires de la force hydrodynamique exercée par un écoulement uniforme sur un cylindre infini sont utilisées. Le couplage a aussi été utilisé pour des fibres rigides en écoulement de Stokes, en utilisant l'expression de la force de traînée issue de la théorie des corps élancés (`slender body theory'). Une expression du moment hydrodynamique par unité de longueur est obtenu à partir de simulations numériques par volumes finis de l'écoulement autour d'un cylindre élancé.Le modèle développé a été validé par comparaison avec plusieurs résultats expérimentaux et analytiques, du régime de Stokes (pour des fibres rigides) jusqu'aux régimes inertiels. Dans le cas du régime de Stokes, des simulations numériques du cisaillement de suspensions de fibres semi-diluées ont été réalisées. Le modèle développé permet de capturer les interactions hydrodynamiques et non-hydrodynamiques entre les fibres. Les interactions élasto-hydrodynamiques pour $Re$ fini ont été validées dans deux cas. Dans le premier cas, la flèche d'une fibre encastrée-libre dans un écoulement uniforme a été obtenu par calcul numérique et le résultat validé par comparaison aux résultats expérimentaux de la littérature. Dans le second cas, la conformation de fibres élancées et très déformables dans un écoulement turbulent homogène et isotrope a été obtenu par calcul numérique et le résultat validé par comparaison aux résultats expérimentaux de la littérature. Deux études numériques ont été réalisées pour étudier l'effet de la présence de fibres en suspension sur la turbulence au sein du fluide suspensif. Le modèle numérique a permis de reproduire le phénomène de réduction/amplification de la turbulence dans un écoulement en canal ou en conduite, dû à l'évolution microstructurale de la phase fibreuse. / A numerical model describing the behavior of flexible fibers under inertial flows was developed by coupling a discrete element solver with a finite volume solver.Each fiber is discretized into several beam segments, such that the fiber can bend, twist and rotate. The equations of the fiber motion were solved usinga second order accurate explicit scheme (space and time). The three dimensional Navier-Stokes equations describing the motion of the fluid phase was discretizedusing a fourth th order accurate (space and time) unstructured finite volume scheme. The coupling between the discrete fiber phase and the continuous fluid phasewas obtained by a pseudo immersed boundary method as the hydrodynamic force on the fiber segments were calculated based on analytical expressions.Several hydrodynamic force models were analyzed and their validity and short-comings were identified. For Reynolds numbers (Re) at the inertial regime(0.01 < Re < 100, Re defined at the fiber scale), non linear drag force formulations based on the flow past an infinite cylinder was used. For rigid fibers in creeping flow, the drag force formulation from the slender body theory was used. A per unit length hydrodynamic torque model for the fibers was derived from explicit numerical simulations of shear flow past a high aspect ratio cylinder. The developed model was validated against several experimental studies and analytical theories ranging from the creeping flow regime (for rigid fibers) to inertial regimes. In the creeping flow regime, numerical simulations of semi dilute rigid fiber suspensions in shear were performed.The developed model wasable to capture the fiber-fiber hydrodynamic and non-hydrodynamic interactions. The elasto-hydrodynamic interactions at finite Reynolds was validated with against two test cases. In the first test case, the deflection of the free end of a fiber in an uniform flow field was obtained numerically and the results were validated. In the second test case the conformation of long flexible fibers in homogeneous isotropic turbulence was obtained numerically and the results were compared with previous experiments. Two numerical studies were performed to verify the effects of the suspended fibers on carrier phase turbulence and the numerical model was able to reproduce the damping/enhancement phenomena of turbulence in channel and pipe flows as a consequence of the micro-structural evolution of the fibers.
79

Development of a coupled SPH-ALE/Finite Volume method for the simulation of transient flows in hydraulic machines / Développement d’une méthode couplée SPH-ALE / Volumes Finis pour la simulation des écoulements transitoires dans les machines hydrauliques

Neuhauser, Magdalena 18 December 2014 (has links)
L'utilisation croissante des sources d'énergie renouvelable avec une grande volatilité de production, comme l'énergie éolienne et solaire, conduit à des fluctuations dans le réseau électrique qui doivent être compensées. Pour cette raison les machines hydrauliques, turbines et pompes, sont plus souvent opérées dans les régimes de fonctionnement hors fonctionnement nominal et la fréquence des phases de démarrage et arrêt augmente. Ce type de fonctionnement peut avoir des conséquences importantes sur le cycle de vie des machines. Il est donc essentiel de prendre en compte l'écoulement dans les phases transitoires lors de la conception de la machine et la simulation numérique des écoulements est un outil adapté pour cela. La présente étude a pour objectif de développer une méthode de couplage flexible qui combine la méthode à maillage volumes finis (VF) et la méthode sans maillage Smoothed Particle Hydrodynamics - Arbitrary Lagrange Euler (SPH-ALE). Cette méthode couplée peut être utilisée comme outil pour l'investigation des phénomènes transitoires dans les machines hydrauliques. SPH-ALE est particulièrement bien adapté aux simulations des écoulements fortement dynamiques avec des géométries mobiles mais elle a des difficultés pour calculer des forts gradients de pression et vitesse. Un raffinement de particules est difficile à implémenter, surtout si les particules doivent être raffinées de manière anisotrope. Les méthodes volumes finis (VF) sont établies pour les simulations numériques d'écoulements grâce à leur stabilité et précision. Par contre, elles peuvent être lourdes pour les simulations avec des géométries mobiles et demandent souvent une interface entre des parties mobiles et statiques du maillage ce qui génère des erreurs supplémentaires. Pour combiner les deux approches complémentaires, une méthode de couplage a été développée qui décompose le domaine de calcul en zones où la vitesse et la pression sont calculées par la méthode VF, en zones où elles sont obtenues par SPH-ALE et en zones de recouvrement où les informations sont transférées de la zone VF à la zone SPH et inversement. Dans les zones de recouvrement les points de calcul VF sont utilisés comme voisins pour l'intégration en espace des particules SPH. Aux limites du maillage VF la vitesse et la pression sont interpolées des particules SPH, similairement aux méthodes Chimére des maillages recouvrants. Un logiciel SPH-ALE existant du groupe ANDRITZ est utilisé pour cette étude. Un solveur VF faiblement compressible est implémenté dans ce logiciel. Le solveur discrétise la même forme des équations de Navier-Stokes que le solveur SPH-ALE. Des solveurs de Riemann avec des états reconstruits par la méthode MUSCL sont employés. En outre, le solveur SPH-ALE est amélioré et adapté aux écoulements internes. Pour cette raison des conditions à l'entrée et à la sortie du type subsonique sont implémentées. Du plus, une méthode de correction du gradient de la fonction kernel est présentée qui améliore la précision du champ de pression, notamment si les particules ne sont pas distribuées régulièrement. La méthode couplée est validée à l'aide des cas test académiques en unidimensionnel et en bidimensionnel, comme le cas de tube à choc, les tourbillons de Taylor-Green et l'écoulement autour d'une aube symétrique du type NACA avec des particules en description eulérienne. En outre, le couplage offre la possibilité d'imposer des conditions à la sortie aux particules lagrangiennes. La méthode est appliquée aux simulations d'écoulement transitoire en 2D avec des particules qui se déplacent en suivant les géométries mobiles. / The increased use of intermittent forms of renewable energy like wind and solar energy produces fluctuations in the electric grid that have to be compensated. For this reason, hydraulic machines like turbines and pumps are more often operated under non-conventional operating conditions and are submitted to frequent starts and stops. This type of operating conditions has important consequences on the life cycle of the machines. It is thus of paramount importance that transient flows at off-design conditions are properly taken into account in the design phase and numerical simulation is an appropriate way to do so. The present study aims at developing a flexible coupling method of the meshbased Finite Volume Method (FVM) and the meshless Smoothed Particle Hydrodynamics - Arbitrary Lagrange Euler (SPH-ALE) method, which can be used as a tool for the investigation of transient phenomena in hydraulic machines. SPH-ALE is very well adapted for the simulation of highly dynamic flows with moving geometries but has difficulties to correctly represent rapidly changing gradients of the field variables. Particle refinement is difficult to implement, especially if particles are refined in an anisotropic way. FV methods are well established in CFD because of their accuracy and stability. However, they can be tedious for simulations with moving geometries and often necessitate an interface between moving and static parts of the mesh which introduces additional errors. To overcome the shortcomings of both methods, a coupling method is developed that uses a decomposition of the computational domain into regions where the physical field variables are computed by the FV method, regions where they are computed by SPH-ALE and overlapping regions where the information is transferred from the FV domain to the SPH domain and vice versa. In the overlapping regions FV calculation points are used as neighbors for the SPH integration in space. At the boundaries of the FV mesh, velocity and pressure are interpolated from the SPH particles by means of scattered data interpolation techniques, similarly to Chimera methods for overlapping grids. For this study, an existing SPH-ALE software of the ANDRITZ Group is used. A weakly compressible FV solver is implemented into this software that discretizes the same form of the Navier-Stokes equations than the SPH-ALE solver. Similar to the present SPH-ALE method, Riemann solvers with reconstructed states, obtained by a MUSCL scheme, are employed. Moreover, adaptations and improvements of the SPH-ALE solver itself are made, which are important for the coupling and for the simulation of internal flows in general. Thus, subsonic inlet and outlet conditions are implemented. Furthermore, a correction method of the kernel gradient is presented that ensures zeroth order consistency of the SPH-ALE approximation of the divergence of the convective fluxes. The correction improves greatly the SPH pressure field on non-uniform particle distributions. The implemented coupled method is successfully validated by means of inviscid academic one-dimensional and two-dimensional testcases like a shock tube case, Taylor-Green vortices and the flow around a symmetric NACA airfoil with particles in Eulerian description. Furthermore, the coupling provides a possibility to implement outlet boundary conditions to Lagrangian moving SPH particles. It is then applied to the simulation of transient flows in rotor stator systems in 2D with moving particles.
80

Méthodes numériques tout-régime et préservant l'asymptotique de type Lagrange-Projection : application aux écoulements diphasiques en régime bas mach / Asymptotic preserving and all-regime Lagrange-Projection like numerical schemes : application to two-phase flows in low mach regime

Girardin, Mathieu 09 December 2014 (has links)
Les écoulements diphasiques dans les centrales de type réacteur à eau pressurisée appartiennent à des régimes très variés allant du faible nombre de Mach jusqu'aux ondes de chocs. Calculer des solutions approchées précises de ces écoulements peut s'avérer délicat dans certains régimes. On s'intéresse dans cette thèse à la conception et à l'étude de méthodes numériques robustes et stables à grand pas de temps, capables de calculer des solutions approchées précises quel que soit le régime d'écoulement, y compris sur maillage grossier. Une stratégie pour construire de tels schémas consiste à : utiliser un schéma semi implicite basé sur un splitting d’opérateurs pour séparer la résolution approchée des phénomènes rapides de celles des phénomènes lents ; corriger les flux numériques afin d’améliorer la précision du schéma dans certains régimes. Deux approches sont utilisées pour analyser la capacité du schéma numérique à gérer plusieurs régimes d'écoulement. L’approche des schémas asymptotic preserving est utilisée pour traiter le système de la dynamique des gaz avec termes sources raides. On utilise ensuite la notion de schéma tout-régime pour le système de la dynamique des gaz et les systèmes diphasiques homogénéisés HRM et HEM à bas nombre de Mach. Des propriétés garantissant la stabilité et la robustesse des schémas ont été obtenues, et en particulier des inégalités d'entropie discrètes. L'implémentation de ces méthodes a permis de mener des expériences numériques en 1D et 2D sur maillage non structuré qui confirment le gain en précision et en temps de calcul des schémas asymptotic preserving et tout-régime ainsi construits par rapport à des schémas numériques classiques. / Two-phase flows in Pressurized Water Reactors belong to a wide range of Mach number flows. Computing accurate approximate solutions of those flows may be challenging from a numerical point of view as classical finite volume methods are too diffusive in the low Mach regime. In this thesis, we are interested in designing and studying some robust numerical schemes that are stable for large time steps and accurate even on coarse meshes for a wide range of flow regimes. An important feature is the strategy to construct those schemes. We use a mixed implicit-explicit strategy based on an operator splitting to solve fast and slow phenomena separately. Then, we introduce a modification of a Suliciu type relaxation scheme to improve the accuracy of the numerical scheme in some regime of interest. Two approaches have been used to assess the ability of our numerical schemes to deal with a wide range of flow regimes. The first approach, based on the asymptotic preserving property, has been used for the gas dynamics equations with stiff source terms. The second approach, based on the all-regime property, has been used for the gas dynamics equations and the homogeneous two-phase flows models HRM and HEM in the low Mach regime. We obtained some robustness and stability properties for our numerical schemes. In particular, some discrete entropy inequalities are shown. Numerical evidences, in 1D and in 2D on unstructured meshes, assess the gain in term of accuracy and CPU time of those asymptotic preserving and all-regime numerical schemes in comparison with classical finite volume methods.

Page generated in 0.3084 seconds