• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 91
  • 33
  • 10
  • 9
  • 8
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 369
  • 97
  • 97
  • 97
  • 95
  • 63
  • 47
  • 44
  • 44
  • 43
  • 41
  • 34
  • 33
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Stability of BDNF in Human Samples Stored Up to 6 Months and Correlations of Serum and EDTA-Plasma Concentrations

Polyakova, Maryna, Schlögl, Haiko, Sacher, Julia, Schmidt-Kassow, Maren, Kaiser, Jochen, Stumvoll, Michael, Kratzsch, Jürgen, Schröter, Matthias L. 07 February 2024 (has links)
Brain-derived neurotrophic factor (BDNF), an important neural growth factor, has gained growing interest in neuroscience, but many influencing physiological and analytical aspects still remain unclear. In this study we assessed the impact of storage time at room temperature, repeated freeze/thaw cycles, and storage at 80 C up to 6 months on serum and ethylenediaminetetraacetic acid (EDTA)-plasma BDNF. Furthermore, we assessed correlations of serum and plasma BDNF concentrations in two independent sets of samples. Coefficients of variations (CVs) for serum BDNF concentrations were significantly lower than CVs of plasma concentrations (n = 245, p = 0.006). Mean serum and plasma concentrations at all analyzed time points remained within the acceptable change limit of the inter-assay precision as declared by the manufacturer. Serum and plasma BDNF concentrations correlated positively in both sets of samples and at all analyzed time points of the stability assessment (r = 0.455 to rs = 0.596; p < 0.004). In summary, when considering the acceptable change limit, BDNF was stable in serum and in EDTA-plasma up to 6 months. Due to a higher reliability, we suggest favoring serum over EDTA-plasma for future experiments assessing peripheral BDNF concentrations.
332

Pharmaceutical and Natural (Exercise) Mechanisms to Mitigate the Negative Impact of PTSD and Chronic Stress on Synaptic Plasticity and Memory

Miller, Roxanne M 01 November 2017 (has links)
Synapses can be altered due to experiences in a process called synaptic plasticity, which causes memory formations. Synapses can be strengthened through methods known as long-term potentiation (LTP) or weakened through long-term depression (LTD). Stresses can cause changes by altering synapses through either LTP or LTD. Rats were used to study the effects of post-traumatic stress disorder (PTSD)-like symptoms and a prophylactic treatment using pharmaceuticals. The first model used was the single prolonged stress (SPS) with two weeks of chronic light, which was not as effective for causing changes in synaptic plasticity. The second model, seven days of social defeat (SD) with two weeks of chronic light was more effective at inducing PTSD-like behavior symptoms and causing changes in LTP levels in the ventral hippocampus, amygdala, and prefrontal cortex between stressed and non-stressed rats. For the prophylactic treatment, propranolol and mifepristone were administered one week prior to and throughout the two weeks of the social defeat protocol. The drugs were able to prevent the changes due to stress on LTP in the three aforementioned brain regions, but did not change the anxious behavior of the rats. An enzyme-linked immunosorbent assay (ELISA) was used to determine corticosterone and norepinephrine levels between the different groups of rats. No significant differences were detected between SD and control rats, but SD injected rats were different from controls indicating that the injections were causing added stress. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was used to detect changes in the adrenergic, corticoid, AMPA, and NMDA receptors. There were a few significant changes to some of the targets indicating that the stress protocol and drugs were having an effect on the mRNA expression. Propranolol and mifepristone could possibly be used as a prophylactic treatment for traumatic stress. In a separate study, techniques were used to determine the negative effects chronic stress (non-PTSD-like) has on synaptic plasticity in the dorsal hippocampus and to show how exercise was able to mitigate some of those negative stress effects. Electrophysiology showed differences in LTP between four groups of mice: sedentary no stress (SNS), sedentary with stress (SWS), exercise with stress (EWS), and exercise no stress (ENS). SWS had the lowest amount of LTP, whereas ENS had the highest. SNS and EWS had similar levels of LTP, which were in between the SWS and ENS groups. Corticosterone blood levels measured by an ELISA showed significant increases in the stressed groups compared to the non-stressed groups. The radial arm maze showed that both groups of exercise mice made fewer reference memory errors the second week of testing compared to the sedentary groups. RT-qPCR determined that brain-derived neurotrophic factor (BDNF) and corticoid and dopamine 5 receptors were likely causing some of the memory changes.
333

Pharmaceutical and Natural (Exercise) Mechanisms to Mitigate the Negative Impact of PTSD and Chronic Stress on Synaptic Plasticity and Memory

Miller, Roxanne M 01 November 2017 (has links)
Synapses can be altered due to experiences in a process called synaptic plasticity, which causes memory formations. Synapses can be strengthened through methods known as long-term potentiation (LTP) or weakened through long-term depression (LTD). Stresses can cause changes by altering synapses through either LTP or LTD. Rats were used to study the effects of post-traumatic stress disorder (PTSD)-like symptoms and a prophylactic treatment using pharmaceuticals. The first model used was the single prolonged stress (SPS) with two weeks of chronic light, which was not as effective for causing changes in synaptic plasticity. The second model, seven days of social defeat (SD) with two weeks of chronic light was more effective at inducing PTSD-like behavior symptoms and causing changes in LTP levels in the ventral hippocampus, amygdala, and prefrontal cortex between stressed and non-stressed rats. For the prophylactic treatment, propranolol and mifepristone were administered one week prior to and throughout the two weeks of the social defeat protocol. The drugs were able to prevent the changes due to stress on LTP in the three aforementioned brain regions, but did not change the anxious behavior of the rats. An enzyme-linked immunosorbent assay (ELISA) was used to determine corticosterone and norepinephrine levels between the different groups of rats. No significant differences were detected between SD and control rats, but SD injected rats were different from controls indicating that the injections were causing added stress. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was used to detect changes in the adrenergic, corticoid, AMPA, and NMDA receptors. There were a few significant changes to some of the targets indicating that the stress protocol and drugs were having an effect on the mRNA expression. Propranolol and mifepristone could possibly be used as a prophylactic treatment for traumatic stress. In a separate study, techniques were used to determine the negative effects chronic stress (non-PTSD-like) has on synaptic plasticity in the dorsal hippocampus and to show how exercise was able to mitigate some of those negative stress effects. Electrophysiology showed differences in LTP between four groups of mice: sedentary no stress (SNS), sedentary with stress (SWS), exercise with stress (EWS), and exercise no stress (ENS). SWS had the lowest amount of LTP, whereas ENS had the highest. SNS and EWS had similar levels of LTP, which were in between the SWS and ENS groups. Corticosterone blood levels measured by an ELISA showed significant increases in the stressed groups compared to the non-stressed groups. The radial arm maze showed that both groups of exercise mice made fewer reference memory errors the second week of testing compared to the sedentary groups. RT-qPCR determined that brain-derived neurotrophic factor (BDNF) and corticoid and dopamine 5 receptors were likely causing some of the memory changes.
334

Is Serum BDNF Altered in Acute, Short- and Long-Term Recovered Restrictive Type Anorexia Nervosa?

Steinhäuser, Jonas L., King, Joseph A., Tam, Friederike I., Seidel, Maria, Biemann, Ronald, Wronski, Marie-Louis, Geisler, Daniel, Roessner, Veit, Ehrlich, Stefan 05 May 2023 (has links)
Brain-derived neurotrophic factor (BDNF), a neurotrophin involved in the regulation of food intake and body weight, has been implicated in the development and maintenance of Anorexia nervosa (AN). The majority of previous studies reported lower BDNF levels in acutely underweight AN patients (acAN) and increasing levels after weight rehabilitation. Here, we investigated serum BDNF concentrations in the largest known AN sample to date, both before and after weight restoration therapy. Serum BDNF was measured in 259 female volunteers: 77 in-patient acAN participants of the restrictive type (47 reassessed after short-term weight rehabilitation), 62 individuals long-term recovered from AN, and 120 healthy controls. We validated our findings in a post-hoc mega-analysis in which we reanalyzed combined data from the current sample and those from our previous study on BDNF in AN (combined sample: 389 participants). All analyses carefully accounted for known determinants of BDNF (age, sex, storage time of blood samples). We further assessed relationships with relevant clinical variables (body-mass-index, physical activity, symptoms). Contrary to our hypotheses, we found zero significant differences in either cross-sectional or longitudinal comparisons and no significant relationships with clinical variables. Together, our study suggests that BDNF may not be a reliable state- or trait-marker in AN after all.
335

Retrograde influences of peripheral nerve injury on uninjured neurons

Hawk, Kiel W. 19 December 2013 (has links)
No description available.
336

THE RELATIONSHIP BETWEEN VITAMIN D, BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF) AND RISK FOR FALLS ON INDIVIDUALS WITH MULTIPLE SCLEROSIS

Landean, Megan N. January 2017 (has links)
No description available.
337

Hypothalamic Gene Therapy by an Autoregulatory BDNF Vector to Prevent Melanocortin-4-Receptor-Deficient Obesity

Siu, Jason J., Siu 10 August 2018 (has links)
No description available.
338

The effect of weight loss on circulating biomarkers of brain health and executive function

Herra, Lindsay Marie 04 June 2020 (has links)
Obesity is associated with deficits in cognitive function, particularly within the domain of executive function (EF). EF refers to higher order cognitive processes that regulate our ability to sustain attention, inhibit subconscious tendencies, remember and manipulate information for immediate use, and remain cognitively flexible. Deficits in EF in overweight and obese individuals may impact the success of weight loss and maintenance efforts. Therefore, understanding the biological links between obesity and EF, as well as the ability to reverse EF deficits with weight loss, is imperative. The first study aimed to determine the effect of weight loss in overweight and obese, middle-aged and older adults on serum brain-derived neurotrophic fact (BDNF), S100 calcium binding protein B (S100B), and glial fibrillary acidic protein (GFAP). Serum samples (n=21; 50-75 years, BMI 25-40 kg/m2) were pooled from two prior weight loss studies. Fasting blood measurements were taken before and after 8- or 12-weeks of hypocaloric diet-induced weight loss (1200 or 1500 kcal/d). Body Mass Index (BMI), body weight, waist circumference, and percent body fat (All p<0.001) decreased with weight loss. Serum BDNF (p=0.871), S100B (p=0.898), and GFAP (p=0.506) did not change following weight loss. The second study aimed to determine the correlation between the magnitude of change in serum BDNF, S100B, and GFAP and the magnitude of improvement in EF performance on three computer-based tests. Participants (n=8; 50-75 years, BMI 25-40 kg/m2) completed 4-weeks of hypocaloric diet-induced weight loss (1200 or 1500 kcal/d), followed by 4-weeks of weight maintenance (hypocaloric diet + steps/d goal). Fasting blood and EF measurements were completed at baseline, and weeks 4 and 8. BMI (p=0.001), body weight (p=0.001), waist circumference (p=0.002), and percent body fat (p=0.001) decreased from baseline to week 8. Serum BDNF (p=0.359), S100B (p=0.277), and GFAP (p=0.585) did not change following weight loss. Go/No-Go (GNG) errors of commission (p=0.009) and AX-Continuous Performance Test (AX-CPT) correct response time (p=0.041) decreased following the weight loss. The change in serum GFAP was inversely correlated with GNG errors of omission (r=-0.716, p=0.046) and AX-CPT correct hits (r=-0.737, p=0.037), and positively correlated with AX-CPT correct response time (r=0.859, p=0.006). In conclusion, although weight loss does not influence serum BDNF, S100B, or GFAP levels, it may have a positive effect on inhibitory control in overweight and obese, middle-aged and older adults. Further research is needed to understand the relationship between serum BDNF, S100B, and GFAP and executive function. / Master of Science / Obesity is associated with lower brain function, particularly in executive function (EF). EF refers to advanced thought processes that help to maintain focus, practice self-control, solve problems, and easily switch between tasks. Lower EF in individuals with overweight and obesity may impact the success of weight loss and maintenance efforts. Because of this, understanding body processes that may link obesity and lower EF, as well as the ability to improve EF with weight loss, is very important. The first study aimed to determine the effect of weight loss on blood proteins responsible for brain health: brain-derived neurotrophic fact (BDNF), S100 calcium binding protein B (S100B), and glial fibrillary acidic protein (GFAP). Twenty-one blood samples from overweight and obese, middle-aged and older adults were combined from two completed weight loss studies. In these studies, blood was measured before and after 8- or 12-weeks of a weight loss (low calorie diet;1200 or 1500 Calories per day). Body Mass Index (BMI), body weight, waist circumference, and percent body fat all decreased with weight loss; however, levels of BDNF, S100B, and GFAP in the blood did not change. The second study aimed to determine the relationship between blood BDNF, S100B, and GFAP and performance on three computer-based tests of EF before and after weight loss. Eight overweight and obese, middle-aged and older adults completed 4-weeks of weight loss (low-calorie diet; 1200 or 1500 Calories per day), followed by 4-weeks of weight maintenance. BMI, body weight, waist circumference, and percent body fat all decreased following the weight loss and maintenance intervention (week 8). Blood BDNF, S100B, and GFAP levels did not change, but performance on two EF measures improved: participants made less errors of commission (doing something when not supposed to) and had faster reaction time following the intervention, indicating better self-control. Additionally, greater increases in GFAP were associated with less errors of omission (not doing something when supposed to), fewer correct responses, and slower reaction time. In conclusion, although weight loss did not affect blood BDNF, S100B, or GFAP levels, it may improve self-control in overweight and obese, middle-aged and older adults. Further research is needed to understand the relationship between weight loss, blood proteins of brain health, and EF.
339

Participación del sistema cannabinoide endógeno en el control de las respuestas relacionadas con trastornos afectivos

Aso Pérez, Ester 19 December 2008 (has links)
Los trastornos emocionales de tipo depresivo y la ansiedad son las formas más prevalentes de enfermedad mental y suponen un serio problema de salud en la sociedad occidental. Recientemente, se ha postulado que el sistema endocannabinoide pueda ser un importante sustrato en el desarrollo de estos trastornos dada su participación en el control de las emociones. Nuestros resultados demuestran que los animales carentes del receptor cannabinoide CB1 manifiestan un fenotipo de tipo depresivo asociado a una deficiencia del factor neurotrófico BDNF en el hipocampo, que podría estar causada por los elevados niveles de glucocorticoides liberados en respuesta al estrés en estos mutantes. Por otra parte, el sistema endocannabinoide participa en los efectos inducidos por la nicotina sobre la ansiedad y en la expresión del síndrome de abstinencia de esta droga. Así, la actividad del receptor CB1 alivia los efectos ansiogénicos de dosis elevadas de nicotina y facilita los efectos ansiolíticos de dosis bajas. Además, la administración del agonista cannabinoide &#61508;9-THC atenúa las manifestaciones somáticas y emocionales negativas de la abstinencia de nicotina. En general, considerando los resultados presentados en esta Tesis Doctoral, podemos afirmar que el receptor CB1 participa de forma determinante en la recuperación del balance homeostático del organismo tras la exposición a un estímulo emocional negativo, bien sea una situación estresante aguda o sostenida, o bien una droga que incrementa los niveles de ansiedad o cuya retirada produce abstinencia. / Mood disorders such as depression and anxiety are the most common mental diseases and they suppose a serious health problem in our society. Recently, endocannabinoid system has been postulated to be an important substrate in the development of such disorders taking into account the role exerted by this neuromodulatory system in mood and emotions. Our results demonstrate that CB1 knockout mice exhibit a depressive-like phenotype associated to a deficiency in the neurotrophic factor BDNF in the hippocampus, which could be a consequence of the increased glucocorticoid release in response to stress exposure. On the other hand, the endocannabinoid system participates in nicotine induced effects on anxiety and in the expression of nicotine withdrawal. Thus, CB1 receptor activity attenuates anxiogenic-like effects and facilitates anxiolytic-like responses induced by high or low doses of nicotine, respectively. Moreover, &#61508;9-THC administration ameliorates somatic and negative motivational signs of nicotine withdrawal. In summary, the results presented in this Doctoral Thesis indicate that CB1 receptor participates in the recovery of the homeostatic balance after the exposure to negative emotional stimuli, either acute or sustained stress or a drug which induced anxiety-like effects or withdrawal signs after the end of the exposure.
340

Implication de la signalisation calcique et des MAP kinases dans la perception gustative lipidique / Unvolvement of calcium signaling and MAP kinases in lipid taste perception

Abdoul-Azize, Souleymane 23 September 2013 (has links)
Dans ce travail, nous démontrons que STIM1, un senseur calcique activé par la déplétion du Ca2+ intracellulaire du réticulum endoplasmique, est indispensable pour la signalisation calcique et la préférence oro-sensorielle du gras. Nous observons que l'acide linoléique (LA), en activant les phospholipases A2 via CD36, produit de l’acide arachidonique (AA) et de la lyso-phosphatidylcholine (lyso-PC). Cette activation déclenche un influx calcique dans les cellules CD36-positives, et induit la production du facteur CIF (Ca2+ Influx Factor). CIF, AA et lyso-PC exercent différentes actions sur l'ouverture des canaux SOC (Stored Operated Calcium Channel) constitués de protéines Orai et contrôlés par STIM1. Par ailleurs, les souris au phénotype Stim1-/- perdent la préférence spontanée pour les lipides et la libération de la sérotonine à partir des cellules gustatives dans le milieu extracellulaire chez les animaux sauvages. Nous demontrons aussi que la signalisation calcique médiée via CD36 est doublement modulée lors de l’obésité. L’augmentation de la [Ca2+]i dans les cellules gustatives observée chez le Psammomys obesus, un modèle d’obésité nutritionelle, est fortement diminuée chez les souris rendues obèses par un regime hyperlipidique. Nous avons constaté également que l’interaction de LA avec le CD36 induit l’activation des MAP Kinases de la voie MEK1/2/ERK1/2/Elk-1 qui est non seulement à l’origine de l’activation des aires cérébrales telles que le NTS, le noyau arqué, l’hippocampe mais aussi indispensable pour la préférence spontanée pour les lipides alimentaires. Nos résultats suggèrent pour la prémière fois, que la voie ERK1/2 des MAPK et la signalisation calcique lipidique controlée par STIM1 sont impliquées dans la perception oro-gustative des lipides / In this work, we demonstrate that stromal interaction molecule 1 (STIM1), a sensor of Ca2+ depletion in the endoplasmic reticulum, mediates fatty acid–induced Ca2+ signaling in the mouse tongue and fat preference. We showed that linoleic acid (LA) induced the production of arachidonic acid (AA) and lysophosphatidylcholine (Lyso-PC) by activating multiple phospholipase A2 isoforms via CD36. This activation triggered Ca2+ influx in lingual CD36-positive taste bud cells (TBCs) purified from mouse CVP. LA also induced the production of Ca2+ influx factor (CIF). STIM1 was found to regulate LA-induced CIF production and the opening of store-operated Ca2+ (SOC) channels. Furthermore, CD36-positive TBCs from Stim1–/– mice failed to release serotonin, and Stim1–/– mice lost the spontaneous preference for fat that was observed in wild-type animals. We also demonstrate that the calcium-mediated signaling via CD36 is doubly modulated in obesity. The increase in [Ca2+]i in taste bud cells observed in Psammomys obesus, a model of nutritional obesity is strongly reduced in diet-induced obese (DIO) mice. We also found that the interaction of LA with CD36 induces activation of MAP Kinases MEK1/2/ERK1/2/Elk-1 pathway that is not only responsible for the activation of NTS, arcuate nucleus, and the hippocampus in the brain but also essential for the spontaneous preference for fat food. Our results suggest for the first time, that ERK1/2 MAPK pathway and lipid-induced calcium signaling controlled by STIM1 are involved in oro-gustatory perception of dietary lipids

Page generated in 0.0444 seconds