Spelling suggestions: "subject:"arsenic""
311 |
Non-degenerate Two Photon Gain In Bulk Gallium ArsenideTurnbull, Brendan 01 January 2013 (has links)
The purpose of this thesis is to investigate the nonlinear phenomena known as doubly-stimulated, non-degenerate two-photon emission (ND-2PE) in Gallium Arsenide (GaAs). 2PE refers to the simultaneous emission of two-photons as electrons move from the conduction band in a direct gap semiconductor to the valence band. Following the same path for describing one-photon emission (1PE) we describe 2PE as a product of the irradiance, and the negative of the loss which in this case is two-photon absorption, , the negative coming from the population inversion. We attempt to observe 2PE by using a frequency non-degenerate pump-probe experiment in which a third beam optically excites a 4 µm thick GaAs sample. We use nondegenerate beams in hopes of utilizing the 3-orders of magnitude enhancement seen in twophoton absorption (2PA) by going to extreme nondegeneracy (END) to enhance 2PE. GaAs is chosen due to the availability of the appropriate wavelengths, the maturity of the GaAs technology, its use in optoelectronic devices and its ability to be electrically pumped. During the experimental development we learn how to effectively etch and manipulate thin GaAs samples and model the transmission spectrum of these samples using thin film transmission matrices. We are able to match the measured transmission spectrum with the theoretical transmission spectrum. Here we etch the bulk GaAs left on the sample leaving only the 4 µm thickness of molecular beam epitaxial grown GaAs plus additional layers of aluminum gallium arsenide (AlGaAs). These samples were grown for us by Professor Gregory Salamo of the University of Arkansas. iv Using the pump-probe experiment on the 4 µm GaAs sample, we measure the change of the 2PA due to the presence of optically excited carriers. The goal is to reduce the 2PA signal to zero and then invert the 2PA signal indicating an increase in transmission indicative of 2PE when the population is inverted. Our results show that we achieve a 45% reduction in the 2PA signal in a 4 μm thick GaAs sample due to the excited carriers. Unfortunately, we currently cannot experimentally determine whether the reduction is strictly due to free-carrier absorption (FCA) of our pump or possibly due to a change in the two-photon absorption coefficient. We measure the transmission of various wavelengths around the bang gap of GaAs as a function of excitation wavelength and achieve a transmittance of ~80% which we attribute to possibly be one photon gain (1PG) at 880 nm. We also go to cryogenic temperatures to concentrate the carriers near the bottom of the conduction band and improve the theoretical gain coefficient for 2PE. Unfortunately, we do not observe a measurable change in 2PA with the addition of optically excited carriers. Along with FCA of our infrared pump we suspect that the difficulties in this first set of experiments are also a result or radiative recombination due to amplified spontaneous emission reducing our free carrier density along with the fact that 4 m is too thick for uniform excitation. We now have 1 m samples from Professor Gregory Salamo which we hope will give better and more definitive results
|
312 |
Photocurrent Spectroscopy of CdS/Plastic, CdS/Glass, and ZnTe/GaAs Hetero-pairs Formed with Pulsed-laser DepositionAcharya, Krishna Prasad 01 July 2009 (has links)
No description available.
|
313 |
Sensing and Energy Harvesting of Fluidic Flow by InAs Nanowires, Carbon Nanotubes and GrapheneChen, Ying 11 June 2014 (has links)
No description available.
|
314 |
Growth and characterization of Ga(As,N) and (In,Ga)(As,N)Mußler, Gregor 03 March 2005 (has links)
Das Thema dieser Dissertation ist das MBE-Wachstum und die Charakterisierung von Ga(As,N) und (In,Ga)(As,N). Die Arbeit beginnt mit der Optimierung des Wachstums von Ga(As,N). Aufgrund der hohen Mischbarkeitslücke von GaN in GaAs verursacht der Einbau von Stickstoff in GaAs eine strukturelle Degradation, die von der Substrattemperatur, der Stickstoffkonzentration und der Quantentopfdicke abhängt. Ein weiteres Problem bezüglich des Wachstums von Ga(As,N) sind Punktdefekte, die einen schädlichen Einfluß auf optische Eigenschaften haben. Eine thermische Behandlung verringert die Konzentration dieser Punktdefekte. Dies geht mit einer Steigerung der Photolumineszenz-Intensität einher. Punktdefekte sind zum Beispiel Stickstoff-Dimere, die sich in Gallium- oder Arsen-Vakanzen einbauen. Eine thermische Behandlung bei hohen Temperaturen bewirkt jedoch eine strukturelle Degradation im Ga(As,N)-Materialsystem, die sich in einer Abnahme der Photolumineszenz-Intensität manifestiert. Es wird gezeigt, daß die Temperatur der thermischen Behandlung, die die höchste Photolumineszenz-Ausbeute erzielt, von der Stickstoffkonzentration abhängt. Bezüglich des Wachstums von (In,Ga)(As,N) verursacht die Mischbarkeitslücke von (In,Ga)N in (In,Ga)As ebenfalls eine strukturelle Degradation. Auch im quaternären Materialsystem ist eine thermische Behandlung essentiell für die Verbesserung optischer Eigenschaften. Es wird außerdem gezeigt, daß die thermische Behandlung von (In,Ga)As eine Indiumdiffusion verursacht, die durch den Einbau von Stickstoff gestoppt wird. Die Charakterisierung von (In,Ga)(As,N) kantenemittierenden Lasern zeigt Emissionen bei Wellenlängen bis zu 1366 nm. Mit dem Einbau von Stickstoff ist ein Anstieg der Schwellstromdichte und ein Abfall der Emissionsleistung verbunden. / This dissertation deals with the MBE growth and characterization of Ga(As,N) and (In,Ga)(As,N). The work commences with the optimization of the Ga(As,N) growth. Owing to a large miscibility gap of GaN in GaAs, the incorporation of nitrogen into GaAs causes a structural degradation that is dependent on the substrate temperature, the nitrogen concentration, and the quantum well thickness. Another problem related to the growth of Ga(As,N) are point defects that have a detrimental influence on optical properties. A thermal treatment of Ga(As,N) reduces the concentration of these point defects. This leads to a substantial improvement of optical properties. We will show that nitrogen split interstitials that incorporate into gallium and arsenic vacancies may be attributed to these point defects. A thermal treatment of Ga(As,N) at high temperatures, on the contrary, results in a creation of extended defects which are detrimental to optical properties. We will show that the temperature of the thermal treatment that yields the highest photoluminescence intensity is nitrogen concentration-dependent. The growth of (In,Ga)(As,N) is similar with respect to Ga(As,N). Again, one has to face a high miscibility gap of (In,Ga)N in (In,Ga)As that results in a structural degradation. A thermal treatment of (In,Ga)(As,N) is also beneficial for improving optical properties. We will show that a thermal treatment of (In,Ga)As results in an indium diffusion that is suppressed by the incorporation of nitrogen. The characterization of (In,Ga)(As,N) edge emitting lasers shows emission at wavelengths up to 1366 nm. With higher nitrogen concentrations, there is a strong increase of the threshold current density and a decrease of the output power.
|
315 |
VGF growth of 4” GaAs single crystals with traveling magnetic fieldsGlacki, Alexander 19 September 2014 (has links)
Im Rahmen der vorliegenden Arbeit wurden Si-dotierte und undotierte 4” VGF-GaAs Einkristalle unter dem Einfluss von Wandermagnetfeldern (TMF) gezüchtet. Die für den Prozess benötigte Wärme und das Wandermagnetfeld wurden simultan mithilfe der kombinierten Regelung von Gleich- und Wechselströmen in einem KRISTMAG Heizer-Magnet-Modul (HMM) erzeugt. Alle Züchtungsexperimente wurden in einer kommerziellen VGF-Anlage mit eingebautem Eintiegel-HMM und in einer neu entwickelten VGF-Anlage mit Multitiegel-HMM durchgeführt. Der Einfluss der durch die Lorentzkräfte angetriebenen Schmelze auf die Form der fest-flüssig Phasengrenze wurde innerhalb einer TMF-Parameterstudie analysiert. Im Vergleich mit Referenzkristallen, welche ohne TMF gezüchtet wurden, zeigte sich, dass die Durchbiegung der Phasengrenze durch die Anwendung eines geeigneten Doppelfrequenz-TMF um etwa 30% verringert und der Kontaktwinkel am Tiegel um etwa 10% vergrößert werden kann. Zudem wurden Synergieeffekte von TMF-Anwendung und den Ansätzen zur Prozessintensivierung - Scale-Up, Speed-Up und Numbering-Up - für die Verbesserung der Prozesseffizienz erfolgreichnachgewiesen. Es wurden gleichzeitig zwei 4” VGF-GaAs:Si Einkristalle unter dem Einfluss eines TMF in einer Multitiegel-Anlage gezüchtet. In Kristallen, welche ohne oder mit zu starkem TMF gezüchtet wurden, waren Wachstumsstreifen sichtbar. Wurde die magnetische Flussdichte des TMF an den Kristallisationsverlauf angepasst, konnten nahezu keine Mikroinhomogenitäten detektiert werden. Die Länge der Kristallfacetten stabilisierte sich durch den Einsatz der Wandermagnetfelder. Zusätzlich konnten die Versetzungsdichten innerhalb der Kristalle durch Optimierung des thermischen Aufbaus und der Phasengrenzform signifikant reduziert werden. Mithilfe eines dem Züchtungsverlaufes angepassten Doppelfrequenz-TMF sowie der Nutzung eines BN-Suszeptors, wurde eine durchschnittliche EPD von 100 cm-2 in einem GaAs:Si Kristall erzielt. / Within the framework of this thesis Si-doped and undoped 4” VGF-GaAs single crystals were grown under the influence of traveling magnetic fields (TMF). A KRISTMAG heater-magnet module (HMM) was used for the efficient simultaneous generation of heat and TMF during the process through a combination of DC and AC control. Growth experiments were carried out in a commercial VGF growth setup equipped with a single-crucible HMM and a newly designed VGF setup with a multi-crucible HMM. The impact of the Lorentz force driven melt flow on the shape of the solid-liquid interface was analyzed in a TMF parameter study on frequency, phase shift, and current. With the application of suitable double-frequency TMF during growth, the interface deflection was reduced by about 30% and crucible contact angles increased within the order of 10%, compared to reference crystals grown without TMF. Synergy effects of TMF application on process intensification approaches scale-up, speed-up, and numbering-up were successfully shown. Two 4” VGF-GaAs:Si single crystals were simultaneously grown under the influence of a TMF in the multi-crucible HMM. With TMF application changing structural and electronic properties as well as micro- and macrosegregation were investigated on Si-doped VGF-GaAs single crystals. Striations were observed in crystals grown without or too strong TMF. Almost no micro-inhomogeneities were detected when the magnetic flux densities of the TMF were matched to the progression of solidification. Facets lengths in the crystal cone were found to be more stable with applied TMF. Further, the combined optimization of the conventional thermal setup and a reduction of the interface deflection with TMF application significantly reduced dislocation densities inside the crystals. An average EPD value around 100 cm-2 was obtained for GaAs:Si growth with a growth-matched double-frequency TMF and applied BN susceptor in the single-crucible VGF setup.
|
316 |
Control of electronic and optical properties of single and double quantum dots via electroelastic fieldsZallo, Eugenio 23 March 2015 (has links) (PDF)
Semiconductor quantum dots (QDs) are fascinating systems for potential applications in quantum information processing and communication, since they can emit single photons and polarisation entangled photons pairs on demand. The asymmetry and inhomogeneity of real QDs has driven the development of a universal and fine post-growth tuning technique. In parallel, new growth methods are desired to create QDs with high emission efficiency and to control combinations of closely-spaced QDs, so-called "QD molecules" (QDMs). These systems are crucial for the realisation of a scalable information processing device after a tuning of their interaction energies.
In this work, GaAs/AlGaAs QDs with low surface densities, high optical quality and widely tuneable emission wavelength are demonstrated, by infilling nanoholes fabricated by droplet etching epitaxy with different GaAs amounts. A tuning over a spectral range exceeding 10 meV is obtained by inducing strain in the dot layer. These results allow a fine tuning of the QD emission to the rubidium absorption lines, increasing the yield of single photons that can be used as hybrid semiconductor-atomic-interface.
By embedding InGaAs/GaAs QDs into diode-like nanomembranes integrated onto piezoelectric actuators, the first device allowing the QD emission properties to be engineered by large electroelastic fields is presented. The two external fields reshape the QD electronic properties and allow the universal recovery of the QD symmetry and the generation of entangled photons, featuring the highest degree of entanglement reported to date for QD-based photon sources.
A method for controlling the lateral QDM formation over randomly distributed nanoholes, created by droplet etching epitaxy, is demonstrated by depositing a thin GaAs buffer over the nanoholes. The effect on the nanohole occupancy of the growth parameters, such as InAs amount, substrate temperature and arsenic overpressure, is investigated as well. The QD pairs show good optical quality and selective etching post-growth is used for a better characterisation of the system.
For the first time, the active tuning of the hole tunnelling rates in vertically aligned InGaAs/GaAs QDM is demonstrated, by the simultaneous application of electric and strain fields, optimising the device concept developed for the single QDs. This result is relevant for the creation and control of entangled states in optically active QDs. The modification of the electronic properties of QDMs, obtained by the combination of the two external fields, may enable controlled quantum operations.
|
317 |
Control of electronic and optical properties of single and double quantum dots via electroelastic fieldsZallo, Eugenio 12 March 2015 (has links)
Semiconductor quantum dots (QDs) are fascinating systems for potential applications in quantum information processing and communication, since they can emit single photons and polarisation entangled photons pairs on demand. The asymmetry and inhomogeneity of real QDs has driven the development of a universal and fine post-growth tuning technique. In parallel, new growth methods are desired to create QDs with high emission efficiency and to control combinations of closely-spaced QDs, so-called "QD molecules" (QDMs). These systems are crucial for the realisation of a scalable information processing device after a tuning of their interaction energies.
In this work, GaAs/AlGaAs QDs with low surface densities, high optical quality and widely tuneable emission wavelength are demonstrated, by infilling nanoholes fabricated by droplet etching epitaxy with different GaAs amounts. A tuning over a spectral range exceeding 10 meV is obtained by inducing strain in the dot layer. These results allow a fine tuning of the QD emission to the rubidium absorption lines, increasing the yield of single photons that can be used as hybrid semiconductor-atomic-interface.
By embedding InGaAs/GaAs QDs into diode-like nanomembranes integrated onto piezoelectric actuators, the first device allowing the QD emission properties to be engineered by large electroelastic fields is presented. The two external fields reshape the QD electronic properties and allow the universal recovery of the QD symmetry and the generation of entangled photons, featuring the highest degree of entanglement reported to date for QD-based photon sources.
A method for controlling the lateral QDM formation over randomly distributed nanoholes, created by droplet etching epitaxy, is demonstrated by depositing a thin GaAs buffer over the nanoholes. The effect on the nanohole occupancy of the growth parameters, such as InAs amount, substrate temperature and arsenic overpressure, is investigated as well. The QD pairs show good optical quality and selective etching post-growth is used for a better characterisation of the system.
For the first time, the active tuning of the hole tunnelling rates in vertically aligned InGaAs/GaAs QDM is demonstrated, by the simultaneous application of electric and strain fields, optimising the device concept developed for the single QDs. This result is relevant for the creation and control of entangled states in optically active QDs. The modification of the electronic properties of QDMs, obtained by the combination of the two external fields, may enable controlled quantum operations.
|
318 |
Mécanismes de déformation de nanoparticules d’Au par irradiation ioniqueHarkati Kerboua, Chahineze 12 1900 (has links)
Résumé
Dans la présente thèse, nous avons étudié la déformation anisotrope par bombardement ionique de nanoparticules d'or intégrées dans une matrice de silice amorphe ou d'arséniure d’aluminium cristallin. On s’est intéressé à la compréhension du mécanisme responsable de cette déformation pour lever toute ambigüité quant à l’explication de ce phénomène et pour avoir une interprétation consistante et unique.
Un procédé hybride combinant la pulvérisation et le dépôt chimique en phase vapeur assisté par plasma a été utilisé pour la fabrication de couches nanocomposites Au/SiO2 sur des substrats de silice fondue. Des structures à couches simples et multiples ont été obtenues. Le chauffage pendant ou après le dépôt active l’agglomération des atomes d’Au et par conséquent favorise la croissance des nanoparticules. Les nanocomposites Au/AlAs ont été obtenus par implantation ionique de couches d’AlAs suivie de recuit thermique rapide. Les échantillons des deux nanocomposites refroidis avec de l’azote liquide ont été irradiés avec des faisceaux de Cu, de Si, d’Au ou d’In d’énergie allant de 2 à 40 MeV, aux fluences s'étendant de 1×1013 à 4×1015 ions/cm2, en utilisant le Tandem ou le Tandetron.
Les propriétés structurales et morphologiques du nanocomposite Au/SiO2 sont extraites en utilisant des techniques optiques car la fréquence et la largeur de la résonance plasmon de surface dépendent de la forme et de la taille des nanoparticules, de leur concentration et de la distance qui les séparent ainsi que des propriétés diélectriques du matériau dans lequel les particules sont intégrées. La cristallinité de l’arséniure d’aluminium est étudiée par deux techniques: spectroscopie Raman et spectrométrie de rétrodiffusion Rutherford en mode canalisation (RBS/canalisation). La quantité d’Au dans les couches nanocomposites est déduite des résultats RBS. La distribution de taille et l’étude de la transformation de forme des nanoparticules métalliques dans les deux nanocomposites sont déterminées par microscopie électronique en transmission.
Les résultats obtenus dans le cadre de ce travail ont fait l’objet de trois articles de revue. La première publication montre la possibilité de manipuler la position spectrale et la largeur de la bande d’absorption des nanoparticules d’or dans les nanocomposites Au/SiO2 en modifiant leur structure (forme, taille et distance entre particules). Les nanoparticules d’Au obtenues sont presque sphériques. La bande d’absorption plasmon de surface (PS) correspondante aux particules distantes est située à 520 nm. Lorsque la distance entre les particules est réduite, l’interaction dipolaire augmente ce qui élargit la bande de PS et la déplace vers le rouge (602 nm). Après irradiation ionique, les nanoparticules sphériques se transforment en ellipsoïdes alignés suivant la direction du faisceau. La bande d’absorption se divise en deux bandes : transversale et longitudinale. La bande correspondante au petit axe (transversale) est décalée vers le bleu et celle correspondante au grand axe (longitudinale) est décalée vers le rouge indiquant l’élongation des particules d’Au dans la direction du faisceau. Le deuxième article est consacré au rôle crucial de la déformation plastique de la matrice et à l’importance de la mobilité des atomes métalliques dans la déformation anisotrope des nanoparticules d’Au dans les nanocomposites Au/SiO2. Nos mesures montrent qu'une valeur seuil de 2 keV/nm (dans le pouvoir d'arrêt électronique) est nécessaire pour la déformation des nanoparticules d'or. Cette valeur est proche de celle requise pour la déformation de la silice. La mobilité des atomes d’Au lors du passage d’ions est confirmée par le calcul de la température dans les traces ioniques. Le troisième papier traite la tentative de formation et de déformation des nanoparticules d’Au dans une matrice d’arséniure d’aluminium cristallin connue pour sa haute résistance à l’amorphisation et à la déformation sous bombardement ionique. Le résultat principal de ce dernier article confirme le rôle essentiel de la matrice. Il s'avère que la déformation anisotrope du matériau environnant est indispensable pour la déformation des nanoparticules d’or.
Les résultats expérimentaux mentionnés ci-haut et les calculs de températures dans les traces ioniques nous ont permis de proposer le scénario de déformation anisotrope des nanoparticules d’Au dans le nanocomposite Au/SiO2 suivant:
- Chaque ion traversant la silice fait fondre brièvement un cylindre étroit autour de sa trajectoire formant ainsi une trace latente. Ceci a été confirmé par la valeur seuil du pouvoir d’arrêt électronique.
- L’effet cumulatif des impacts de plusieurs ions conduit à la croissance anisotrope de la silice qui se contracte dans la direction du faisceau et s’allonge dans la direction perpendiculaire. Le modèle de chevauchement des traces ioniques (overlap en anglais) a été utilisé pour valider ce phénomène.
- La déformation de la silice génère des contraintes qui agissent sur les nanoparticules dans les plans perpendiculaires à la trajectoire de l’ion. Afin d’accommoder ces contraintes les nanoparticules d’Au se déforment dans la direction du faisceau.
- La déformation de l’or se produit lorsqu’il est traversé par un ion induisant la fusion d’un cylindre autour de sa trajectoire. La mobilité des atomes d’or a été confirmée par le calcul de la température équivalente à l’énergie déposée dans le matériau par les ions incidents.
Le scénario ci-haut est compatible avec nos données expérimentales obtenues dans le cas du nanocomposite Au/SiO2. Il est appuyé par le fait que les nanoparticules d’Au ne se déforment pas lorsqu’elles sont intégrées dans l’AlAs résistant à la déformation. / Abstract
In the present thesis, we study the anisotropic deformation of gold nanoparticles embedded in amorphous silica or crystalline aluminum arsenide, under ion bombardment. We try to comprehend the mechanism responsible for this deformation and to remove any ambiguity related to the explanation of this phenomenon.
A hybrid process combining sputtering and plasma enhanced chemical vapour deposition was used to fabricate Au/SiO2 layers on fused silica substrates. Structures with single and multilayer were obtained. Heating during or after deposition activates the Au atom agglomeration and favours the growth of the nanoparticles. Also, a Au/AlAs nanocomposite was obtained by ion implantation of AlAs films, followed by rapid thermal annealing. The samples of the two nanocomposites, cooled with liquid nitrogen, were irradiated with 2 to 40 MeV Cu, Si, Au or In ion beams, at fluences ranging from 1×1013 to 4×1015 ions/cm2, using a Tandem or Tandetron accelerator.
The structural and morphological properties of the Au/SiO2 nanocomposite were extracted by optical means; the frequency and the width of surface plasmon resonance band depend on the nanoparticle shape and size, their concentration, the inter-particle distance and the dielectric properties of material in which the particles are embedded. The aluminum arsenide crystallinity was studied by two techniques: Raman spectroscopy and Rutherford backscattering spectrometry in channelling configuration (RBS/ channelling). The Au concentration in the nanocomposite layers was deducted from RBS results. The size distribution and metallic nanoparticles shape transformation in both nanocomposites were observed by electronic transmission microscopy.
The results obtained within the framework of this work are the subject of three journal papers. The first publication shows the possibility of manipulating the width and spectral position of the gold nanoparticle absorption band in Au/SiO2 nanocomposites by modifying their structure (form, size and inter-particle distance). The obtained Au nanoparticles are nearly spherical. The surface plasmon (PS) absorption band corresponding to the distant particles is located at 520 nm. After ion irradiation, the spherical nanoparticles transform into ellipsoids aligned along the ion beam. The absorption band splits into two bands: transversal and longitudinal. The band corresponding to the ellipsoids small axis (transversal) is blue-shifted and that corresponding to the long axis (longitudinal) is red-shifted indicating the elongation of particles in the beam direction. The second paper is consecrated to the crucial role of the plastic deformation of the matrix and to the importance of the metal atomic mobility in the anisotropic nanoparticles deformation in Au/SiO2 nanocomposites. Our measurements show that a threshold value of 2 keV/nm (electronic stopping power) is necessary for the deformation of Au nanoparticles. This value is close to that required for silica deformation. Mobility of the Au atoms at the time of the ion passage is confirmed by temperature calculation within the ionic track. The third paper treats the attempt of formation and deformation of Au nanoparticles in crystalline aluminum arsenide matrix known by its high resistance to amorphisation and deformation under ionic bombardment. The principal result of the last article confirms the essential role of the matrix. It proves that the anisotropic deformation of surrounding material is indispensable for gold nanoparticles deformation.
The experimental results mentioned above and temperature calculations within ionic tracks allowed us to propose the following anisotropic deformation scenario of Au nanoparticles embedded in Au/SiO2 nanocomposite:
- Each ion crossing the silica melts (very briefly) a narrow cylinder around its trajectory forming thus a latent track. This is consistent with the observed threshold value in the electronic stopping power.
- The cumulative effect of many separate ion impacts leads to the anisotropic growth of the silica matrix which contracts in the direction of the beam and elongates in the perpendicular direction. The overlap model of the ionic tracks was used to validate this phenomenon.
- The deformation of silica generates strains which act on the nanoparticles in the plane perpendicular to the ion trajectory. In order to accommodate these strains, the Au nanoparticles deform in the beam direction.
- The deformation of nanoparticles occurs each time an ion traverses the gold particle and melts a cylinder around its trajectory. The mobility of the gold atoms was confirmed by a calculation of the equivalent temperature from the deposited energy in the material by incident ions.
The scenario above is compatible with our experimental data obtained in the case of the Au/SiO2 nanocomposite. It is further supported by the fact that the Au nanoparticules do not deform when they are integrated in AlAs which is resistant to the deformation.
|
319 |
Surface-enhanced optomechanical disk resonators and force sensing / Résonateurs à disques optomécaniques améliore par leurs surfaces et capteurs de forceGuha, Biswarup 11 July 2017 (has links)
L'optomécanique est la science des interactions entre la lumière et les mouvements mécaniques. Ce rapport de thèse décrit des expériences réalisées avec des microdisques fabriqué dans différents résonateurs semi-conducteurs III-V: l'Arséniure de Gallium (GaAs), l'Arséniure d'Aluminium Gallium (AlGaAs) et l'Arséniure d'Indium Phosphide (InGaP). Ces matériaux sont compatibles avec les fonctionnalités de l’optoélectronique et procurent un couplage optomécanique géant. Pour améliorer les performances des résonateurs en GaAs, nous avons développé des méthodes de traitement de surface permettant de réduire la dissipation optique par un facteur dix et ainsi d'atteindre un facteur de qualité de six millions. En plus de ces études sur le GaAs, nous avons réalisés une étude comparative des interactions optomecaniques dans des microdisques d'InGaP et d'AlGaAs, et nous avons mis en évidences leurs résonances optomécaniques. Finalement, nous avons réalisé des mesures de force avec des résonateurs en GaAs, démontrant un nouveau principe de détection basé sur notre étude de leur la trajectoire dans l'espace de phase et leur bruit de phase / Optomechanics studies the interaction between light and mechanical motion. This PhD thesis reports on optomechanical experiments carried with miniature disk resonators fabricated out of distinct III-V semiconductors: Gallium Arsenide (GaAs), Aluminium Gallium Arsenide (AlGaAs) and Indium Gallium Phosphide (InGaP). These materials are compliant with optoelectronics functionalities and provide giant optomechanical coupling. In order to boost performances of GaAs resonators, we implemented surface control techniques and obtained a ten-fold reduction of optical dissipation, attaining a Q of six million. On top of GaAs, we performed a comparative investigation of optomechanical interactions in InGaP and AlGaAs disk resonators, and demonstrated their operation as optomechanical oscillators. Finally, we carried out optomechanical force sensing experiments with GaAs resonators, analyzing a new sensing principle in light of the phase space trajectory and phase noise of the corresponding oscillators
|
320 |
Full-band Structure Calculations of Optical Injection in Semiconductors: Investigations of One-color, Two-color, and Pump-probe ScenariosRioux, Julien 11 January 2012 (has links)
Carrier, spin, charge current, and spin current injection by one- and two-color optical schemes are investigated within 30-band k·p theory. Parameters of the band model are optimized to give full-Brillouin zone band structures for GaAs and Ge that give accurate Γ-point effective masses and gyromagnetic factors and give access to the L valley, and to the E₁ and E₁+Δ₁ critical points in the linear optical absorption. Calculations of one- and two-photon carrier and spin injection and two-color current injection are performed for excitation energies in the range of 0—4 eV in GaAs and 0—3.5 eV in Ge. Significant spin and spin current injection occurs with 30% spin polarization in GaAs and Ge at photon energy matching the E₁ critical point. Further, the anisotropy and disparity of the current injection between parallel and perpendicular linearly-polarized beam configurations are calculated. For light propagating along a <111> crystal axis, anisotropic contributions in coherent current control and two-photon spin injection give rise to normal current components and in-plane spin components. In Ge, contributions from the holes to spin, electrical current, and spin current injection are investigated. Optical orientation results in 83% spin-polarized holes at the band edge. The effects of carrier dynamics in Ge are treated within a rate-equation model. The detection of spin dynamics in a pump-probe setup is considered, and the Fermi-factor approach is justified for electrons but not for holes. Carrier and current injection are further investigated in single-layer and bilayer graphene within the tight-binding model. In single-layer graphene, the linear-circular dichroism in two-photon absorption yields an absorption coefficient that is twice as large for circularly polarized light compared to linearly polarized light. Coherent current injection is largest for co-circularly polarized beams and zero for cross-circularly polarized beams. For linearly polarized beams, the magnitude of the injected current is independent of beam polarizations. In contrast, the injected current in bilayer graphene shows disparity between parallel and perpendicular configurations of the beams. The resulting angular dependence of the current is a macroscopic, measurable consequence of interlayer coupling in the bilayer.
|
Page generated in 0.0484 seconds