• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 40
  • 8
  • Tagged with
  • 117
  • 78
  • 42
  • 37
  • 26
  • 21
  • 20
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Impact d'un épisode ischémique sur la glie de Bergmann / Impact of an Ischemic Episode on Bergmann Glial Cells

Helleringer, Romain 02 December 2015 (has links)
L’ischémie cérébrale est caractérisée par une interruption totale ou partielle de l’apport sanguine au cerveau, conduisant à une privation d’oxygène et de glucose pour les cellules du cerveau. La série de processus cellulaires qui sont déclenchées par une ischémie cérébrale sont nombreux et complexes. La réduction sévère d’oxygène et de glucose la diminution de la production d’ATP et un changement drastique de la concentration de K+, du pH intracellulaire et extracellulaire et de la production de lactate. La perturbation du métabolisme énergétique au sein des tissus ischémiés conduit rapidement à la dépolarisation membranaire et au relarguage de neurotransmetteurs dans le milieu extracellulaire. Dans le cervelet, l’impact d’un stress ischémique à largement été étudié sur les cellules de Purkinje, seule voie de sortie neuronale du cortex cérébelleux. Il a été montré que le glutamate, relargué par une surexcitation des fibres glutamatergique et par l’inversion des transporteurs du glutamate, est la cause principale de la dépolarisation anoxique des cellules de Purkinje. Cependant, la compréhension de la réponse astrocytaire et l’influence des astrocytes vis-à-vis de l’ischémie ne sont pas encore connu.La cellule de Bergmann est un astrocyte radiaire qui compose un réseau couplé électriquement, formant des interactions anatomiques et fonctionnelles complexes avec les neurones du cortex cérébelleux. En utilisant un modèle in vitro d’ischémie cérébrale, la privation d’oxygène et de glucose (OGD), plusieurs caractéristiques de base de la réaction astrocytaire à l'ischémie sont analysés. Des expériences en patch clamp et d’imagerie calcique sont réalisées sur tranche de cervelet adulte révélant la réponse de la glie de Bergmann à l’OGD par une dépolarisation progressive de la membrane, avec en parallèle une augmentation de calcium cytosolique soutenue. L’enregistrement apparié entre cellule de Purkinje et cellule de Bergmann révèle des différences importantes de réponse à l’OGD entre ces deux types cellulaires. De plus, nous avons mesuré les changements de la concentration de K+ extracellulaire durant l’OGD en utilisant des microélectrodes sensibles aux ions. Nos résultats montrent une corrélation importante entre la dynamique du K+ extracellulaire et la dépolarisation membranaire de la cellule de Bergmann au cours de l’OGD. / Cerebral ischemia is characterized by partial or total interruption of the blood supply to the brain resulting in glucose and oxygen deprivation to brain cells. The series of cellular processes that are unleashed by cerebral ischemia are complex. The severe reduction in oxygen and glucose induces decreases in ATP production and dramatic changes in extracellular K concentration, pH of intracellular and extracellular space and lactate production. The disruption of energy metabolism in the ischemic tissue rapidly lead to membrane depolarisation and neurotransmitters are released into the extracellular space. In the cerebellum, the impact of an ischemic stress has been extensively studied in Purkinje cells, the only neuronal output of the cerebellar cortex. It has been shown that glutamate released from overexcited fibers and from reversal of glutamate transporters, is the principal cause of the dramatic, anoxic depolarization in Purkinje cells. However a detailed understanding of the astrocytic response to cerebellar ischemia and the potential influence of astrocyte to ischemia outcome is still lacking.Bergmann glia (BG) are radial gial cells that form networks of electrically coupled cells underling complex anatomical and functional interactions with the neurons of the cerebellar cortex. Using an in vitro model of cerebral ischemia, the oxygen and glucose deprivation (OGD), several basic features of astrocytic reaction to ischemia are analyzed. Patch clamp and calcium imaging experiments performed in cerebellar slices from adult mice revealed that BG respond to OGD with a progressive membrane depolarisation that is paralleled with a sustained cytosolic calcium increase. Double patch-clamp recordings between Purkinje neurons and BG reveal different responses to OGD in these cell types. Furthermore, we measured extracellular potassium concentration changes during OGD by using ion-sensitive microelectrodes. Our results indicate an important correlation between the BG membrane depolarisation and the extracellular K dynamics during OGD.
62

Influence du statut calcique et en vitamine D sur l'homéostasie calcique : répercussion sur le calcium intracellulaire et sur l'os

Mailhot, Geneviève January 2003 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
63

Modulation des neurones GABAergiques du mésencéphale ventral

Michel, François January 2003 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
64

Role of nucleotides on lung epithelial cells : mechanism of release and development of a side-view microscopic chamber to study nucleotide-dependent airway surface liquid height

Tatur, Sabina January 2007 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
65

Étude de l'activité spontanée dans la moëlle épinière de l'oppossum Monodelphis domestica en développement

Lavallée, Annie January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
66

L’effet de la surexpression du récepteur de type 1 à l’angiotensine II sur les courants potassiques et calciques au niveau des oreillettes

Huynh, François 08 1900 (has links)
Le système rénine-angiotensine est impliqué dans le remodelage structurel et électrique caractérisant la fibrillation auriculaire (FA). L’angiotensine II (ANG II) induit le développement de fibrose et d’hypertrophie au niveau des oreillettes, prédisposant à la FA. Or, les mécanismes électrophysiologiques par lesquels l’ANG II pourrait promouvoir la FA sont peu connus. L’objectif de ce projet de recherche est d’évaluer l’effet de l’ANG II sur les courants potassiques et calciques au niveau auriculaire indépendamment du remodelage structurel. Pour ce faire, nous avons utilisé la technique de patch-clamp avec un modèle de souris surexprimant le récepteur de type 1 à l’angiotensine II (AT1R) spécifiquement au niveau cardiaque. Pour distinguer les effets directs de la surexpression d’AT1R des effets induits par le remodelage cardiaque, nous avons étudié des souris âgées de 180 jours, qui présentent du remodelage structurel, et des souris âgées de 50 jours, qui n’en présentent pas. Des études précédentes sur ce modèle ont montré qu’au niveau des myocytes ventriculaires, l’ANG II réduit le courant potassique global (Ipeak) et rectifiant entrant (IK1) ainsi que le courant calcique de type L (ICaL). Ainsi, notre hypothèse est que l’ANG II modulera aussi ces courants au niveau auriculaire, pouvant ainsi augmenter l’hétérogénéité de repolarisation auriculaire et de ce fait le risque de développer et maintenir la FA. Nous avons observé une diminution significative de la densité d’IK1 dans l’oreillette gauche des souris transgéniques sans changement d’Ipeak. De plus, la densité d’ ICaL n’est pas réduite chez les souris transgéniques âgées de 50 jours. En conclusion, l’effet de l’ANG II sur les courants potassiques et calciques semble dépendre de la chambre cardiaque. En effet, nous savions que l’ANGII réduisait Ipeak, IK1 et ICaL au niveau ventriculaire, mais nos résultats ont montré qu’il ne les affectait pas directement au niveau des oreillettes. Ceci suggère des mécanismes de régulation impliquant des voies de signalisation distinctes selon les chambres cardiaques. Enfin, nos résultats montrant l’absence de l’influence directe de la surexpression d’AT1R sur les canaux K+ et Ca2+ au niveau des myocytes auriculaires renforcent l’importance d’approfondir nos connaissances sur les effets de l’angiotensine II sur le développement de la fibrose, sur le remodelage structurel et sur la conduction électrique cardiaque. / The renin-angiotensin-aldosterone system contributes to the structural and electrical remodelling that characterise atrial fibrillation (AF). Angiotensin II (ANG II) induces fibrosis and hypertrophy in the atrium, creating a substrate for AF development. Whether or not ANG II promotes electrophysiological remodelling in the atrium and by which mechanisms is not known. The objective of this research project is to evaluate the effect of ANG II on potassium and calcium currents in atrial myocytes independently of structural remodelling. We used the patch-clamp technique to measure ionic currents in a mouse model overexpressing the angiotensin II type 1 receptor (AT1R) locally in the heart. To differentiate the direct effects of AT1R overexpression with those related to structural remodelling, we studied mice aged of 180 days that are characterised by structural remodelling and mice aged of 50 days that aren’t. Previous studies have shown that this mouse presented with reduced total potassium current (Ipeak) and inward rectifier potassium current (IK1) as well as with a decrease in L-type calcium currents (ICaL) in ventricular myocytes. Therefore, our hypothesis was that ANG II would also regulate those currents at the atrial level, possibly leading to an increase in heterogeneity in atrial repolarisation and to an increase in AF initiation and maintenance. We show in this project a significant reduction of the IK1 in the left atrium of transgenic mice without any changes of the Ipeak. Furthermore, we show no modulation of ICaL density in 50 days old transgenic mice. We conclude that ANG II effect on potassium and calcium currents depends on the cardiac chamber. Indeed, although we already knew ANG II reduced Ipeak, IK1 and ICaL in ventricular myocytes of transgenic mice, in this project we found ANG II did not affect Ipeak and ICaL at the atrial level. These findings suggest distinctive regulation pathways by which ANG II affects the different cardiac chambers. Furthermore, the absence of direct influence of ANG II on potassium and calcium currents in atrial myocytes reinforces the importance to better understand ANG II’s effect on cardiac fibrosis development, structural remodelling and electric conduction.
67

Contribution des réserves calciques présynaptiques et gliales dans la modulation de la transmission synaptique à la jonction neuromusculaire de la grenouille Rana pipiens

Castonguay, Annie January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
68

Régulation post-traductionnelle des canaux potassiques par les CPKs (Protéines Kinases Dépendantes du Calcium) chez Arabidopsis thaliana : un rôle dans la réponse adaptative aux stress environnementaux ? / Post-translational regulation of potassium channels by CPKs (Calcium-dependent Protein Kinases) in Arabidopsis thaliana : a role in adaptive response to environmental stresses ?

Ronzier, Elsa 27 November 2013 (has links)
Régulation post-traductionnelle des canaux potassiques par les CPKs (Protéines Kinases Dépendantes du Calcium) chez Arabidopsis thaliana : un rôle dans la réponse adaptative aux stress environnementaux ? Les canaux potassiques de la famille Shaker sont des voies majeures du transport de K+ à travers la membrane plasmique. Ces canaux sont impliqués dans l'absorption du potassium depuis le sol et dans sa redistribution dans les parties aériennes de la plante. Ils sont également impliqués dans les mouvements stomatiques et sont pour cela finement régulés. Ils peuvent subir des modifications post-traductionnelles telle que la phosphorylation par des protéines kinases. L'objectif principal de ce travail de thèse s'inscrit dans ce contexte et a pour but d'évaluer l'implication des CPKs dans la régulation post-traductionnelle des canaux Shaker. Les mécanismes d'action de deux CPKs (CPK13 et CPK6) sur la sous-unité entrante KAT2 sont plus spécifiquement étudiés. La première partie du travail de thèse avait pour but de mettre en place le matériel nécessaire pour l'étude en réalisant les clonages, la production des protéines recombinantes et leur caractérisation et testant les premiers effets des CPKs sur l'activité des canaux en expression hétérologue. La seconde partie concerne l'étude du rôle de CPK13 dans la régulation stomatique via la sous-unité KAT2. Nous montrons que la sur-expression de CPK13 dans les lignées transgéniques induit, à court terme, un défaut dans l'ouverture stomatique et également, à long terme, un défaut dans la croissance de la plante. L'existence d'une interaction physique à la membrane plasmique entre CPK13 et KAT2 est montrée à l'aide de la technique de FRET-FLIM. et la phosphorylation de la sous-unité KAT2 par la protéine recombinante CPK13 est montrée in vitro à l'aide de puces à peptides. Enfin, il est montré par voltage-clamp en ovocyte de xénope que CPK13 inhibe l'activité de KAT2 de plus de 60%. Dans la dernière partie, nous présentons un ensemble de résultats qui suggèrent un rôle de CPK6 dans la tolérance au stress salin via son action sur KAT2. Il est en effet connu qu'en cas de stress salin, l'activité des canaux responsables de l'influx de potassium est stimulée, ce qui contribue au maintien d'un faible ratio Na+/K+ dans les cellules. Or, nous montrons un effet activateur de la CPK6 sur l'activité de KAT2, à l'aide de la technique de voltage-clamp. Nous montrons que l'expression du gène CPK6 est très augmentée en réponse à un stress salin et que ceci est concomitant avec le déclenchement d'une vague calcique en réponse à ce même stress. L'utilisation de lignées GUS a permis de vérifier que les patrons d'expression des gènes CPK6 et KAT2 sont identiques chez Arabidopsis thaliana. Enfin, nous montrons une interaction physique entre le canal KAT2 et la protéine CPK6 (FRET-FLIM) et la phosphorylation de KAT2 par CPK6 (puces à peptides). / Post-translational regulation of potassium channels by CPKs (Calcium-dependent Protein Kinases) in Arabidopsis thaliana: a role in adaptive response to environmental stresses?Potassium Shaker channels are major pathways for K+ across plant cell plasma membrane. These channels are implicated in K+ absorption from soil and in its redistribution throughout the plant. They are more particularly implicated in stomatal movement and therefore are finely regulated. They can especially undergo post-translational modifications such as phosphorylation by protein kinases. The aim of this work is to determine the implication of CPKs (Ca2+-dependent Protein Kinases) in Shaker channel post-translational regulation. CPK13 and CPK6 molecular mechanisms of action on Shaker sub-unit KAT2 activity are specifically studied here. First part of this work consisted in cloning, producing and characterizing recombinant proteins and broad screening of CPK effects on Shaker channel activity, using heterologous expression. Second part focuses on the role of CPK13 in stomatal regulation through its effect on KAT2 activity. Over-expression of CPK13 in plant is shown to induce a defect of stomatal aperture and plant growth. KAT2 and CPK13 interaction at the plasma membrane is evidenced by using FRET-FLIM technique. KAT2 phosphorylation by CPK13 is checked on peptide arrays. Finally, a 60% decrease of KAT2 activity by CPK13 is shown using voltage-clamp on xenopus oocyte. Third and last part of this work suggests a role of CPK6 in salt stress resistance through KAT2 channel regulation. Inward potassium channels are indeed known to be activated upon salt stress to contribute keeping a low Na+/K+ ratio. Now, voltage-clamp technique demonstrates that KAT2 activity is increased by CPK6 and salt stress is shown to both increase CPK6 expression and elicit a calcium wave. Using GUS lines evidences KAT2 and CPK6 co-expression in Arabidopsis thaliana (in phloem and guard cells). Physical interaction between these two partners is shown by FRET-FLIM, and KAT2 phosphorylation by CPK13 gets strong support from peptide array assays.
69

Modélisation des réponses calciques de réseaux d'astrocytes : Relations entre topologie et dynamiques / Modeling calcium responses in astrocyte networks : Relationships between topology and dynamics

Lallouette, Jules 04 December 2014 (has links)
Pendant les 20 dernières années, les astrocytes, un type de cellules cérébrales ayant été jusque là relativement ignoré des neuroscientifiques, ont peu à peu gagné en notoriété grâce à de multiples découvertes. Contrairement aux neurones, ces cellules ne transmettent pas de signaux électriques mais communiquent par des changements intracellulaires de leurs concentrations en calcium. Des découvertes récentes semblent indiquer que, loin d'agir en autarcie, les astrocytes répondent à l'activité neuronale et sembleraient, bien que cela soit plus débattu, moduler la transmission synaptique par le relargage de molécules spécifiques appelées `gliotransmetteurs' (en référence aux neurotransmetteurs). Comme les neurones, les astrocytes forment des réseaux et communiquent leur activité calcique par diffusion d'un astrocyte à l'autre, formant ainsi de véritables vagues de calcium intercellulaires. Deux réseaux, de neuronnes et d'astrocytes, cohabitent ainsi dans le cerveau ; mais, alors que les réseaux de neuronnes ont fait l'objet de recherches expérimentales et théoriques, les réseaux d'astrocytes restent encore mal connus. Ainsi, il n'a été découvert que très récement que la topologie de ces réseaux pourrait s'averer plus complexe que la vision qui dominait jusqu'alors : celle d'un syncitium astrocytaire dépourvu de spécificités topologiques. Les travaux présentés dans cette thèse portent principalement sur l'effet que ces différentes topologies pourraient avoir sur la signalisation calcique astrocytaire. En effet, autant au niveau subcellulaire qu'inter-cellulaire, les mécanismes gouvernant l'activité calcique des astrocytes restent mals connus. Même dans le cas le plus documenté de la réponse somatique des astrocytes à une stimulation neuronale, les caractéristiques précises que la stimulation doit avoir pour évoquer une réponse des astrocytes sont inconnues. Il en est de même pour la transmission de vagues de calcium dans des réseaux d'astrocytes : on ignore encore les possibles effets de la complexité récemment documentée des réseaux d'astrocytes sur la propagation de ces vagues. Enfin, au niveau subcelulaire, les astrocytes possèdent une morphologie ramifiée extrèmement complexe qui possède elle-même une activité calcique. Les travaux présentés dans cette thèse utilisent des outils de modélisation et de simulation afin de déterminer les répercussions que l'organisation en réseaux des astrocytes pourrait avoir sur leurs dynamiques calciques. En résumé, nous proposons que la topologie des réseaux d'astrocytes a (1) des répercussion au niveau cellulaire, modulant la réponse des astrocytes à des stimulations neuronales ; (2) contrôle la propagation de vagues de calcium inter-astrocytaire en la favorisant lorsque les réseau sont peu couplés ; (3) joue un rôle important dans l’apparition de phénomènes de résonance stochastique. / Over the last 20 years, astrocytes, a hitherto under-investigated type of brain cells, have gradually rose to prominence owing to multiple experimental discoveries. In contrast with neurons, these cells do not propagate electrical signals but communicate instead through changes in their intracellular calcium concentration. Recent discoveries indicate that, far from being isolated cells, astrocytes respond to neuronal activity and, although this is still controversial, seem to modulate synaptic transmission through the release of `gliotransmitter' molecules (in reference to neurotransmitters). Like neurons, astrocyte are organized in networks and communicate their calcium activity by intercellular diffusion of second messengers, forming intercellular calcium waves. Two networks, one of neurons and the other of astrocytes, thus coexist in the brain; while neuronal networks have been the subject of intense experimental and theoretical investigations, astrocyte networks have been much less investigated. Notably, it was only discovered recently that astrocyte network topology could be more complex than what the hitherto dominant view held (astrocytes organized in a syncytium deprived of any topological specificities). The work presented in this thesis is mainly related to the effect that different network topologies could have on astrocyte calcium signaling. The mechanisms that drive calcium signaling in astrocytes are, at both subcellular and intercellular levels, still not completely understood. Even in the best documented case of astrocyte somatic response to neuronal stimulation, the precise characteristic required from the stimulation to elicit an astrocytic response are still unknown. Similarly, the mechanisms governing intercellular calcium wave propagation in astrocyte networks are not fully known; notably, the effects of the recently documented network heterogeneity on calcium wave propagation have not been investigated. Finally, at the subcellular level, astrocytes display an extremely ramified and complex morphology that also hosts calcium activity. The work presented in this thesis make use of modeling and simulation in order to determine the possible effects of astrocyte network organization on their calcium signaling. We propose that astrocyte network topology: (1) controls single-cell responses to neuronal stimulation; (2) drives the propagation of intercellular calcium waves by favoring it when networks are weakly coupled; (3) can determine the appearance of stochastic resonance phenomena; (4) can be modulated by neuronal activity.
70

Etude de l'effet de mutations du gène SHANK3 dans les TSA à partir de neurones corticaux humains dérivés de cellules souches pluripotentes induites / Study of the effect of SHANK3 gene mutations in TSA from human cortical neurons derived from induced pluripotent stem cells

Gouder, Laura 18 November 2016 (has links)
Les Troubles du Spectre Autistique (TSA) affectent un individu sur 100 en France et sont caractérisés par des déficits de la communication et des interactions sociales ainsi que par la présence d’intérêts restreints et de comportements répétitifs. Le laboratoire a démontré l’implication de protéines synaptiques dans le développement des TSA et en particulier celle des protéines SHANK. Ces protéines sont des protéines d’échafaudage présentes au niveau de la densité post-synaptique (PSD) des neurones glutamatergiques et interagissant avec différents partenaires. Dans le cadre de mon projet de thèse, nous nous sommes particulièrement intéressés à la protéine SHANK3. Des mutations au sein du gène SHANK3 ont été détectées chez environ 1 à 2% des patients, selon le degré de sévérité du retard mental. Un déficit de SHANK3 altère le fonctionnement synaptique. En effet, des analyses sur modèles de souris invalidées pour le gène SHANK3 ont montré une diminution de la densité des épines dendritiques, de la taille de la densité post-synaptique et de l’expression des partenaires protéiques de SHANK3. Mon modèle principal d’analyse a consisté en la reprogrammation de fibroblastes en cellules pluripotentes induites (iPSC « induced pluripotent stem cells »). Les iPSCs ont ensuite été sélectivement dérivées en neurones corticaux. Nos études se sont focalisées sur l’analyse des conséquences fonctionnelles de mutations de novo du gène SHANK3 retrouvées chez 4 patients à l’état hétérozygote et présentes au sein de l’exon 21. Ces mutations conduisent à un codon stop prématuré. En parallèle, nous avons obtenu des cellules de 4 individus témoins ne présentant aucun trouble psychiatrique identifié. L’analyse a porté d’une part sur des aspects morphologiques et d’autre part sur des aspects fonctionnels. Nous avons étudié l’effet des mutations sur la maturation et les caractéristiques morphologiques des épines dendritiques. Nous avons établi un protocole permettant une analyse détaillée de la morphologie en 3D des épines dendritiques et suivi leur maturation. Un résultat majeur est l’observation d’une diminution de la densité des épines sur les dendrites des neurones pyramidaux issus des patients par rapport aux témoins. Comme attendu, la maturation des épines n’est pas complètement achevée mais varie peu dans son évolution d’un individu à l’autre (témoins vs. patients). Nous avons poursuivi ces études par deux approches fonctionnelles : l’imagerie calcique et des études d’électrophysiologie. Les données électrophysiologiques sont en cours d’analyse. En conclusion, nous avons pu obtenir des cultures de neurones corticaux glutamatergiques et les maintenir en culture durant 40 jours pour effectuer différentes analyses à un stade de maturation suffisant pour la mise en évidence de phénotypes morphologiques et fonctionnels. Nous avons principalement observé une diminution de des densités synaptiques et de maturation des épines dendritiques au sein des neurones issus de patients liée à des altérations d’oscillations calciques spontanées. / Autism Spectrum Disorders (ASD) is a neurodevelopmental disorder affecting 1% of population ; characterised by impairments in social interaction and reciprocal communication as well as repetitive and stereotyped behaviors. The work of the laboratory lead to the identification of several genes associated with ASD, among which genes of the synaptic pathway such as SHANK. The SHANK proteins are scaffolding proteins of the post-synaptic density (PSD) of glutamatergic neurons and interact with several partners. In my thesis project, we were particularly interested in SHANK3 mutations. First, Shank3 mutations represent up to 2.12% of ASD cases with moderate to high ID. A SHANK3 deficit leads to the alteration of the synaptic functioning. Indeed, studies of mice KO for SHANK3 gene showed a decrease of the dendritic spines density, of the PSD size and of the expression of SHANK3 partners. My principal model of analysis consisted in the reprogrammation of fibroblasts into induced pluripotent stem cells (iPSCs). Then, the iPSCs were selectively derived into cortical neurons. Our studies were focus on the analysis of functional consequences of SHANK3 de novo mutations found within 4 patients. These mutations are heterozygous and within the exon 21. They result in a premature stop codon. In parallel, we obtained cells from 4 healthy individuals. The work was about the morphological and functional aspects. We analysed the mutations effects on the maturation and morphological caracteristics of the dendritic spines. We finalized a protocol that enabled a detailed analysis of the spine dendritic 3D morphology and their maturation follow-up. A important result was the observation of a decrease of the spine density on pyramidal neurons dendrites from patients compared to those from controls. Moreover, spines maturation was not fully accomplished but was not much different in its evolution between individuals (controls vs patients). Then, we used two functional skills : calcium imaging and electrophysiological experiments. The electrophysiological data are in progress. To conclude, we succeeded in the obtention of glutamatergic cortical neurons and to maintain them in culture during 40 days in order to realize some analysis at a sufficient maturation stage to observe morphological and functional phenotypes. We mainly observed a decrease of the dendritic spines density and maturation for the neurons from patients, with alterations of the spontaneous calcium oscillations.

Page generated in 0.061 seconds