• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 5
  • Tagged with
  • 18
  • 16
  • 8
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen

Grunert, Sandro 10 June 2009 (has links)
Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen Ausarbeitung im Rahmen des Seminars "Optimierung", WS 2008/2009 Die Dualitätstheorie für restringierte Optimierungsaufgaben findet in der Spieltheorie und in der Ökonomik eine interessante Anwendung. Mit Hilfe von Sattelpunkteigenschaften werden diverse Interpretationsmöglichkeiten der Lagrange-Dualität vorgestellt. Anschließend gilt das Augenmerk den Optimalitätsbedingungen solcher Probleme. Grundlage für die Ausarbeitung ist das Buch "Convex Optimization" von Stephen Boyd und Lieven Vandenberghe.
12

1,3-Dipolare Cycloaddition von N2O an hochreaktive Mehrfachbindungen

Plefka, Oliver 16 June 2011 (has links)
In der vorliegenden Arbeit wird über 1,3-dipolare Cycloadditionen mit Lachgas (N2O) unter milden Reaktionstemperaturen (≈ RT) berichtet. N2O ist ein sehr unreaktives 1,3-dipolares Reagenz. Bisher in der Literatur durchgeführte 1,3-dipolare Cycloadditionen mit N2O benötigten immer sehr drastische und gefährliche Reaktionsbedingungen (bis zu 300°C und 500 atm.). Dabei entstanden nach einer (postulierten) einleitenden 1,3-dipolaren Cycloaddition von N2O an Olefine oder Alkine immer nur stickstofffreie Reaktionsprodukte. Durch den Einsatz von hochreaktiven Cycloalkinen als 1,3-Dipolarophile konnten erstmals 1,3-dipolare Cycloadditionen mit N2O bei deutlich milderen Bedingungen (–25°C bis +60°C) als den bisher bekannten durchgeführt werden. Dabei war es mit Cyclooctin und Cycloocten-5-in erstmals möglich, stabile und vollständig charakterisierbare Reaktionsprodukte zu erhalten, die alle drei Atome des addierten N2O-Moleküls enthalten. Mit 4,5-Didehydro-2,3,6,7-tetrahydro-3,3,6,6-tetramethylthiepin konnte sogar erstmals ein alpha-Diazoketon durch 1,3-dipolare Cycloaddition von N2O erhalten und dieses bei –25°C NMR-spektroskopisch untersucht werden. Diese alpha-Diazoketone entstehen aus der elektrocyclischen Ringöffnung der entsprechenden 1,2,3-Oxadiazole welche aus der Cycloaddition von N2O und dem eingesetzten Cycloalkin stammen. Mit alpha-substituierten Cyclooctinen konnten auch 1,3-dipolare Cycloadditionen mit N2O bei milden Temperaturen durchgeführt werden, um stickstofffreie Reaktionsprodukte zu erhalten.
13

Erkundungsuntersuchung zu ausgewählten leistungsfördernden Faktoren bei Nachwuchsleistungssportlern im Kontext der Sportart Triathlon

Clemen, Sebastian 20 December 2013 (has links)
In modernen Entwicklungsmodellen wird definiert, dass Entwicklung durch Erbanlagen und Umweltfaktoren bestimmt ist. Ebenso können Athleten durch Üben und Lernen bzw. Training ihre Entwicklung selbst gestalten. Hier stellt sich die Frage, welche körperlichen Voraussetzungen, welche Umweltbedingungen und welche Trainingskennziffern des Athleten besonders günstig auf die Möglichkeiten der Leistungsausbildung und Motivation wirken und somit die Wettkampfleistung beeinflussen. Dazu werden ausgewählte Faktoren bei erstplatzierten Triathleten der Deutschen Nachwuchs-meisterschaft genauer untersucht. Hier wird deutlich, dass die weiblichen erfolgreichen Probanden einen niedrigen BMI-Wert sowie ein retardiertes Alter aufweisen. Im Vergleich mit den DTU-Vorgaben trainieren im Mittel die jüngeren Probanden zu viel, die Junioren zu wenig. Ausgenommen davon ist das Athletiktraining, welches im Mittel deutliche Defizite in allen Altersklassen aufweist. Nachwuchsstützpunktgruppen und Unterstützungsleistungen des Umfeldes der Athleten, erweisen sich als leistungsförderlich. Die Ergebnisse bilden das Fundament für weitere Forschung in diesem Bereich.:Inhaltsverzeichnis 1 Einleitung 5 2 Theoretische Grundlagen 6 2.1 Leistungsstruktur 6 2.1.1 Leistungsstruktur im Triathlon-Nachwuchsbereich 7 2.1.2 Wettkampfstruktur im Triathlon-Nachwuchsbereich 9 2.2 Langfristiger Leistungsaufbau der DTU 11 2.3 Interaktionistischer Ansatz 13 3 Problemstellung 16 4 Zielstellung 17 5 Fragestellung 18 6 Untersuchungsmethodik 19 6.1 Untersuchungsdesign 19 6.2 Stichprobe 20 6.3 Testgütekriterien 20 6.4 Methodenkritik 21 7 Ergebnisdarstellung 22 7.1 Konstitution 22 7.1.1 Körperhöhe 22 7.1.2 Körpermasse 23 7.1.3 Body-Mass-Index 24 7.2 Alter 25 7.2.1 Relativer Alterseffekt 25 7.2.2 Biologisches Alter 25 7.3 Trainingskennziffern 26 7.3.1 Übergangsperiode 27 7.3.2 Ruhetage 27 7.3.3 Trainingslager 28 7.3.4 Jahresumfänge Schwimmen 29 7.3.5 Jahresumfänge Rad 30 7.3.6 Jahresumfänge Lauf 31 7.3.7 Jahresumfänge Athletik 32 7.3.8 Trainingsstunden im Jahr 33 7.4 Umweltbedingungen 33 7.4.1 Schule und Internat 34 7.4.2 Trainingsumfeld 35 7.4.3 weitere Umfeldbedingungen 36 7.4.4 Finanzielles 37 8 Ergebnisdiskussion 38 8.1 Konstitution 38 8.2 Alter 39 8.3. Trainingskennziffern 40 8.4 Umweltbedingungen 41 9 Zusammenfassung und Ausblick 43 Literaturverzeichnis 46 Abbildungsverzeichnis 49 Tabellenverzeichnis 50 Anhänge 51
14

Investigation of mining subsidence prediction under tectonic influences

Babaryka, Aleksandra 26 January 2024 (has links)
This dissertation addresses the challenge of predicting human-induced subsidence in tectonic settings. The study focuses on the non-symmetric and shape-defying nature of subsidence troughs in tectonic regions, which deviates from conventional symmetric models. The aim of the dissertation is to improve the accuracy of subsidence prediction by incorporating horizontal stress effects into empirical methods. Through a combination of numerical investigations and empirical modelling, the research reveals stress-induced patterns in subsidence profiles. The developed model, based on various concepts, successfully incorporates asymmetry and shape deviation, resulting in significantly improved prediction accuracy. Application of the model to a real subsidence case in a salt cavern shows a 30% improvement in prediction (based on mean squared error comparison with classical solution). This new solution covers subsidence profile patterns not previously considered by empirical models.:Inhalt 1 Introduction 2 State of the art 2.1 Subsidence prediction methods 2.1.1 Empirical subsidence prediction method overview 2.1.2 Numerical methods for subsidence prediction 2.2 Subsidence monitoring methods 2.2.1 Observation methods 2.2.2 Interplay and evolution of techniques 2.3 Subsidence anomalies 2.4 In-situ-stress field 2.5 Subsidence prediction methods for anomalies 2.6 Conclusions 3 Goals and objectives 4 Foundations 4.1 Empirical subsidence prediction methods 4.1.1 Convergence 4.1.2 Transmission coefficient 4.1.2 Influence factor 4.2 Numerical models for subsidence case 4.2.1 Grid size for subsidence case 4.2.2 Boundary conditions 4.2.3 Constitutive models 4.3 Validation 4.3.1 Observation methods 4.3.2 Parameter estimation 4.3.3 Global parameter estimation 4.3.4 Local parameter estimation 4.3.5 Quality measures for result valuation and validation 5 Methodology 6 Numerical investigation 6.1 Preliminary investigation 6.1.1 Method 6.1.2 Choice of constitutive model 6.1.3 Model and input data 6.1.4 Preliminary investigation results 6.2 Design of the main experiment: non-uniform stress distribution 6.2.1 Constitutive model and input data 6.2.2 Model simplification 6.2.3 Output data 6.3 Contribution of asymmetrical stress distribution 6.3.1 Discussion of the basic distribution form 6.3.2 Discussion of maximum subsidence 6.3.3 Discussion of assymetry 6.3.4 Discussion of influence angle 6.4 Conclusions 7 Adaptation of an empirical model to the discovered features 7.1 Subsidence asymmetry 7.2 Subsidence shape flexibility 7.3 Unifying solution 7.4 Conclusion and outlook 8 Application to a full scale 8.1 General information for a salt cavern storage field 8.2 Estimation of the observed subsidence surface as reference 8.3 Model implementation 8.3.1 Parameter estimation results 8.4 Statistical validation of models 8.5 Conclusions 9 Conclusion 9.1 Limitations 9.2 Outlook References Appendix
15

Klimawandel und Sauerkirschanbau

Matzneller, Philipp 19 January 2016 (has links)
In dieser Arbeit wurden die Veränderungen der agrarklimatologischen Bedingungen im Zuge des Klimawandels für ausgesuchte Sauerkirschanbauregionen in Europa und Nordamerika untersucht. Es wird auf veränderte Risiken (Spätfrost, Hitzewellen, Wassermangel) hingewiesen, die durch nachhaltige, praxisorientierte und ökonomisch vertretbare Anpassungsmaßnahmen (Überdachung, Frostschutz, Bewässerung, Anbausystem, Wahl der Sorte und Unterlage, etc.) begrenzt werden können. Der Klimawandel kann neben Risiken aber auch Chancen für den Sauerkirschanbau eröffnen. Höhere Temperaturen und eine längere Vegetationsperiode können regional differenziert zu günstigeren Anbaubedingungen führen. Ein besonderer Schwerpunkt wurde auf die Entwicklung phänologischer Modelle gelegt, mit denen Veränderungen im Entwicklungsrhythmus der Sauerkirschgehölze analysiert werden konnten. Dafür wurden acht Modelle zur Vorhersage des Blühbeginns und Blühendes entwickelt. Weitere phänologische Stadien konnten mit dem Modell von Zavalloni et al. (2006) berechnet werden. Die Untersuchungen haben ergeben, dass sich der Blühbeginn unter geänderten Klimabedingungen verfrüht, aber nur geringe Verkürzungen der Zeiträume zwischen den phänologischen Stadien zu erwarten sind. Zu den gefürchteten Witterungsschäden im Obstbau gehört Spätfrost, der zu hohen Ertragsverlusten führen kann. Im Zuge des Klimawandels können sich die Häufigkeit und Stärke der Fröste ändern. Die Frostwahrscheinlichkeit während der untersuchten Entwicklungsphasen von Sauerkischgehölzen könnte in diesem Jahrhundert in Rheinland-Pfalz und Eau Claire abnehmen, während sich die Verhältnisse in den anderen Anbaugebieten nur geringfügig ändern. In einem zweiten Schritt wurden die Ertragsverluste durch Frost bestimmt. Hierbei hat sich ergeben, dass die Frostschäden in den untersuchten Anbauregionen wahrscheinlich geringer werden. Allerdings differieren die Ergebnisse zwischen den Berechnungen mit beobachteten und modellierten Temperaturen oft stark. / This thesis investigates the changes in agro-climatic conditions for selected growing region in Europe and North America under current and future climate conditions. The overall aim of the study was to identify possible risks (spring frosts, heat waves, water shortages), which can be limited by sustainable, practically oriented and economically viable adaptation measures (hail- and frost-protection, irrigation, cultivation system, choice of variety and rootstock). Besides risks, climate change can provide new opportunities. Higher temperature levels and extended growing season lengths could regionally differentiated improve the growing conditions. Particular focus was given to developing phenological models, used to investigate shifts in spring phenology of sour cherry trees due to climate change. Therefore, eight models to predict the beginning and end of blossom were optimized and validated. Further phenological stages were calculated with the model by Zavalloni et al. (2006). The results show an earlier onset in the beginning of sour cherry blossom under future climate conditions, while the length of the period between the phenological stages only shortens slightly. Spring frosts are feared weather hazards in orchards which can cause substantial yield losses. The changing climate conditions could influence the frequency and strength of spring frosts. In the course of this century the spring frost probability is likely to decrease in Rhineland-Palatinate and Eau Claire, while only slight changes are expected in the other growing regions. In the second step, yield losses caused by spring frost were calculated. The frost damages on sour cherries in the investigated growing regions will probably decrease. However, the yield losses calculated with observed and modeled temperatures often differ strongly.
16

Paläoproterozoisches Krustenwachstum (2.0-1.8 Ga) am Beispiel der Västervik-Region in SE-Schweden und dem Kamanjab Inlier in NW-Namibia / Paleoproterozoic crustal growth (2.0-1.8 Ga) illustrated on basis of the Västervik-area in SE-Sweden and the Kamanjab inlier in NW-Namibia

Nolte, Nicole 18 October 2012 (has links)
Um Hinweise auf die geodynamische Entwicklung und zur Rekonstruktion der magmatischen und tektono-metamorphen Geschichte der Västervik-Region (SE-Schweden) und dem Kamanjab Inlier (NW-Namibia) zu erhalten, wurden isotopengeochemische Untersuchungen (Rb-Sr, Sm-Nd, K-Ar, U-Pb) in Kombination mit Haupt- und Spurenelementanalytik sowie Untersuchungen zu den P-T-Bedingungen an metamorphen Gesteinen durchgeführt. Beide Gebiete vereint eine gemeinsame Entwicklung innerhalb des Superkontinentes Columbia. Sowohl die Västervik-Region als auch der Kamanjab Inlier sind durch ihre Lage entlang eines aktiven Kontinentalrandes geprägt. In beiden Arbeitsgebieten konnte eine mehrphasige Entwicklung erkannt werden. Die Untersuchungen zeigen, dass der granitoide Magmatismus entlang des südlichen Randes des Laurentia-Baltika Systems durch zwei paläoproterozoische Phasen charakterisiert ist. So konnten fünf granitoide Einheiten unterschieden werden, die in ihrer Zusammensetzung von Tonaliten bis Syenograniten variieren. Geochemische Klassifikationen haben für drei der fünf Einheiten einen „magnesian“, metaluminösen Cordillerancharakter gezeigt, der in Verbindung mit einem aktiven Kontinentalrand steht (2. Phase 1.81-1.77 Ga). Die übrigen zwei Einheiten zeigen einen Wechsel zu „ferroan“, peraluminösen Granitoiden mit einem A-Typ-Charakter, die während einer Extensionsphase gebildet wurden (1. Phase 1.87-1.84 Ga). Während die Ältere der beiden A-Typ-Gruppen mit der ersten Phase korreliert werden kann, zeigt die Jüngere Affinitäten zur sogenannten Granit-Pegmatit-Einheit. Das bestehende tektonische Modell für die Bergslagen-Region (N‘ Västervik) setzt eine Verlagerung der Subduktionszone in SW‘ Richtung voraus, die einhergeht mit einem Wechsel des geodynamischen Regimes. Die für die Västervik-Region definierten fünf granitoiden Einheiten passen gut in dieses Modell und liefern Argumente für einen neuen tektonischen Zyklus im Süden der Bergslagen-Region. Der Kamanjab Inlier zeigt eine ähnliche Entwicklung, wie sie in der Västervik-Region beobachtet werden konnte. Der granitoide Magmatismus wurde auf ein paläoproterozoisches Alter von 1.88-1.81 Ga datiert und fällt vermutlich mit einem ersten tektono-metamorphen Ereignis zusammen, in dem es unter anderem zur Ausbildung von Migmatiten kam. Die ermittelten Sm-Nd-Modellalter der Amphibolite zeigen eine systematische Zunahme von tiefen zu höheren Krustenstockwerken (Rooikop/Aandgloed[S]: TDM 2.10-1.96 Ga; Suiderkruis/Aandgloed [N]: TDM 2.40-2.12 Ga; Ehobib: TDM 2.74-2.30 Ga). Das Einsetzen der Kibarischen Orogenese bzw. des kibarischen Riftereignisses im Mesoproterozoikum (~1.6 Ga) wird als Auslöser für eine großräumige Überprägung des südlichen Randes des Kongo-Kraton gesehen. Sowohl K-Ar-Datierungen (1.3-1.4 Ga) als auch die Ergebnisse der Rb-Sr-Isotopenanalyse (~1.5 Ga) deutet auf eine solche Überprägung hin und können mit einem zweiten tektono-metamorphen Ereignis sowie dem bimodalen Magmatismus entlang des Kontinentalrandes korreliert werden. Untersuchungen der P-T-Bedingungen zeigen eine Unterteilung in eine nördliche (T=650-750 °C; P=8-11 kbar) und eine südliche (T=500-600 °C; P=5-9 kbar) Domäne. Ausgehend von zwei diskreten Metamorphoseereignissen scheinen die Geländebeobachtungen (Ausbildung der Migmatite) die Bedingungen des ersten tektono-metamorphen Ereignisses widerzuspiegeln. Wohingegen die durch Laborbefunde ermittelten, das zweite Ereignis zeigen.
17

Viscosity of slags / Viskosität von Schlacken

Bronsch, Arne 06 October 2017 (has links) (PDF)
Slags plays a significant role at high temperature processes. The estimation of the slag viscosity is vital for the safe run of e.g. entrained flow gasifiers. One opportunity of determination is rotational viscometry. This technique is disadvantageous in view of elevated temperatures, applied materials and the necessary time. Additionally, the viscosity can be predicted by the help of viscosity models, where viscosity is a function of slag composition and temperature. Due to changing slag properties within the technical processes, the calculated viscosities can hugely differ from measured ones. In this work, the viscosities of 42 slags where measured up to 100 Pa s and temperatures up to 1700 °C. Oxidizing and reducing conditions were applied. Additionally, selected slag samples were quenched at defined temperatures to qualitatively and quantitatively determine the formed minerals by X-ray diffraction (XRD). Differential temperature analysis (DTA) was applied to find the onset of crystallization for the complementation of investigations. The Einstein-Roscoe equation was chosen to improve the classic viscosity models. Reducing atmosphere decreased viscosity and the number of formed minerals was increased. Slags show a shear-thinning behavior above ca. 10 vol.-% of solid mineral matter. Also, Newtonian behavior was observed up to 60 vol.-%. To overcome problems with the kinetic cooling behavior of the slags, a viscosity approximation method was applied afterwards. This can result in optimized viscosity predictions when several preconditions are fulfilled.
18

Viscosity of slags

Bronsch, Arne 13 July 2017 (has links)
Slags plays a significant role at high temperature processes. The estimation of the slag viscosity is vital for the safe run of e.g. entrained flow gasifiers. One opportunity of determination is rotational viscometry. This technique is disadvantageous in view of elevated temperatures, applied materials and the necessary time. Additionally, the viscosity can be predicted by the help of viscosity models, where viscosity is a function of slag composition and temperature. Due to changing slag properties within the technical processes, the calculated viscosities can hugely differ from measured ones. In this work, the viscosities of 42 slags where measured up to 100 Pa s and temperatures up to 1700 °C. Oxidizing and reducing conditions were applied. Additionally, selected slag samples were quenched at defined temperatures to qualitatively and quantitatively determine the formed minerals by X-ray diffraction (XRD). Differential temperature analysis (DTA) was applied to find the onset of crystallization for the complementation of investigations. The Einstein-Roscoe equation was chosen to improve the classic viscosity models. Reducing atmosphere decreased viscosity and the number of formed minerals was increased. Slags show a shear-thinning behavior above ca. 10 vol.-% of solid mineral matter. Also, Newtonian behavior was observed up to 60 vol.-%. To overcome problems with the kinetic cooling behavior of the slags, a viscosity approximation method was applied afterwards. This can result in optimized viscosity predictions when several preconditions are fulfilled.:List of Tables ............................................................................................................ vi List of Figures ........................................................................................................ viii Symbols and Abbreviations .................................................................................. xviii 1. Introduction and Aim ....................................................................................... 1 2. General Overview of Slag ............................................................................... 2 2.1 Viscosity ...................................................................................................... 2 2.1.1 Viscosity Introduction ........................................................................... 2 2.1.2 Flow behavior of fluids ......................................................................... 3 2.2 Slag Definition and Phase Diagrams ........................................................... 4 2.3 Solid Slag Structure .................................................................................... 5 2.4 Liquid Slag Structure ................................................................................. 10 2.5 Basicity and B/A-ratio ................................................................................ 11 2.6 Slag Components...................................................................................... 13 2.6.1 Silicon dioxide .................................................................................... 13 2.6.2 Aluminum oxide ................................................................................. 13 2.6.3 Calcium oxide .................................................................................... 15 2.6.4 Iron oxide ........................................................................................... 16 2.6.5 Magnesium Oxide .............................................................................. 18 2.6.6 Potassium Oxide ................................................................................ 19 2.6.7 Sodium Oxide .................................................................................... 20 2.6.8 Titanium Oxide ................................................................................... 21 2.6.9 Phosphorous ...................................................................................... 22 2.6.10 Sulfur .............................................................................................. 22 2.7 Summary of Last Chapters ........................................................................ 23 3. Slag Viscosity Toolbox .................................................................................. 25 3.1 Slag Viscosity Predictor............................................................................. 25 3.2 Slag Viscosity Database............................................................................ 26 3.3 Prediction Quality of Viscosity Models ....................................................... 27 4. Classic Slag Viscosity Modelling ................................................................... 30 4.1 Selected Classic Viscosity Models ............................................................ 31 4.1.1 S2 ....................................................................................................... 32 4.1.2 Watt-Fereday ..................................................................................... 32 4.1.3 Bomkamp ........................................................................................... 32 4.1.4 Shaw .................................................................................................. 32 4.1.5 Lakatos .............................................................................................. 33 4.1.6 Urbain ................................................................................................ 33 4.1.7 Riboud ............................................................................................... 33 4.1.8 Streeter .............................................................................................. 34 4.1.9 Kalmanovitch-Frank ........................................................................... 34 4.1.10 BBHLW .......................................................................................... 34 4.1.11 Duchesne ....................................................................................... 34 4.1.12 ANNliq ............................................................................................ 35 4.2 Need of Improvement in Viscosity Literature ............................................. 35 4.3 Summary of Last Chapters ........................................................................ 36 5. Advanced Slag Viscosity Modelling .............................................................. 37 5.1 Crystallization ............................................................................................ 37 5.1.1 Nucleation .......................................................................................... 38 5.1.2 Crystallization Rate ............................................................................ 39 5.1.3 Crystallization Measurement Methods ............................................... 39 5.2 Slag Properties Changes During Crystallization ........................................ 40 5.2.1 Slag Density ....................................................................................... 40 5.2.2 Solid Volume Fraction ........................................................................ 46 5.2.3 Estimation of Slag Composition During Cooling ................................. 46 5.3 Viscosity Depending on Particles and Shear Rate..................................... 47 5.3.1 Einstein-Roscoe Equation .................................................................. 48 5.3.2 Improved Modelling Approach by Modified Einstein-Roscoe .............. 49 5.4 Summary of Last Chapters ........................................................................ 50 6. Experimental Procedures ............................................................................. 52 6.1 Viscosity Measurements ........................................................................... 52 6.1.1 Estimating Parameter Ranges of Viscosity Measurements ................ 53 6.1.2 Viscosity Measurement Procedure ..................................................... 54 6.2 Thermal Analysis of Slags ......................................................................... 55 6.2.1 Experimental Conditions of DTA ........................................................ 55 6.3 Phase Determination ................................................................................. 55 6.3.1 Quench Experiment Processing ......................................................... 56 6.3.2 Phase Determination on XRD Results ............................................... 56 6.4 Summary of Last Chapters ........................................................................ 57 7. Results and Discussion ................................................................................ 58 7.1 Selected Slag Samples ............................................................................. 58 7.1.1 Slag Sample Composition Before Viscosity Measurements ............... 58 7.1.2 Slag Sample Composition After Viscosity Measurements .................. 59 7.2 General Results of Viscosity Measurements ............................................. 60 7.2.1 Viscosity under Air Atmosphere ......................................................... 63 7.2.2 Viscosity under Reducing Atmospheres ............................................. 65 7.2.3 Viscosity under Constant Partial Oxygen Pressure ............................ 66 7.2.4 Summary of Last Chapter .................................................................. 68 7.3 Mineral Formation ..................................................................................... 69 7.3.1 General Results on Primarily Mineral Formation ................................ 69 7.3.2 Influences on Primarily Mineral Formation ......................................... 70 7.3.3 Mineral Formation over Wide Temperature Ranges ........................... 71 7.3.4 Summary of Last Chapter .................................................................. 77 7.4 Results Obtained by DTA .......................................................................... 78 7.4.1 Comparing Results obtained by DTA and Quenching ........................ 80 7.4.2 Summary of Last Chapter .................................................................. 82 7.5 Shear Rate Influence on Slag Viscosity ..................................................... 82 7.5.1 Shear Rate Influence under Oxidizing Atmospheres .......................... 83 7.5.2 Shear Rate Influence under Reducing Atmospheres .......................... 87 7.5.3 Shear Rate Influence under Constant Atmospheres .......................... 91 7.5.4 Summary of chapter ........................................................................... 92 7.6 Atmospheric Influence on Viscosity ........................................................... 93 7.6.1 Summary of Last Chapter .................................................................. 95 7.7 Cooling Rate Influence on Slag Viscosity .................................................. 95 7.7.1 Summary of Last Chapter .................................................................. 97 8. Advanced Viscosity Modelling Approach ...................................................... 99 8.1 Prediction Quality of Classical Viscosity Models ........................................ 99 8.1.1 Selecting the Best Viscosity Model for Newtonian Flow ..................... 99 8.1.2 Summary of Last Chapter ................................................................ 103 8.2 Predicting Liquidus Temperature ............................................................. 103 8.2.1 Comparing Liquidus Calculations and Quenching Experiments ....... 103 8.2.2 Comparing DTA Results and Liquidus Calculations ......................... 105 8.2.3 Summary of Last Chapter ................................................................ 107 8.3 Predicting Liquid Slag Composition ......................................................... 108 8.3.1 Results of Slag Composition Calculations at Oxidizing Conditions ... 108 8.3.2 Results of Slag Composition Calculations at Reducing Conditions ... 110 8.3.3 Summary of Last Chapter ................................................................ 111 8.4 Modelling Approach ................................................................................ 112 8.4.1 Development of Datasets for Advanced Viscosity Modeling ............. 113 8.4.2 Summary of Last Chapter ................................................................ 116 8.5 Results of Advanced Slag Viscosity Modelling Approach ........................ 116 8.5.1 Summary of Last Chapter ................................................................ 121 9. Summary .................................................................................................... 123 10. Appendix: Information on Classic Viscosity Modelling ................................. 126 10.1 Backgrounds of Applied Viscosity Models............................................ 126 10.2 Viscosity Model of the BCURA (S2) ..................................................... 129 10.3 Watt-Fereday ....................................................................................... 130 10.4 Bomkamp ............................................................................................ 130 10.5 Shaw ................................................................................................... 131 10.6 Lakatos Model ..................................................................................... 132 10.7 Urbain Model ....................................................................................... 133 10.8 Riboud Model ...................................................................................... 134 10.9 Streeter Model ..................................................................................... 136 10.10 Kalmanovitch-Frank Model .................................................................. 137 10.11 BBHLW Model ..................................................................................... 137 10.12 Duchesne Model .................................................................................. 139 10.13 ANNliq Model ...................................................................................... 141 11. Appendix: Settings of Equilibrium Calculations ........................................... 143 12. Appendix: Parameters of Einstein-Roscoe Equation ................................... 153 13. Appendix: Ash and Slag Sample Preparation ............................................. 155 14. Appendix: Experimental Procedures: Viscometer ....................................... 159 14.1 General Viscometer Description .......................................................... 159 14.2 Temperature Calibration ...................................................................... 160 14.3 Viscometer Calibration ......................................................................... 160 14.4 Accuracy and Reproducibility of HT-Viscosity Measurements .............. 161 14.5 Influence of Inductive Heating .............................................................. 163 14.6 Influence of Measurement System Materials ....................................... 164 15. Appendix: Experimental Procedures: Quenching Furnace .......................... 167 16. Appendix: Slag Sample Parameters and Composition ................................ 168 17. Appendix: Slag Viscosity Measurements Results ....................................... 175 18. Appendix: Viscosities at Different Cooling Rates ........................................ 182 19. Appendix: Slag Viscosity Modelling: AALE Calculations ............................. 187 20. Appendix: Advanced Viscosity Modelling: a-factors .................................... 193 21. Appendix: Slag Mineral Phase Investigations and Modelling ...................... 197 22. Appendix: Results of DTA Measurements on Slags .................................... 207 23. Appendix: Advanced Slag Viscosity Modelling Approach ............................ 211 References ........................................................................................................... 228

Page generated in 0.3527 seconds