• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 168
  • 34
  • 14
  • 9
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 284
  • 284
  • 78
  • 75
  • 46
  • 43
  • 38
  • 33
  • 33
  • 32
  • 31
  • 28
  • 27
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Entwicklung eines halbautomatisierten Verfahrens zur Detektion neuer Siedlungsflächen durch vergleichende Untersuchungen hochauflösender Satelliten- und Luftbilddaten

Reder, Johannes 18 April 2005 (has links)
Knowledge about land use and land cover represents an important information basis for various planning applications. In particular, urban and suburban regions are subject to a high dynamic development. The detection and identification of changes is therefore an important instrument to follow and accompany the developments by planning. Here, aerial photography and, increasingly, satellite images serve as an important basis for information. The recognition and mapping of changes is still a time-consuming and cost-intensive matter which is mostly realized by visual interpretation of aerial photography and to an increasing degree of high- and ultra-high-resolution satellite images. Within the scope of the present work a new, robust and largely automated process based on a statistical change analysis is developed and presented. Basis for the data are multitemporal high-resolution satellite image data. The generated suspect areas, respectively areas of change, are supposed to function as clues in order to facilitate the process of the visual interpretation of multitemporal image datasets with regard to change mapping, since only marked areas of change have to undergo further examination. Consequently, this process can be used as a tool to ease and accelerate the updating of planning bases in general and maps in particular so far realised by visual interpretation. However, the automation of the process is not only supposed to serve the purpose of saving time and cost but also to bring the interpretation process to a higher level of objectivity. In order to improve the quality of the whole process, for the preprocessing of the image data selected methods of image processing have been integrated. Through the use of additional geo-information reference data for the automated calculation of the areas of change, a further refinement of the results can be reached. The obtained results in the first time-cut (1997-1998) can be proved and verified by a different data-take (1997-2000). To reach a convenient use and a good distribution of the developed method, the process has been implemented by means of the widespread image processing software ERDAS IMAGINE. This allows to make the developed method available for other users, since it can easily be integrated into the working environment of ERDAS IMAGINE. / Das Wissen um die Landnutzung und Landbedeckung ist für planerische Anwendungsgebiete eine wichtige Informationsgrundlage. Gerade urbane und suburbane Regionen unterliegen einer hohen Entwicklungsdynamik. Das Erkennen und Aufzeigen von Veränderungen ist somit ein wichtiges Instrument um Entwicklungen zu verfolgen und planerisch zu begleiten. Luft- und zunehmend Satellitenbilder dienen hierfür als wichtige Informationsgrundlage. Das Erkennen und Kartieren von Veränderungen ist nach wie vor eine zeitaufwändige und kostenintensive Angelegenheit, die überwiegend durch visuelle Interpretation von Luft- und zunehmend auch mit hoch- und höchstauflösenden Satellitenbildern realisiert wird. In dieser Arbeit wird ein neues, robustes, weitgehend automatisiertes, auf einem statistischen Ansatz beruhendes Verfahren der Veränderungsanalyse entwickelt und vorgestellt. Die Datengrundlage bilden multitemporale, hoch auflösende Satellitenbilddaten. Die generierten Verdachts- bzw. Veränderungsflächen sollen als Anhaltspunkte fungieren, um den Prozess der visuellen Interpretation von multitemporalen Bilddatensätzen in Hinsicht auf eine Veränderungskartierung zu erleichtern, da nur als Veränderungsflächen markierte Areale einer weiteren Untersuchung unterzogen werden müssen. Das Verfahren kann somit als Werkzeug dienen, die durch visuelle Interpretation realisierte Aktualisierung von Planungsgrundlagen bzw. Kartenwerken zu erleichtern und zu beschleunigen. Die Automatisierung des Verfahrens soll jedoch nicht allein dem Zweck der Zeit- und Kostenersparnis dienen, sondern auch den Interpretationsprozess objektiver gestalten. Um die Qualität des Verfahrens zu erhöhen, werden ausgewählte Methoden der Bildverarbeitung für die Vorverarbeitung der Bilder in das Verfahren integriert. Durch das Einbinden zusätzlicher Geobasisdaten in die automatisierte Berechnung der Veränderungsflächen kann eine weitere Verbesserung der Ergebnisse erzielt werden. Die Ergebnisse, der im ersten Zeitschnitt (1997-1998) untersuchten Datensätze, werden mit Hilfe eines weiteren Zeitschnitts (1997-2000) überprüft und verifiziert. Um eine unkomplizierte Anwendung und Verbreitung der Methode zu erreichen, wurde das Verfahren mit Hilfe der weit verbreiteten Bildverarbeitungssoftware ERDAS IMAGINE realisiert. Dies ermöglicht, das Verfahren auch anderen Nutzern zur Verfügung zu stellen, da es problemlos in die Arbeitsumgebung des Bildverarbeitungssystems ERDAS IMAGINE integriert werden kann
262

Remote sensing for developing an operational monitoring scheme for the Sundarban Reserved Forest, Bangladesh <engl.>

Akhter, Mariam 02 October 2006 (has links)
Sundarban Reserved Forest in Bangladesh is playing a significant role in local and national economy and is providing protection to the coastline as well as to the indigenous people. During the past decades and also in recent time this forest was heavily disturbed by human intervention in many aspects. As a consequence the resources of the forest are fragmenting, shrinking and declining, which in turn leads to an increasing failure of satisfying increasing demands both at local and national levels. Therefore accurate and continuously updated spatial information is needed for optimising forest management and environmental planning on both levels to support the fulfilment of urgent needs of sustainability of the forest. Considering the specific topography and the poor accessibility of the forest versus the task of collecting information, remote sensing is an attractive, if not the only means of obtaining sound full-coverage spatial information on forest cover of Sundarban. This research used medium resolution Landsat ETM data of November 2000 and Landsat TM data of January 1989 to assess and monitor the forest for 1. Identification of the operational tools for mapping and monitoring the forest as well as on the examination of the reliability of the application of multitemporal satellite remote sensing data for building spatial databases on forest cover in Sundarban. 2. Based on the existing management plan of the forest as well as the spectral properties of Landsat ETM imagery a level III classification system was developed. 3. This classification strategy was tested by applying several methods to achieve the classification result with the highest accuracy and thus to build the most reliable methodology for mapping forest cover in Sundarban. 4. Forest cover change was assessed for the period of eleven years. Significant changes have been observed due to illegal removal of trees from the forest although a governmental moratorium on banning timber extraction exists since 1989. 5. Development of an operational monitoring scheme by means of multitemporal satellite imagery analysis, which will allow concerned authorities to set up sustainable and appropriate monitoring of the Sundarban Reserved Forest. / Das Schutzgebiet des Sundarban Mangrovenwaldes in Bangladesh spielt eine entscheidende Rolle in Hinsicht auf nationale und lokale sozio-ökonomische und sozio-ökologische Aspekte. Das Waldgebiet stabilisiert nicht nur die Küstenlinie, sondern schützt auch die Bevölkerung vor den Einflüssen von Flutkatastrophen. Durch menschlichen Einfluss wurde die Region während der letzten Jahrzehnte mehr und mehr unmittelbar gestört. Der Rückgang des Ertrags an Ressourcen aus dem Wald führte zu wachsender Unzufriedenheit in der von diesen Nutzungs-möglichkeiten abhängigen Bevölkerung. Um eine Optimierung des Waldmanagements durchführen zu können, werden kontinuierliche und genaue raumbezogene Daten benötigt. Betrachtet man die spezifische Topographie und die schlechte Zugänglichkeit der Waldgebiete, so bietet die Fernerkundung eine attraktive Möglichkeit, raumbezogene Informationen für die großen Flächen des Sundurban Mangrovenwaldes zu erfassen. Zur Analyse und Überwachung der Waldgebiete wurden zwei Satellitenbild-Datensätze mit mittlerer Auflösung verwendet, und zwar Landsat ETM Daten aus dem Jahre 2000 (November) sowie Landsat TM Daten aus dem Jahre 1989 (Januar). Die zentralen Aktivitäten im Rahmen der Bearbeitung der Dissertation beziehen sich auf 1. die Identifikation der notwendigen Werkzeuge für eine erfolgreiche Kartierung und Überwachung der Waldgebiete sowie Untersuchung der Zuverlässigkeit multi-temporaler Fernerkundungsdaten für den Aufbau einer Datenbasis für die Kartierung von Waldbedeckungsarten im Untersuchungsgebiet des Sunderban Mangroven-waldes, 2. die Entwicklung eines Klassifikationssystems nach dem USGS-Schlüssel (Auflösungsebene III) auf Grundlage des existierenden Managementplanes und der spektralen Qualität der Landsat ETM Satellitenbilddaten, 3. den Test der Klassifikationsstrategie durch Adaption unterschiedlicher Methoden und Optimierung in bezug auf Erzielung eines Ergebnisses in maximal erreichbarer Genauigkeit als Ausgangspunkt für den Aufbau einer Methodologie zum Monitoring des Sunderban Mangrovenwaldes, 4. die Extraktion der Veränderungen der Waldbedeckung über ein Zeitintervall von 11 Jahren mit weitreichenden Erkenntnissen zur Dynamik der Degradations-effekte, die hauptsächlich durch illegales Fällen trotz Verbot durch ein Regierungs-memorandum seit 1989 beschleunigt wird, 5. die Entwicklung einer operationellen Monitoring-Struktur mit Hilfe von multi-temporaler Satellitenbildanalyse für ein nachhaltiges und angepasstes raumbezo-genes Management des Sunderban-Mangrovenwaldes.
263

Sequential and non-sequential hypertemporal classification and change detection of Modis time-series

Grobler, Trienko Lups 10 June 2013 (has links)
Satellites provide humanity with data to infer properties of the earth that were impossible a century ago. Humanity can now easily monitor the amount of ice found on the polar caps, the size of forests and deserts, the earth’s atmosphere, the seasonal variation on land and in the oceans and the surface temperature of the earth. In this thesis, new hypertemporal techniques are proposed for the settlement detection problem in South Africa. The hypertemporal techniques are applied to study areas in the Gauteng and Limpopo provinces of South Africa. To be more specific, new sequential (windowless) and non-sequential hypertemporal techniques are implemented. The time-series employed by the new hypertemporal techniques are obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, which is on board the earth observations satellites Aqua and Terra. One MODIS dataset is constructed for each province. A Support Vector Machine (SVM) [1] that uses a novel noise-harmonic feature set is implemented to detect existing human settlements. The noise-harmonic feature set is a non-sequential hypertemporal feature set and is constructed by using the Coloured Simple Harmonic Oscillator (CSHO) [2]. The CSHO consists of a Simple Harmonic Oscillator (SHO) [3], which is superimposed on the Ornstein-Uhlenbeck process [4]. The noise-harmonic feature set is an extension of the classic harmonic feature set [5]. The classic harmonic feature set consists of a mean and a seasonal component. For the case studies in this thesis, it is observed that the noise-harmonic feature set not only extends the harmonic feature set, but also improves on its classification capability. The Cumulative Sum (CUSUM) algorithm was developed by Page in 1954 [6]. In its original form it is a sequential (windowless) hypertemporal change detection technique. Windowed versions of the algorithm have been applied in a remote sensing context. In this thesis CUSUM is used in its original form to detect settlement expansion in South Africa and is benchmarked against the classic band differencing change detection approach of Lunetta et al., which was developed in 2006 [7]. In the case of the Gauteng study area, the CUSUM algorithm outperformed the band differencing technique. The exact opposite behaviour was seen in the case of the Limpopo dataset. Sequential hypertemporal techniques are data-intensive and an inductive MODIS simulator was therefore also developed (to augment datasets). The proposed simulator is also based on the CSHO. Two case studies showed that the proposed inductive simulator accurately replicates the temporal dynamics and spectral dependencies found in MODIS data. / Thesis (PhD(Eng))--University of Pretoria, 2012. / Electrical, Electronic and Computer Engineering / unrestricted
264

Spatia-temporal dynamics in land use and habitat fragmentation in the Sandveld, South Africa

Magidi, James Takawira January 2010 (has links)
>Magister Scientiae - MSc / The Cape Floristic Region (CFR) in South Africa, is one of the world's five Mediterranean hotspots, and is also one of the 34 global biodiversity hotspots. It has rich biological diversity, high level of species endemism in flora and fauna and an unusual high level of human induced threats. The Sandveld forms part of the CFR and is also highly threatened by intensive agriculture (potato, rooibos and wheat farming), proliferation of tourism facilities, coastal development, and alien invasions. These biodiversity threats have led to habitat loss and are threatening the long-term security of surface and ground water resources. In order to understand trends in such biodiversity loss and improve in the management of these ecosystems, earth-orbiting observation satellite data were used. This research assessed landuse changes and trends in vegetation cover in the Sandveld, using remote sensing images. Landsat TM satellite images of 1990, 2004 and 2007 were classified using the maximum likelihood classifier into seven landuse classes, namely water, agriculture, fire patches, natural vegetation, wetlands, disturbed veld, and open sands. Change detection using remote sensing algorithms and landscape metrics was performed on these multi-temporal landuse maps using the Land Change ModelIer and Patch Analyst respectively. Markov stochastic modelling techniques were used to predict future scenarios in landuse change based on the classified images and their transitional probabilities. MODIS NDVI multi-temporal datasets with a 16day temporal resolution were used to assess seasonal and annual trends in vegetation cover using time series analysis (PCA and time profiling).Results indicated that natural vegetation decreased from 46% to 31% of the total landscape between 1990 and 2007 and these biodiversity losses were attributed to an increasing agriculture footprint. Predicted future scenario based on transitional probabilities revealed a continual loss in natural habitat and increase in the agricultural footprint. Time series analysis results (principal components and temporal profiles) suggested that the landscape has a high degree of overall dynamic change with pronounced inter and intra-annual changes and there was an overall increase in greenness associated with increase in agricultural activity. The study concluded that without future conservation interventions natural habitats would continue to disappear, a condition that will impact heavily on biodiversity and significant water dependent ecosystems such as wetlands. This has significant implications for the long-term provision of water from ground water reserves and for the overall sustainability of current agricultural practices.
265

Morphological Change Monitoring of Skin Lesions for Early Melanoma Detection

Dhinagar, Nikhil J. 01 October 2018 (has links)
No description available.
266

UHF-SAR and LIDAR Complementary Sensor Fusion for Unexploded Buried Munitions Detection

Depoy, Randy S., Jr. January 2012 (has links)
No description available.
267

Change Detection Using Multitemporal SAR Images

Yousif, Osama January 2013 (has links)
Multitemporal SAR images have been used successfully for the detection of different types of environmental changes. The detection of urban change using SAR images is complicated due to the special characteristics of SAR images—for example, the existence of speckle and the complex mixture of the urban environment. This thesis investigates the detection of urban changes using SAR images with the following specific objectives: (1) to investigate unsupervised change detection, (2) to investigate reduction of the speckle effect and (3) to investigate spatio-contextual change detection. Beijing and Shanghai, the largest cities in China, were selected as study areas. Multitemporal SAR images acquired by ERS-2 SAR (1998~1999) and Envisat ASAR (2008~2009) sensors were used to detect changes that have occurred in these cities. Unsupervised change detection using SAR images is investigated using the Kittler-Illingworth algorithm. The problem associated with the diversity of urban changes—namely, more than one typology of change—is addressed using the modified ratio operator. This operator clusters both positive and negative changes on one side of the change-image histogram. To model the statistics of the changed and the unchanged classes, four different probability density functions were tested. The analysis indicates that the quality of the resulting change map will strongly depends on the density model chosen. The analysis also suggests that use of a local adaptive filter (e.g., enhanced Lee) removes fine geometric details from the scene. Speckle suppression and geometric detail preservation in SAR-based change detection, are addressed using the nonlocal means (NLM) algorithm. In this algorithm, denoising is achieved through a weighted averaging process, in which the weights are a function of the similarity of small image patches defined around each pixel in the image. To decrease the computational complexity, the PCA technique is used to reduce the dimensionality of the neighbourhood feature vectors. Simple methods to estimate the dimensionality of the new space and the required noise variance are proposed. The experimental results show that the NLM algorithm outperformed traditional local adaptive filters (e.g., enhanced Lee) in eliminating the effect of speckle and in maintaining the geometric structures in the scene. The analysis also indicates that filtering the change variable instead of the individual SAR images is effective in terms of both the quality of the results and the time needed to carry out the computation. The third research focuses on the application of Markov random field (MRF) in change detection using SAR images. The MRF-based change detection algorithm shows limited capacity to simultaneously maintain fine geometric detail in urban areas and combat the effect of speckle noise. This problem has been addressed through the introduction of a global constraint on the pixels’ class labels. Based on NLM theory, a global probability model is developed. The iterated conditional mode (ICM) scheme for the optimization of the MAP-MRF criterion function is extended to include a step that forces the maximization of the global probability model. The experimental results show that the proposed algorithm is better at preserving the fine structural detail, effective in reducing the effect of speckle, less sensitive to the value of the contextual parameter, and less affected by the quality of the initial change map compared with traditional MRF-based change detection algorithm. / <p>QC 20130610</p>
268

Online Sample Selection for Resource Constrained Networked Systems

Sjösvärd, Philip, Miksits, Samuel January 2022 (has links)
As more devices with different service requirements become connected to networked systems, such as Internet of Things (IoT) devices, maintaining quality of service becomes increasingly difficult. Large data sets can be obtained ahead of time in networks to train prediction models offline, however, resulting in high computational costs. Online learning is an alternative approach where a smaller cache of fixed size is maintained for training using sample selection algorithms, allowing for lower computational costs and real-time model re-computation. This project has resulted in two newly designed sample selection algorithms, Binned Relevance and Redundancy Sample Selection (BRR-SS) and Autoregressive First, In First Out-buffer (AR-FIFO). The algorithms are evaluated on data traces retrieved from a Key Value store and a Video on Demand service. Prediction accuracy of the resulting model while using the sample selection algorithms and the time to process a received sample is evaluated and compared to the pre-existing Reservoir Sampling (RS) and Relevance and Redundancy Sample Selection (RR-SS) with and without model re-computation. The results show that, while RS maintains the lowest computational overhead, BRR-SS outperforms both RS and RR-SS in prediction accuracy on the investigated traces. AR-FIFO, with its low computational cost, outperforms offline learning for larger cache sizes on the Key Value data set but shows inconsistencies on the Video on Demand trace. Model re-computation results in reduced error rates and significantly lowered variance on the investigated data traces, where periodic model re-computation overall outperforms change detection in practicality, prediction accuracy, and computational overhead. / Allteftersom fler enheter med olika servicekrav ansluts till nätverkssystem, såsom Internet of Things (IoT) enheter, ökar svårigheten att erhålla nödvändig servicekvalitet. Nätverk kan ge upphov till stora datamängder för träning av prediktionsmodeller offline, dock till en hög beräkningskostnad. Ett alternativt tillvägagångssätt är onlineinlärning där en mindre cache av fast storlek upprätthålls för träning med hjälp av datapunkturvalsalgoritmer. Detta möjliggör lägre beräkningskostnader samt realtidsmodellomräkningar. Detta projekt har resulterat i två nydesignade datapunkturvalsalgoritmer, Binned Relevance and Redundancy Sample Selection (BRR-SS) och Autoregressive First In, First Out-buffer (AR-FIFO). Algoritmerna utvärderas på dataspår som hämtats från ett Key Value-lager och en Video on Demand-tjänst. Förutsägelseförmåga för den resulterande modellen när datapunkturvalsalgoritmerna används och tid för bearbetning av mottagen datapunkt utvärderas och jämförs med dem redan existerande Reservoir Sampling (RS) och Relevance and Redundancy Sample Selection (RR-SS), med och utan modellomräkning. RS resulterar i lägst beräkningskostnad medan BRR-SS överträffar både RS och RR-SS i förutsägelseförmåga på dem undersökta spåren. AR-FIFO, med sin låga beräkningskostnad, överträffar offlineinlärning för större cachestorlekar på Key Value-spåret, men visar inkonsekvent beteende på Video on Demand-spåret. Modellomräkning resulterar i mindre fel och avsevärt sänkt varians på dem undersökta spåren, där periodisk modellomräkning totalt sett överträffar förändringsdetektering i praktikalitet, förutsägelseförmåga och beräkningskostnad. / Kandidatexjobb i elektroteknik 2022, KTH, Stockholm
269

Les processus d'apprentissage fondamentaux sont-ils prédicteurs du neurodéveloppement?

Deguire, Florence 05 1900 (has links)
Thèse de doctorat présenté en vue de l'obtention du doctorat en psychologie - recherche intervention, option neuropsychologie clinique (Ph.D) / L’enfance représente une période charnière dans le développement du cerveau en raison des multiples changements qui s’y opèrent. En considérant que c’est au cours des deux premières années de vie que le cerveau est le plus sensible aux interventions, nous devrions chercher à intervenir plus tôt dans le développement des enfants. Pour ce faire, il est nécessaire d’identifier des biomarqueurs, c’est-à-dire des mesures objectives permettant d’évaluer les processus biologiques normaux et pathologiques du cerveau, afin d’éventuellement être en mesure de reconnaitre, en bas âge, les enfants à risque de connaître une perturbation de leur développement cognitif. L’électroencéphalographie (EEG), et plus particulièrement les réponses cérébrales d’apprentissage, constituent des avenues intéressantes pour l’identification de biomarqueurs étant donné leur rôle clé dans le développement perceptuel et cognitif des enfants. De plus, les paramètres EEG du développement typique du cerveau sont relativement bien compris, ce qui fournit une base intéressante pour étudier le développement atypique. Le premier article de cette thèse avait pour objectif de déterminer la courbe développementale de deux types de réponses cérébrales d’apprentissage, soit les réponses cérébrales à la répétition ainsi que la détection du changement, afin de caractériser leur développement typique. Pour ce faire, nous avons utilisé une tâche de type oddball en EEG chez 43 enfants contrôles suivis à trois reprises entre l’âge de 3 mois et l’âge de 4 ans. Les résultats ont permis de démontrer un patron de réponse en forme de U semblable à travers les âges, c’est-à-dire une réponse de suppression neuronale entre la première et la deuxième présentation du stimulus suivi d’une réponse de détection du changement au stimulus déviant. Ceci révèle un développement relativement stable des réponses cérébrales chez les sujets contrôles. Dans le second article, le premier objectif était de déterminer la valeur prédictive de ces réponses cérébrales d’apprentissage, mesurées dans les deux premières années de vie, en les mettant en relation avec le fonctionnement intellectuel et adaptatif à l’âge de 4 ans, chez les mêmes 43 enfants contrôles et un groupe composé de 20 enfants macrocéphales. Les résultats révèlent que lorsque mesurée lors de la première année de vie, un patron de réponses cérébrales en forme de U est lié positivement avec le fonctionnement adaptatif à 4 ans. Un deuxième objectif était de déterminer dans quelle mesure la croissance cérébrale lors de la première année de vie est un facteur de variabilité interindividuelle qui influence les réponses cérébrales d’apprentissage entre 3 mois et 2 ans. Un impact négatif d’une croissance cérébrale accrue sur les réponses cérébrales à la répétition et de détection du changement a été observé, mais uniquement dans la période 0-12 mois. Il semble donc que les réponses cérébrales d’apprentissage auraient le potentiel de servir de biomarqueur dès la première année de vie puisqu’elles sont liées au fonctionnement adaptatif et sont sensibles au rythme de croissance du cerveau. Cette thèse contribue à améliorer nos connaissances sur les réponses cérébrales d’apprentissage, notamment en caractérisant leur courbe développementale durant l’enfance. Nous avons également contribué à l’avancement de la recherche sur les biomarqueurs EEG en mesurant le pouvoir prédictif de ces réponses sur le fonctionnement adaptatif des enfants d’âge préscolaire ainsi que leur sensibilité aux différences interindividuelles telles que la croissance cérébrale. / Childhood is a pivotal period in the brain’s development due to the many changes it undergoes. Considering that the brain is the most susceptible to interventions during the first two years of life, we should aim to intervene sooner in infant’s development. Therefore, there is a need to establish biomarkers, i.e., a characteristic that is objectively measured and evaluated, and that can serve as an indication of normal or pathogenic biological processes, that would allow for earlier diagnosis. Electroencephalography (EEG), and more specifically cerebral learning responses, are interesting prospects for biomarker identification given their key role in children's perceptual and cognitive development. Moreover, EEG typical patterns of brain development are well established, then allowing the study of atypical brain development. The aim of the first article in this thesis was to investigate the developmental course of two types of cerebral learning responses, i.e., repetition and change detection responses. To do so, we used an EEG oddball task in 43 healthy children who were tested three times from the age of 3 months to 4 years. It allowed us to characterize the typical development of these two cerebral responses and establish response patterns. The results showed a similar U-shaped response pattern in infants and children of all ages, i.e., a repetition suppression response between the first and second stimulus presentation followed by a change detection response to the deviant stimulus. This suggests a relatively stable developmental course of repetition and change detection responses in healthy subjects. In the second article, the first objective was to determine the predictive value of these brain learning responses, measured during the two first years of life, on intellectual and adaptive functioning at age 4, in the same 43 healthy children and a group of 20 macrocephalic children. The results reveal that when measured in the first year of life, a U-shaped brain responses pattern is positively related to adaptive functioning at age 4. A second objective was to assess whether brain growth during the first year of life is a factor of interindividual variability that influences cerebral learning responses between 3 months and 2 years of age. A negative impact of increased brain growth on repetition and change detection responses was observed, but only in the 0–12-month period. Thus, it appears that cerebral learning responses may have the potential to be biomarkers in the first year of life since they are associated with adaptive functioning and are sensitive to the brain growth rate. This thesis contributes to improving our knowledge of cerebral learning responses, notably by characterizing their developmental course during childhood. We also contributed to the advancement of research on EEG biomarkers by measuring the predictive power of these responses on preschoolers’ adaptive functioning as well as their sensitivity to interindividual differences such as brain growth.
270

Ecosystem services in a rural landscape of southwest Ohio

Lin, Meimei 10 December 2012 (has links)
No description available.

Page generated in 0.0832 seconds