151 |
Photoelectron Spectroscopy on Atoms, Molecules and Clusters : The Geometric and Electronic Structure Studied by Synchrotron Radiation and LasersRander, Torbjörn January 2007 (has links)
Atoms, molecules and clusters all constitute building blocks of macroscopic matter. Therefore, understanding the electronic and geometrical properties of such systems is the key to understanding the properties of solid state objects. In this thesis, some atomic, molecular and cluster systems (clusters of O2, CH3Br, Ar/O2, Ar/Xe and Ar/Kr; dimers of Na; Na and K atoms) have been investigated using synchrotron radiation, and in the two last instances, laser light. We have performed x-ray photoelectron spectroscopy (XPS) on all of these systems. We have also applied ultraviolet photoelectron spectroscopy (UPS), resonant Auger spectroscopy (RAS) and near-edge x-ray absorption spectroscopy (NEXAFS) to study many of the systems. Calculations using ab initio methods, namely density functional theory (DFT) and Møller-Plesset perturbation theory (MP), were employed for electronic structure calculations. The geometrical structure was studied using a combination of ab initio and molecular dynamics (MD) methods. Results on the dissociation behavior of CH3Br and O2 molecules in clusters are presented. The dissociation of the Na2 molecule has been characterized and the molecular field splitting of the Na 2p level in the dimer has been measured. The molecular field splitting of the CH3Br 3d level has been measured and the structure of CH3Br clusters has been determined to be similar to the structure of the bulk solid. The diffusion behavior of O2, Kr and Xe on large Ar clusters, as a function of doping rate, has been investigated. The shake-down process has been observed from excited states of Na and K. Laser excited Na atoms have been shown to be magnetically aligned. The shake-down process was used to characterize the origin of various final states that can be observed in the spectrum of ground-state K.
|
152 |
A Treatise on the Geometric and Electronic Structure of Clusters : Investigated by Synchrotron Radiation Based Electron SpectroscopiesLindblad, Andreas January 2008 (has links)
Clusters are finite ensembles of atoms or molecules with sizes in the nanometer regime (i.e. nanoparticles). This thesis present results on the geometric and electronic structure of homogeneous and heterogeneous combinations of atoms and molecules. The systems have been studied with synchrotron radiation and valence, core and Auger electron spectroscopic techniques. The first theme of the thesis is that of mixed clusters. It is shown that by varying the cluster production technique both structures that are close to that predicted by equilibrium considerations can be attained as well as far from equilibrium structures. Electronic processes following ionization constitute the second theme. The post-collision interaction phenomenon, energy exchange between the photo- and the Auger electrons, is shown to be different in clusters of argon, krypton and xenon. A model is proposed that takes polarization screening in the final state into account. This result is of general character and should be applicable to the analysis of core level photoelectron and Auger electron spectra of insulating and semi-conducting bulk materials as well. Interatomic Coloumbic Decay is a process that can occur in the condensed phases of weakly bonded systems. Results on the time-scale of the process in Ne clusters and mixed Ar/Ne clusters are herein discussed, as well observations of resonant contributions to the process. In analogy to Auger vis-à-vis Resonant Auger it is found that to the ICD process there is a corresponding Resonant ICD process possible. This has later been observed in other systems and by theoretical calculations as well in subsequent works by other groups. Delocalization of dicationic valence final states in the hydrogen bonded ammonia clusters and aqueous ammonia has also been investigated by Auger electron spectroscopy. With those results it was possible to assign a previously observed feature in the Auger electron spectrum of solid ammonia.
|
153 |
Structure and Dynamics of Core-Excited SpeciesTravnikova, Oksana January 2008 (has links)
In this thesis we have performed core-electron spectroscopy studies of gas phase molecular systems starting with smaller diatomic, continuing with triatomic and extending our research to more complex polyatomic ones. We can subdivide the results presented here into two categories: the first one focusing on electronic fine structure and effect of the chemical bonds on molecular core-levels and the other one dealing with nuclear dynamics induced by creation of a core hole. In our research we have mostly used synchrotron radiation based techniques such as X-ray Photoelectron (XPS), X-ray Absorption (XAS), normal and Resonant Auger (AES and RAS, respectively) and Energy-Selected Auger Electron PhotoIon COincidence (ES-AEPICO) spectroscopies. We have demonstrated that resonant Auger spectroscopy can be used to aid interpretation of the features observed in XAS for Rydberg structures in the case of Cl2 and C1s−1π*1 states of allene molecules. The combined use of high-resolution spectroscopy with ab initio calculations can help the interpretation of strongly overlapped spectral features and disentangle their complex profiles. This approach enabled us to determine the differences in the lifetimes for core-hole 2p sublevels of Cl2 which are caused by the presence of the chemical bond. We have shown that contribution in terms of the Mulliken population of valence molecular orbitals is a determining factor for resonant enhancement of different final states and fragmentation patterns reached after resonant Auger decays in N2O. We have also performed a systematic study of the dependence of the C1s resonant Auger kinetic energies on the presence of different substituents in CH3X compounds. For the first time we have studied possible isomerization reaction induced by core excitation of acetylacetone. We could observe a new spectral feature in the resonant Auger decay spectra which we interpreted as a signature of core-excitation-induced keto-enol tautomerism.
|
154 |
Solvent–Solute Interaction : Studied by Synchrotron Radiation Based Photo and Auger Electron SpectroscopiesPokapanich, Wandared January 2011 (has links)
Aqueous solutions were studied using photoelectron and Auger spectroscopy, based on synchrotron radiation and a liquid micro-jet setup. By varying the photon energy in photoelectron spectra, we depth profiled an aqueous tetrabutylammonium iodide (TBAI) solution. Assuming uniform angular emission from the core levels, we found that the TBA+ ions were oriented at the surface with the hydrophobic butyl arms sticking into the liquid. We investigated the association between ions and their neighbors in aqueous solutions by studying the electronic decay after core ionization. The (2p)−1 decay of solvated K+ and Ca2+ ions was studied. The main features in the investigated decay spectra corresponded to two-hole final states localized on the ions. The spectra also showed additional features, related to delocalized two-hole final states with vacancies on a cation and a neighboring water molecule. These two processes compete, and by comparing relative intensities and using the known rate for the localized decay, we determined the time-scale for the delocalized process for the two ions. We compared to delocalized electronic decay processes in Na+, Mg2+, and Al3+, and found that they were slower in K+ and Ca2+, due to different internal decay mechanisms of the ions, as well as external differences in the ion-solute distances and interactions. In the O 1s Auger spectra of aqueous metal halide solutions, we observed features related to delocalized two-hole final states with vacancies on a water molecule and a neighboring solvated anion. The relative intensity of these feature indicated that the strength of the interaction between the halide ions and water correlated with ionic size. The delocalized decay was also used to investigate contact ion pair formation in high concentrated potassium halide solutions, but no concrete evidence of contact ion pairs was observed. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 726
|
155 |
Phthalocyanines on Surfaces : Monolayers, Films and Alkali Modified StructuresNilson, Katharina January 2007 (has links)
The Phthalocyanines (Pc’s) are a group of macro-cyclic molecules, widely investigated due to the possibility to use them in a variety of applications. Electronic and geometrical structure investigations of molecular model systems of Pc’s adsorbed on surfaces are important for a deeper understanding of the functionality of different Pc-based devices. Here, Pc’s monolayers and films, deposited on different surfaces, were investigated by X-ray Photoelectron Spectroscopy (XPS), X-ray Absorption Spectroscopy (XAS) and Scanning Tunneling Microscopy (STM). In addition Density Functional Theory (DFT) simulations were performed. For molecular films of Metal-free (H2Pc) and Iron (FePc) Pc’s, on surfaces, it is found that the intermolecular interaction is weak and the molecules arrange with their molecular plane mainly perpendicular to the surface. Several monolayer systems were characterized, namely H2Pc and FePc adsorbed on Graphite, ZnPc on InSb(001)-c(8x2), H2Pc on Al(110) and on Au(111). For all the studied monolayers it was found that the molecules are oriented with their molecular plane parallel to the surface. The electronic structure of the molecules is differently influenced by interaction with the surfaces. For H2Pc adsorbed on Graphite the nearly negligible effect of the surface on the molecular electronic structure allowed STM characterization of different molecular orbitals. A strong interaction is instead found in the case of H2Pc on Al(110) resulting in molecules strongly adsorbed, and partly dissociated. Modifications of the electronic and geometrical structure induced by alkali doping of H2Pc films and monolayers were characterized. It is found both for the H2Pc film on Al(110) and monolayer adsorbed on Au(111), that the molecular arrangement is changed upon doping by Potassium and Rubidium, respectively. Potassium doping of the H2Pc films results in a filling of previously empty molecular orbitals by a charge transfer from the alkali to the molecule, with significant modification of the molecular electronic structure.
|
156 |
Structure of Self-Assembled Monolayers on Gold Studied by NEXAFS and Photoelectron SpectroscopyWatcharinyanon, Somsakul January 2008 (has links)
Self-assembled monolayers (SAMs) provide well-defined and ordered films of molecules spontaneously chemisorbed on a surface. By designing molecules with desired functionalities, such molecular film can be interesting for a range of applications from molecular electronics to catalysis. Important parameters for SAM applications are the film structure and quality, which are dependent on the structure of molecular constituents, the substrate, and the self-assembly process. In this work, SAMs on Au(111) of a variety of functionalized molecules, with thiol and silane headgroups, have been studied using high-resolution X-ray photoemission spectroscopy (HRXPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, Infrared reflection absorption spectroscopy (IRRAS), contact angle measurements and Kelvin probe measurements. In particular, the effects of varying the size of the backbone, varying the headgroup, inclusion of a porphyrin tailgroup, different ways of deprotection of the headgroups, and mixed molecular layers have been investigated. The first part of thesis work is focused on SAMs of oligo(phenyleneethynylene) (OPE) derivatives. First the effect of the extent of the conjugated system on the structure of SAM was investigated. As the lateral π-system in the OPE backbone increases, molecular surface densities become lower and molecular inclinations larger. Subsequently, a bulky porphyrin tailgroup was added onto the OPE molecule. Porphyrin-functionalized OPE with several headgroups were compared and the thioacetyl anchor group was found to form a high quality SAM. In the second part of the work, the molecular orientation of thiol-derivatized tetraphenylporphyrin layers was studied. The geometry of the molecular layer and the number of linkers that bind to the gold surface depend strongly on preparation schemes, i.e. whether or not the acetyl protection groups on the thiol were removed before adsorption. Finally, mixed SAMs of a ferrocene-terminated alkanethiol and alkanethiols were studied. By diluting the ferrocene-functionalized molecules in unfunctionalized alkanethiols, the orientational order and the packing density improved. The geometrical structure and the fraction of the ferrocene-terminated molecules can be tuned by controlling the parameters in the preparation scheme.
|
157 |
Etude et modélisation de l'interface graphite/électrolyte dans les batteries lithium-ion / Study and establishment of a model of the graphite/electrolyte interface in lithium-ion batteriesChhor, Sarine 19 December 2014 (has links)
Cette thèse se positionne dans le domaine des batteries lithium-ion. Elle a pourobjectif de mieux comprendre le fonctionnement de l’électrode négative de graphiteen étudiant le processus de formation du film de passivation, couramment appeléSEI (Solid Electrolyte Interface) créé à l’interface avec l’électrolyte. Ce travail nousa conduit à proposer des modèles pouvant expliquer comment se forme la SEI et àidentifier les phénomènes qui entrent en jeu dans le fonctionnement de la batterie.La SEI résulte de la réaction entre l’électrode de graphite, les ions lithium et les moléculesorganiques de l’électrolyte qui survient lors du premier processus d’insertion.Elle est principalement composée des produits de décomposition de l’électrolyte etles ions lithium consommés ne sont plus échangeables. Elle est donc responsable dela capacité irréversible observée lors du premier cycle de formation, correspondantà la différence de capacité entre le processus d’insertion et le processus de désinsertion.Il est donc essentiel de mieux comprendre les paramètres qui l’influencentpour pouvoir ainsi la contrôler et limiter la perte irréversible de capacité. Les performancesen capacité de l’élément lithium-ion sont directement liées à cette valeurde capacité irréversible, elle doit être limitée afin de maximiser la quantité d’ionslithium échangée entre l’électrode négative et l’électrode positive. La stabilité dela SEI conditionne ensuite le comportement en cyclage de l’électrode au cours dutemps.Dans ce mémoire de thèse, nous avons choisi de caractériser le comportement del’électrode de graphite en faisant varier la nature de l’électrolyte et la taille desparticules de graphite tout en restant le plus proche possible du fonctionnementd’une vraie batterie. Au travers des techniques de caractérisations électrochimiques(cyclage galvanostatique, spectroscopie d’impédance) associées à des techniques decaractérisation de surface (spectroscopie de photoélectrons X, microscopie électroniqueà balayage), les résultats obtenus ont permis de proposer un nouveau modèlede formation de la SEI.Pour l’électrolyte, nous avons choisi de ne regarder que l’effet du solvant (le carbonatede propylène) et de l’additif (le carbonate de vinylène). Ces deux composésentrent dans la composition des électrolytes utilisés dans les éléments lithium-ioncommerciaux. Pour l’électrode de graphite, le choix des particules s’avère primordialpuisque chaque type de particules possède une chimie de surface spécifique (plans223basaux ou plans prismatiques) susceptible de réagir différemment vis-à-vis de l’électrolyte.Deux particules de graphite, de taille et de morphologie différentes, ont étéétudiées. Elles sont utilisées séparément en tant que matière active dans les électrodesnégatives des batteries lithium-ion. Notre spécificité est d’avoir préparé desélectrodes constituées par un mélange de ces deux particules et de les avoir ensuitecaractérisées en formation. L’application de conditions de fonctionnement différentescomme le régime de cyclage et la température d’essai ont mis en évidence les valeursidéales conduisant à minimiser la dégradation de l’électrolyte et à optimiser laqualité du film.Nous avons abouti, au travers de l’ensemble des méthodes de caractérisations misesen oeuvre, à une meilleure compréhension des mécanismes de formation du film depassivation permettant ainsi d’améliorer cette étape essentielle à la pérennité desperformances de l’électrode dans le temps. Ce travail a donc un réel impact auniveau industriel. Le modèle de formation proposé apporte un éclairage nouveau auprocessus de formation et peut permettre également d’aider en amont à la fabricationdes particules de graphite. / This work relates to the lithium ion battery field. The purpose of this study is tobetter understand the behavior of graphite electrodes by focusing on the formationof a passive layer named Solid Electolyte Interface (SEI) which is formed at thegraphite/electrolyte interface. This work has led us to put forward models whichcan explain the SEI formation and identify the reactions which take place in alithium ion battery.The SEI results from reactions between graphite electrode, lithium ions and organicmolecules from the electrolyte during the first charge of the lithium ion battery. It ismainly composed of decomposition products from the electrolyte. Consumed lithiumions can no longer be used in the next cycle. The SEI is therefore responsible for theirreversible capacity during the first formation cycle which is the charge loss betweenthe intercalation process and the deintercalation process. It is necessary to betterunderstand the impact of the formation conditions and other parameters in orderto control and limit the irreversible charge loss. Lithium ion battery performancesdepend on this irreversible capacity, this value has to be reduced in order to maximizethe amount of exchanged lithium ions between negative and positive electrodes. TheSEI stability will determine the electrode behavior upon cycling.In this thesis, we chose to study the graphite behavior by testing several electrolytecompositions and graphite particle sizes in electrochemical cells similar to areal battery. Electrochemical techniques (galvanostatic cycling and electrochemicalimpedance spectroscopy) and surface analyses (X-ray photoelectron spectroscopy,scanning electron microscopy) will be combined. These results helped us to developa new model of the SEI formation.For the electrolyte, we chose to study the effect of the solvent (propylene carbonate)and the additive (vinylene carbonate). Both components are commonly used inthe electrolyte for commercial lithium ion batteries. For the graphite electrode, thechoice of graphite particles is essential because each graphite family has its ownsurface chemistry (basal and prismatic surfaces) which can react in many wayswith the electrolyte. Two graphite particles, with specific sizes and morphologiesare studied. They are separately used as active materials for negative electrodes inlithium ion batteries. Our unique approach is to prepare graphite electrodes basedon a mix of both particles with various compositions and then test the electrode225performances. After testing several formation conditions such as the cycling rateand the temperature, we found the ideal formation conditions for minimizing theelectrolyte decomposition and optimizing the film quality.Finally, based on all the characterization methods, we came to a better understandingof the film formation process. In this way, we have improved this essentialpreliminary step which can now lead to more durable cycling performances overtime. This study can have a major impact on the industrial level. The formationmodel cast a new light on the formation process and can therefore help to makeefficient graphite electrodes.
|
158 |
Desenvolvimento de novos eletrocatalisadores para celulas a combustivel a membrana polimerica trocadora de protonsFRANCO, EGBERTO G. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:49:30Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:02:27Z (GMT). No. of bitstreams: 1
10381.pdf: 10221895 bytes, checksum: 882d02701e24d30dd8869849c8502249 (MD5) / Tese (Doutoramento) / IPEN/T / Intituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP
|
159 |
Desenvolvimento de novos eletrocatalisadores para celulas a combustivel a membrana polimerica trocadora de protonsFRANCO, EGBERTO G. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:49:30Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:02:27Z (GMT). No. of bitstreams: 1
10381.pdf: 10221895 bytes, checksum: 882d02701e24d30dd8869849c8502249 (MD5) / Tese (Doutoramento) / IPEN/T / Intituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP
|
160 |
Growth Monitoring of Ultrathin Copper and Copper Oxide Films Deposited by Atomic Layer Deposition / Untersuchungen zum Wachstum ultradünner Kupfer- und Kupferoxid Schichten mittels AtomlagenabscheidungDhakal, Dileep 25 October 2017 (has links) (PDF)
Atomic layer deposition (ALD) of copper films is getting enormous interest. Ultrathin Cu films are applied as the seed layer for electrochemical deposition (ECD) of copper in interconnect circuits and as the non-magnetic material for the realization of giant magnetoresistance (GMR) sensors. Particularly, Co/Cu multi-layered structures require sub 4.0 nm copper film thickness for obtaining strong GMR effects. The physical vapor deposition process for the deposition of the copper seed layers are prone to non-conformal coating and poor step coverage on side-walls and bottoms of trenches and vias, and presence of overhanging structures. This may cause failure of interconnections due to formation of voids after copper ECD. ALD is the most suitable technology for the deposition of conformal seed layers for the subsequent ECD in very high aspect ratio structures, also for the technology nodes below 20 nm. Surface chemistry during the ALD of oxides is quite well studied. However, surface chemistry during the ALD of pure metal is rather immature. This knowledge is necessary to optimize the process parameters, synthesize better precursors systems, and enhance the knowledge of existing metal ALD processes. The major goal of this work is to understand the surface chemistry of the used precursor and study the growth of ultrathin copper films using in-situ X-ray photoelectron spectroscopy (XPS). Copper films are deposited by ALD using the precursor mixture consisting of 99 mol% [(nBu3P)2Cu(acac)], as copper precursor and 1 mol% of Ru(η5 C7H11)(η5 C5H4SiMe3), as ruthenium precursor. The purpose in having catalytic amount of ruthenium precursor is to obtain the Ru doped Cu2O layers for subsequent reduction with formic acid at temperatures below 150 °C on arbitrary substrates. Two different approaches for the growth of ultrathin copper films have been studied in this dissertation. In the first approach, direct thermal ALD of copper has been studied by using H2 as co-reactant on Co as catalytic substrate. In the second approach, Ru-doped Cu2O is deposited by ALD using wet-O2 as co-reactant on SiO2 as non-catalytic substrate. The Ru-doped Cu2O is successfully reduced by using either formic acid or carbon-monoxide on SiO2. / Atomlagenabscheidung (ALD) von Kupfer steht im Fokus der ALD Gemeinschaft. Ultradünne Kupferschichten können als Keimschicht für die elektrochemische Abscheidung (ECD) von Kupfer in der Verbindungstechnologie eingesetzt werden. Sie können ebenfalls für Sensoren, welche auf den Effekt des Riesenmagnetowiderstandes (GMR) basieren, als nicht-ferromagnetische Zwischenschicht verwendet werden. Insbesondere Multischichtstrukturen aus ferromagnetische Kobalt und Kupfer erfordern Schichtdicken von weniger als 4,0 nm, um einen starken GMR-Effekt zu gewährleisten. Das derzeit verwendete physikalische Dampfabscheidungsverfahren für ultradünne Kupferschichten, ist besonders anfällig für eine nicht-konforme Abscheidung an den Seitenwänden und Böden von Strukturen mit hohem Aspektverhältnis. Des Weiteren kann es zur Bildung von Löchern und überhängenden Strukturen kommen, welche bei der anschließenden Kupfer ECD zu Kontaktlücken (Voids) führen können. Für die Abscheidung einer Kupfer-Keimschicht ist die ALD besonders gut geeignet, da sie es ermöglicht, ultradünne konforme Schichten auf strukturierten Oberflächen mit hohem Aspektverhältnis abzuscheiden. Dies macht sie zu einer der Schlüsseltechnologien für Struckturgrößen unter 20 nm. Im Gegensatz zur Oberflächenchemie rein metallischer ALD sind die Oberflächenreaktionen für oxidische ALD Schichten sehr gut untersucht. Die Kenntnis der Oberflächenchemie während eines ALD Prozesses ist essenziel für die Bestimmung von wichtigen Prozessparametern als auch für die Verbesserung der Präkursorsynthese ansich. Diese Arbeit beschäftigt sich mit der Untersuchung der Oberflächenchemie und Charakterisierung des Wachstums von ultradünnen Metall-Cu-Schichten mittels In-situ XPS, welche eines indirekten (Oxid) bzw. direkten Metall-ALD Prozesses abgeschieden werden, wobei die Kupfer-Oxidschichten im Anschluss einem Reduktionsprozess unterworfen werden. Hierfür wird eine Präkursormischung bestehend aus 99 mol% [(nBu3P)2Cu(acac)] und 1 mol% [Ru(η5 C7H11)(η5-C5H4SiMe3)] verwendet. Die katalytische Menge an Ru, welche in der entstehenden Cu2O Schicht verbleibt, erhöht den Effekt der Reduktion der Cu2O Schicht auf beliebigen Substraten mit Ameinsäure bei Wafertemperaturen unter 150 °C. In einem ersten Schritt wird ein direkter thermisches Kupfer ALD-Prozess, unter Verwendung von molekularem Wasserstoff als Coreaktant, auf einem Kobalt-Substrat untersucht. In einem zweiten Schritt wird ein indirekter thermischer Cu2O-ALD-Prozess, unter gleichzeitiger Verwendung von Sauerstoff und Wasserdampf als Coreaktant, mit anschließender Reduktion durch Ameinsäure oder Kohlenstoffmonoxid zu Kupfer auf den gleichen Substraten betrachtet. Die vorliegende Arbeit beschreibt das Wachstum von ultradünnen und kontinuierlichen Kupfer-Schichten mittels thermischer ALD auf inerten- SiO2 und reaktiven Kobalt-Substraten.
|
Page generated in 0.0614 seconds