• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 203
  • 31
  • 9
  • 8
  • 4
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 368
  • 368
  • 123
  • 81
  • 81
  • 74
  • 41
  • 41
  • 40
  • 39
  • 37
  • 37
  • 37
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Vibration-Based Terrain Classification for an Autonomous Truck / Vibrationsbaserad Terränigenkänning för en Autonom Lastbil

Lovén, Lucas January 2022 (has links)
This thesis is focused on developing vibration based terrain classification for an autonomous mining truck. The goal is to classify between good and bad gravel roads as well as good and bad asphalt roads. Current literature within vibration based terrain classification has been focused to a great extent on smaller research vehicles. On smaller research vehicles have roll-rate, pitch-rate and vertical acceleration been reported to yield the highest average classification rates. Common approaches for pre-processing the data consists of segmenting the data, apply filtering techniques, computing the Power Spectra Density (PSD), performing Principal Component Analysis (PCA) and compute the logarithms. How to do this specifically for an Autonomous Truck (AT) is not trivial. What signals from the trucks Internal Measurement Unit (IMU)s yields the highest average classification rates? How does one process the raw data in the best way, and what classification method performs the best for this for an AT? The AT studied here have five different IMUs that all measure ẍ, ÿ, z̈ acceleration, and ωroll, ωpitch, ωyaw rotational speed. One is located in the cab, and the other four are located in each of the four corners of the chassis. With these sensors empirical vibration data from different surfaces, speeds and loads was gathered with multiple identically equipped autonomous mining trucks. With this data were experiments conducted in order to find a high performing classifier that also was possible to implement in the ATs software in C++. The different signals were ranked according to the highest classification score, and different pre-processing parameters combined with different classification methods likewise were. ωyaw and ωpitch from the cab IMU, and z̈ from the rear right IMU were the ones that yielded the highest average classification rates. The pre-processing consists of segmenting the data, multiplying the segment with a window function, compute the one-sided PSD, logarithmize the PSD values and lastly normalize the data. A bagged classifier based on Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel showed the highest classification performance. The final multiclass classifier was a combination of three of these bagged classifiers in a tree structure. The F-measure rates for the four classes were {0.946, 0.98, 0.714, 0.879}. / Denna uppsats är fokuserad på att utveckla en vibrationsbaserad terrängigenkänningsalgoritm för en automatiserad tung lastbil som kommer att framföras i ojämn terräng, som ska klara av att känna igen bra och dåliga grusvägar, samt bra och dåliga asfaltsvägar. Befintlig litteratur inom området vibrationsbaserad terrängigenkänning har varit fokuserad i stor utsträckning på mindre forskningsfordon. På dessa är {ωrull, ωstigning, z̈} de signaler som resulterar i de högsta genomsnittliga korrekta terrängklassifikationerna. Befintliga förbearbetningmetoder för datan består i majoriteten av fallen av att segmentera och filtrera datan, beräkna spektrala effekttätheten (PSD) och logaritmera. Hur man gör detta är inte trivialt. Vilka signaler från lastbilens fem IMUer resulterar i det högsta prestandan för terrängigenkänning? Hur förarbetar man datan? Lastbilen studerad här har fem IMUer som har sex kanaler vardera, de mäter ẍ, ÿ, z̈ acceleration, och ωrull, ωstigning, ωgir rotationshastighet. En är placerad i lastbilens hytt och de andra fyra är placerade i varje hörn på chassit. Med dessa sensorer samlades vibrationsdata in på de fyra underlagen, med olika lastbilar, med olika last på flaket och med olika autonoma lastbilar, men som var konfigurerade på samma sätt. Experiment utfördes för att bestämma vilka signaler-, vilken förbearbetningsmetod på datan- samt vilken klassifieringsmetod som presterar bäst för den automatiserade lastbilen. Algoritmen var också anpassad för att vara möjlig att implementera i lastbilens mjukvara utan externa maskininlärnings bibliotek. De högst presterande signalerna var ωgir och ωstigning från IMUn i hytten, samt z̈ från IMUn monterad i chassits bakre högra hörn. Förbearbetningen bestod av att segmentera datasignalen, multiplicera den med en fönsterfunktion för att sedan beräkna den ensidiga spektrala effekttätheten (PSD), logaritmera alla värden och till slut normalisera datan. En stödvektormaskin (SVM) med en RBF kärna påvisade högst genomsnittliga klassifikationsresultat. Den slutgiltiga binära klassifieraren applicerade bagging för att förbättra prestandan genom att kombinera data från alla de tre högst presterande signalerna. Den slutgiltiga klassifieraren tränades på att skilja mellan de olika underlagen och var en kombination av tre bagged klassifierare i en trädstruktur. Prestandan med avseende på F-Measure för de fyra klasserna var {0.946, 0.98, 0.714, 0.879}.
342

Remote Interface Design for Fault Handling of Driverless Trucks

Holm Englund, Jesper January 2021 (has links)
There are many potential benefits to reap from driverless trucks in the industry of freight transport. However, there are concerns about the uptime of these vehicles, and the concept of a control tower — that monitors and supports the decision-making of driverless trucks — has been suggested to address those concerns. This thesis aims to explore the interface between a human control tower operator and fleets of driverless trucks through the design and development of such an interface. It is suggested what information and features ought to be included in the interface but more importantly, three aspects of a conceptual framework for further development of the interface are proposed: 1) The main tasks for the control tower. 2) The two key operator roles. 3) A broadened view of the control tower concept. / Det finns många potentiella fördelar i förarlösa lastbilar inom godstransportbranschen. Det finns emellertid även en särskild angelägenhet kring uptime för dessa fordon, därav har ett kontrolltornskoncept — som övervakar och stöttar beslutsfattandet av förarlösa lastbilar — föreslagits som ett sätt att tillgodose denna angelägenhet. Den här uppsatsen ämnar att utforska gränssnittet mellan en mänsklig kontrolltornoperatör och fordonsflottor genom att designa och utveckla ett sådant gränssnitt. Det föreslås vilken information och vilka funktioner som borde inkluderas i gränssnittet men framförallt proponeras tre aspekter av ett konceptuellt ramverk för vidareutveckling av gränssnittet: 1) Huvuduppgifterna för kontrolltornet. 2) De två huvudsakliga operatörsrollerna. 3) En vidare tolkning av kontrolltornskonceptet.
343

Low-Cost Autonomous Vehicle using Off-Board Sensors Connected over 5G : Extension of an Autonomous Vehicle’s operational domain design / Billigt autonomt fordon med externa sensorer anslutna över 5G

Bharathan Ganesh, Adhitya January 2022 (has links)
Autonomous vehicles perceive their environment based on several sensors that are onboard the vehicle. These sensors constantly monitor the vehicle’s movement as well as the environment. There is a wide variety of sensors that can be utilized based on the type of data it provides, accuracy and cost. While not all of them are required, some combination of sensors is required to have a functional and reliable autonomous vehicle. For a robust autonomous vehicle, typically, the sensor quality and accuracy need to be high. Having high-quality sensors drives up the procurement costs and computational requirements, which in turn increases the vehicle cost for manufacturers and customers alike. One way to reduce costs is to limit the number of sensors. However, this also limits the vehicle’s sensing capability and range. A vehicle’s sensing capability and range can be improved with the use of off-board sensors, such as an external camera, placed strategically at crucial points on the road, such as in intersections. These off-board sensors can be connected to an autonomous vehicle over the internet using low-latency communication technologies such as 5G. The problem that this work tried to tackle was how to improve the reliability of an autonomous vehicle while limiting the need for many expensive sensors. It aims to show how a camera placed off-board can be used to complement one or more vehicles’ onboard sensors and achieve an extension of the vehicle’s operational design domain, while relaxing constraints on the onboard sensors. This was investigated by building a physical prototype using a 1/5th scaled car with a Lidar and an Inertial Measurement Unit and extending its sensing capability and range with the use of a camera based off-board sensor. The car was robust enough to navigate and make driving decisions. This also meant that the costs of procuring the hardware needed can be reduced. The minimum distance for a lane merging scenario was first derived mathematically and then compared to experimental data. The experimental findings were consistent with the mathematical model within an 11 percent margin of error. / Autonoma fordon uppfattar dess omgivning baserat på flera sensorer som är ombord fordonet. Dessa sensorer mäter konstant fordonets rörelse och omgivning. Ther finns en stor variation av sensorer som kan användas baserat på vad för typ av data som mäts, dess precision och kostnad. Alla sensorer är inte nödvändiga men någon kombination av sensorer krävs för att ha ett funktionellt och tillförlitligt autonomt fordon. För ett robust autonomt fordon brukar sensorers kvalite och precision vara hög. Att använda sig av hög kvalité på sensorer driver upp anskaffningsvärde samt höjer mängden datorberäkningar. Detta i sin tur höjer kostnaden för biltillverkare och kunder. Ett sätt att minska kostnaden är att minska antalet sensorer. Dock så minskar detta även fordonets möjlighet till att uppfatta omgivningen samt sensorers utsträckning. Ett fordons uppfattnings kapabilitet och utsträckning kan förbättras genom att använda sig av externa sensorer, såsom en extern kamera placerad vid en strategisk position i trafiken, såsom i en korsning. Dessa externa sensorer kan vara uppkopplade till ett autonomt fordon över internet genom att använda sig av kommunikations teknologier med låg latens såsom 5G. Det problem som adresseras i detta arbete är hur man kan förbättra pålitligheten för ett autonomt fordon när antalet dyra sensorer är begränsat. Målet är att påvisa hur en extern sensor, i form av en kamera, kan användas som ett komplement till en eller flera sensorer ombord fordonet och därmed förlänga fordonets användningsområde medans kraven på fordonets sensorer blir mindre. Detta undersöktes genom att bygga en fysisk prototyp med en skala på 1 till 5 för en bil. Denna bil hade Lidar och en tröghetssensor och den kamerabaserade externa sensorn förlänger fordonets uppfattning av omgivningen. Bilen var robust nog för att kunna navigera och göra körningsbeslut. Detta betydde att anskaffningsvärdet för nödvändig hårdvara var lägre. Det minsta avståndet för ett experiment av sammanfogning av två körfält räknades först ut matematiskt och jämfördes sedan med experimentell data. Resultatet från experimentet visade sig vara överens med den matematiska modellen med en felmarginal på 11 procent.
344

Map-aided localization for autonomous driving using a particle filter

Eriksson, Simon January 2020 (has links)
Vehicles losing their GPS signal is a considerable issue for autonomous vehicles and can be a danger to people in their vicinity. To circumvent this issue, a particle filter localization technique using pre-generated offline Open Street Map (OSM) maps was investigated in a software simulation of Scania’s heavy-duty trucks. The localization technique runs in real-time and provides a way to localize the vehicle safely if the starting position is known. Access to global localization was limited, and the particle filter still succeeded in localizing the vehicle in the vicinity of the correct road segment by creating a graph of the map information and matching the trajectory to the vehicle’s sensor data. The mean error of the Particle filter localization technique in optimal conditions is 16m, which is 20% less than an optimally tuned dead reckoning solution. The mean error is about 50% larger compared to a Global Positioning System. The final product shows potential for expansion but requires more investigation to allow for real-world deployment. / Att fordon kan mista sin GPS-signal är ett stort problem för autonoma fordon och kan vara en fara för människor i dess närhet. För att undvika detta problem föreslås en icke-global lokaliseringsteknik som använder Open Street Maps-kartor (OSM) och ett partikelfilter för att lokalisera fordonet i en mjukvarusimulation. Implementering körs i realtid och anger fordonets position med en tillräcklig träffsäkerhet för att det inte ska utgöra någon fara om dess startposition är känd. Globala lokaliseringsmöjligheter var begränsade, och partikelfiltret lyckades lokalisera fordonet till rätt vägsegment genom att konstruera en graf över den kartinformation den läst in och para ihop fordonets nuvarande färdväg med denna. Resultatet ger en lösning som optimalt har ett medelfel på 16m, vilket är 20% mindre än medelfelet jämfört med optimiserad dödräkning. Lösningen har ca 50% större medelfel än positionering med GPS. Slutresultatet visar en potential att användas i verkliga situationer, men kräver mer undersökningar.
345

Dynamic Routing for Fuel Optimization in Autonomous Vehicles

Regatti, Jayanth Reddy 14 August 2018 (has links)
No description available.
346

Optimal Foraging Theory Revisited

Pavlic, Theodore P. 15 June 2007 (has links)
No description available.
347

Complexity-aware Decision-making with Applications to Large-scale and Human-in-the-loop Systems

Stefansson, Elis January 2023 (has links)
This thesis considers control systems governed by autonomous decision-makers and humans. We formalise and compute low-complex control policies with applications to large-scale systems, and propose human interaction models for controllers to compute interaction-aware decisions. In the first part of the thesis, we consider complexity-aware decision-making, formalising the complexity of control policies and constructing algorithms that compute low-complexity control policies. More precisely, first, we consider large-scale control systems given by hierarchical finite state machines (HFSMs) and present a planning algorithm for such systems that exploits the hierarchy to compute optimal policies efficiently. The algorithm can also handle changes in the system with ease. We prove these properties and conduct simulations on HFSMs with up to 2 million states, including a robot application, where our algorithm outperforms both Dijkstra's algorithm and Contraction Hierarchies.  Second, we present a planning objective for control systems modelled as finite state machines yielding an explicit trade-off between a policy's performance and complexity. We consider Kolmogorov complexity since it captures the ultimate compression of an object on a universal Turing machine. We prove that this trade-off is hard to optimise in the sense that dynamic programming is infeasible. Nonetheless, we present two heuristic algorithms obtaining low-complexity policies and evaluate the algorithms on a simple navigation task for a mobile robot, where we obtain low-complexity policies that concur with intuition.  In the second part of the thesis, we consider human-in-the-loop systems and predict human decision-making in such systems. First, we look at how the interaction between a robot and a human in a control system can be predicted using game theory, focusing on an autonomous truck platoon interacting with a human-driven car. The interaction is modelled as a hierarchical dynamic game, where the hierarchical decomposition is temporal with a high-fidelity tactical horizon predicting immediate interactions and a low-fidelity strategic horizon estimating long-term behaviour. The game enables feasible computations validated through simulations yielding situation-aware behaviour with natural and safe interactions.  Second, we seek models to explain human decision-making, focusing on driver overtaking scenarios. The overtaking problem is formalised as a decision problem with perceptual uncertainty. We propose and numerically analyse risk-agnostic and risk-aware decision models, judging if an overtaking is desirable. We show how a driver's decision time and confidence level can be characterised through two model parameters, which collectively represent human risk-taking behaviour. We detail an experimental testbed for evaluating the decision-making process in the overtaking scenario and present some preliminary experimental results from two human drivers. / Denna avhandling studerar styrsystem med autonoma beslutsfattare och människor. Vi formaliserar och beräknar styrlagar av låg komplexitet med tillämpningar på storskaliga system samt föreslår modeller för mänsklig interaktion som kan användas av regulatorer för att beräkna interaktionsmedvetna beslut. I den första delen av denna avhandling studerar vi komplexitet-medveten beslutsfattning, där vi formaliserar styrlagars komplexitet samt konstruerar algoritmer som beräknar styrlagar med låg komplexitet. Mer precist, först studerar vi storskaliga system givna av hierarkiska finita tillståndsmaskiner (HFSMs) och presenterar en planeringsalgoritm för sådana system som utnyttjar hierarkin för att beräkna optimala styrlagar effektivt. Algoritmen kan också lätt hantera förändringar i systemet. Vi bevisar dessa egenskaper och utför simuleringar på HFSMs med upp till 2 miljoner tillstånd, inklusive en robot-applikation, där vår algorithm överträffar både Dijkstra's algoritm och så kallade Contraction Hierarchies. För det andra så presenterar vi ett planeringsobjektiv för finita tillståndsmaskiner som ger en explicit avvägning mellan ett styrlags prestanda och komplexitet. Vi använder Kolmogorovkomplexitet då den fångar den ultimata komprimeringen av ett objekt i en universell Turing-maskin. Vi bevisar att detta objektiv är icke-trivial att optimera över i avseendet att dynamisk programming är omöjligt att utföra. Vi presenterar två algoritmer som beräknar styrlagar med låg komplexitet och evaluerar våra algoritmer på ett enkelt navigationsproblem där vi erhåller styrlagar av låg komplexitet som instämmer med intuition. I den andra delen av denna avhandling behandlar vi reglersystem där en människa interagerar med systemet och studerar hur mänskligt beslutsfattande i sådana system kan förutspås. Först studerar vi hur interaktionen mellan en maskin och en människa i ett reglersystem can förutspås med hjälp av spelteori, med fokus på en självkörande lastbilskonvoj som interagerar med en mänskligt styrd bil. Interaktionen är modellerad som ett hierarkiskt dynamiskt spel, där den hierarkiska indelningen är tidsmässig med en högupplöst taktil horisont som förutspår omedelbara interaktioner samt en lågupplöst strategisk horisont som estimerar långtgående interaktioner. Indelning möjliggör beräkningar som vi validerar via simuleringar där vi får situations-medvetet beteende med naturliga och säkra interaktioner. För det andra söker vi en model med få parametrar som förklarar mänskligt beteende där vi fokuserar på omkörningar. Vi formaliserar omkörningsproblemet som ett beslutfattningsproblem med perceptuell osäkerhet. Vi presenterar och analyserar numeriskt risk-agnostiska och risk-medvetna beslutsmodeller som avväger om en omkörning är önskvärd. Vi visar hur en förares beslutstid och konfidensnivå kan karakteriserar via två modellparametrar som tillsammans representerar mänskligt risk-beteende. Vi beskriver en experimentell testbädd och presentar preliminära resultat från två mänskliga förare. / <p>QC 20230523</p>
348

On Optimal Lateral Tracking Control for Multi-Steered Autonomous Vehicles / Optimal Lateral Spårningskontroll för Flerhjulsstyrda Autonoma Fordon

Strömberg, Axel January 2021 (has links)
The transport industry is experiencing a disruption as fully autonomous vehicles are introduced in traffic. The intelligent, driverless vehicles will reduce cost, liberate human effort and increase safety. Today, the hardware technology seems to have reached the required processing power, but the decision-making algorithm still has a long way to go until they’re proven to be road-safe. Among these is the problem of lateral path tracking control. This thesis will consider the lateral control problem with the goal to send the right signal to the steering actuators so that the vehicle follows a predetermined trajectory. The vehicle in question is a triaxial, rigid, electric truck with active steering on both front and rearmost wheels. With servo latency and large inertial parameters in mind, a highly accurate model of the lateral and yaw behavior must be identified in order to predict the vehicle dynamics for a given steering input. Then, the properties of an optimal lateral controller are iteratively improved until a sufficiently low tracking error is obtained. Lastly, the controller is tuned to guarantee robustness for a range of uncertain vehicle parameters. The derived triaxial model with servo actuation is proven to be better at predicting the vehicle dynamics compared to other models common in literature with only one active steering input. When constructing a lateral controller, the importance was shown of considering 1) state feedback control of the lateral error, 2) feedforward control operating on future road curvature, 3) integrating control which combats biases and model errors, 4) using a tailored triaxial model and 5) minimizing the control signal change. Lastly, the derived controller was shown to have a decent stability margin with respect to estimated uncertainties. / Transportbranschen är i ett skifte då helt autonoma fordon införs i trafiken. De intelligenta, förarlösa fordonen minskar kostnader, ökar säkerheten och låter oss människor syssla med annat. Idag verkar det som att hårdvarutekniken har den processorkraft som behövs men de beslutsfattande algoritmerna har fortfarande en lång väg att gå tills de har visat sig vara helt vägsäkra. Bland dessa är problemet med lateral styrningskontroll som kommer ses över i denna avhandling. Fordonet i fråga är en rigid lastbil med tre hjulaxlar och aktiv styrning på både de främre och bakersta hjulen. Med tanke på servofördröjningar och de stora tröghetsparametrarna måste en noggrann modell av dynamiken identifieras för att förutspå responsen för en viss styrvinkel. Därefter utvecklas en optimal lågnivåregulator iterativt tills ett tillräckligt lågt spårningsfel erhållits. Slutligen ställs regulatorn in för att garantera robusthet för ett set av osäkra fordonsparametrar Den härledda triaxialmodellen med servostyrning var bevisbart bättre på att förutspå fordonsdynamiken jämfört med andra modeller som återkommer frekvent i litteraturen. Vid regulatorkonstruktionen påvisades vikten av att överväga 1) återkoppling av laterala felet, 2) förhandsgranskning som tittar på den kommande vägkrökningen, 3) integrering av styrfelet som åtgärdar modellfel, 4) en skräddarsydd fordonsmodell med tre axlar och 5) minimering av ändringen utav kontrollsignalen. Slutligen visades den härledda regulatorn ha en skaplig stabilitetsmarginal gentemot uppskattade osäkerheter av parametrar.
349

Sustainable automated transportation systems directing towards smart cities : A feasibility study of droid delivery in Stockholm

Movaheddin, Armin January 2021 (has links)
The rapid growth of E-commerce around the world has prompted related stakeholders to place a greater emphasis on automation. Catastrophes like pandemics are boosting the public demand for quick and efficient transportation, among others. Automated vehicle technologies are associated with the last-mile delivery operations that lead to improving sustainability and Smart Cities. In this context, Autonomous Vehicles are being explored as a viable urban logistics solution.This empirical thesis conducts a feasibility study to investigate the feasibility of incorporating an Autonomous Vehicle into E-commerce operations in Stockholm, Sweden. A case study is analyzed by foodora AB, a German company that operates as a distributor of food and goods in the Swedish market. The study provides a framework that depicts the issues faced by Q- commerce, Operational Planning, and Stakeholders, respectively when introducing Autonomous Vehicles. The results of the study’s qualitative and quantitative approach show that Stockholm's infrastructure is in line with the sustainability plans and is considered ready for droid operations. According to the findings, the utilization rate that is defined as the number of orders delivered per hour can be as high as 2.4 resulting in a high degree of customer satisfaction. However, regulations, classifications, weather conditions, and internet connectivity continue to be major challenges. Autonomous Vehicles must be included in legislative consideration as a mode of transportation in the future to facilitate operations and safety measures. / Den snabba tillväxten av e-handel runtom i världen har fått närstående intressenter att lägga större vikt vid automatisering. Katastrofer som pandemier ökar allmänhetens krav på bland annat snabba och effektiva transporter. Autonoma fordon är förknippade med ”last-mile” transporter av gods som leder till förbättrad hållbarhet och smarta städer. I detta sammanhang utforskas autonoma fordon som en livskraftig citylogistik-lösning.Denna empiriska avhandling genomför en genomförbarhetsstudie för att undersöka möjligheten att integrera ett autonomt fordon i e-handelsverksamheten i Stockholm, Sverige. I synnerhet analyseras en fallstudie av foodora AB, ett tyskt företag som är verksamma som distributör av matvaror på den svenska marknaden. Studien ger ett ramverk som visar de frågor som Q-handel, operativ planering respektive intressenter står inför vid ett införande av autonoma fordon. Resultaten av studiens kvalitativa och kvantitativa tillvägagångssätt visar att Stockholms infrastruktur är i linje med hållbarhetsplanerna och till synes redo för droid leveranser. Enligt resultaten kan utnyttjandegraden, definierad som antal utförda orderleveranser inom en timme, vara så hög som 2,4, vilket resulterar i en hög grad av kundtillfredsställelse. Regler, klassificeringar, väderförhållanden och internetanslutning är dock fortfarande stora utmaningar. Autonoma fordon måste tas med i lagstiftningen som ett transportmedel i framtiden för att underlätta drift och säkerhetsåtgärder.
350

Traction Adaptive Motion Planning for Autonomous Racing / Tractionadaptiv rörelseplanering för autonom racing

Raikar, Shekhar January 2022 (has links)
Autonomous driving technology is continuously evolving at an accelerated pace. The road environment is always uncertain, which requires an evasive manoeuvre that an autonomous vehicle can take. This evasive behaviour to avoid accidents in a critical situation is analogous to autonomous racing that operates at the limits of stable vehicle handling. In autonomous racing, the vehicle must operate in highly nonlinear operating conditions such as high-speed manoeuvre on sharp turns, avoiding obstacles and slippery road conditions. These dynamically changing racing situations require advanced path planning systems with obstacle avoidance executed in real-time. Therefore, the motion planning problem for autonomous racing is analogous to safe and reliable autonomous vehicle operation in critical situations. This thesis project evaluates the application of traction adaptive motion planning to autonomous racing on different road surfaces for a small-scale test vehicle in real-time. The evaluation is based on a state-of-the-art algorithm that uses a combination of optimization, trajectory rollout, and constraint adaption framework called "Sampling Augmented Real-Time Iteration (SAARTI)". SAARTI allows motion planning and control with respect to time-varying vehicle actuation capabilities while taking locally adaptive traction into account for different parts of the track as a constraint. Initially, the SAARTI framework is adapted to work with the SmallVehicles-for-Autonomy (SVEA) system; then, the whole system is simulated in a ROS (Robot Operating System) based SVEA simulator with a Hardware-in-the-loop setup. Later, the same setup is used for the real time experiments that are carried out using the SVEA vehicles, and the different critical scenarios are tested on the SVEA vehicle. The emphasis was given to the experimental results; therefore, the results also consider computationally intensive localization inputs while the motion planner was implemented in real-time instead of a simulation setup. The experimental results showed the impact of planning motions according to an approximately correct friction estimate when the friction parameter was close to the actual value. The results indicated that the traction variation had indeed affected the lap time and trajectory taken by the test vehicle. The lap time is affected significantly when the coefficient of friction value is far away from the real friction coefficient. It is observed that the lap time increased significantly at higher values of friction coefficient, when involving more excessive over-estimation of the traction, leading to the oscillatory motion and lane exits. Furthermore, the non-adaptive case scenario result shows that the test vehicle performed better when given friction parameter inputs to the algorithm approximately equal to the real friction value. / Teknik för autonom körning har utvecklats i snabb takt de senaste åren. Trafikmiljön innehåller många källor till osäkerhet, vilket ibland kräver undanmanövrar av det autonoma fordonet. Undanmanövrar i kritiska situationer är analoga med autonom racing i det avseendet att fordonet opererar nära gränsen av dess fysiska förmåga. I autonom racing måste fordonet fungera i hög grad olinjära driftsförhållanden som höghastighetsmanöver i skarpa svängar, undvika hinder och halt väglag. Dessa dynamiska föränderliga racingsituationer kräver avancerad vägplaneringssystem med undvikande av hinder exekveras i realtid. Därför är rörelseplaneringsproblemet för autonom racing är analogt med det för säkra undanmanövrer i kritiska situationer. Detta examensarbete utvärderar tillämpningen av dragkraft adaptiv till autonom racing på olika väglag för ett småskaligt testfordon i realtid. Utvärderingen baseras på en algoritm som kallas "Sampling Augmented Real Time Iteration (SAARTI)" som tillåter rörelse planering och kontroll med avseende på tidsvarierande fordonsdynamik, på så vis tar algoritmen hänsyn till lokalt varierande väglag. Arbetet började med att integrera SAARTI-ramverket med testplattformen Small-Vehicles-for-Autonomy (SVEA). Därefter utfördes hardware-in-the-loop simuleringar i ROS (Robot Operating System), och därefter utfördes fysiska tester med SVEA plattformen. Under experimenten kördes SAARTI-algoritmen parallellt med en beräkningsintensiv SLAM-algoritm för lokalisering. De experimentella resultaten visade att adaptiv rörelseplanering kan avhjälpa problemet med lokalt varierande väglag, givet att den uppskattade friktionsparametern är approximativt korrekt. Varvtiden påverkas negativt när friktionsskattningen avviker från den verkliga friktionskoefficienten. Vidare observerades att varvtiden ökade vid höga värden på den skattade friktionsparametern, vilket gav upphov till mer aggressiva manövrer, vilket i sin tur gav upphov till oscillerande rörelser och avåkningar.

Page generated in 0.0894 seconds