• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 39
  • 7
  • 3
  • 1
  • Tagged with
  • 95
  • 42
  • 31
  • 28
  • 26
  • 22
  • 17
  • 16
  • 14
  • 14
  • 13
  • 12
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Configurations dépendantes du temps dans le formalisme perturbatif de la théorie des cordes

Durin, Bruno 31 January 2006 (has links) (PDF)
Ce mémoire présente l'étude de configurations dépendantes du temps dans le formalisme de première quantification de la corde. Ces configurations sont exactes, c'est-à-dire qu'il est possible de trouver des solutions explicites de la théorie conforme à deux dimensions correspondante. Nous pouvons alors calculer perturbativement les amplitudes de corde et nous en servir pour comprendre l'interaction entre la géométrie dépendante du temps et la corde quantifiée. Après une présentation dans le premier chapitre de la démarche qui a mené à cette étude, le formalisme perturbatif de première quantification est exposé de manière détaillée dans un second chapitre et une partie des difficultés techniques sont résolues. Dans un troisième chapitre, nous expliquons les phénomènes physiques correspondant aux différentes configurations et nous exposons les résultats que nous avons obtenus. Enfin, un bref chapitre conclut et ouvre les perspectives de ce travail de thèse.
32

Supercordes en espace-temps courbe et theories conformes

Israel, Dan 20 September 2004 (has links) (PDF)
Cette these est consacree a l'etude des theories de supercordes dans les espaces-temps courbes. Nous etudions en particulier l'espace des modules des solutions de NS5-branes et de cordes fondamentales, a l'aide des techniques de deformations marginales de theories conformes. Parmi les exemples etudies se trouvent les espaces-temps anti-de Sitter a trois ou deux dimensions, differentes limites de decouplage de la theorie des petites cordes et l'univers de Goedel. Nous etudions egalement les fonctions de partitions de ces theories conformes, ainsi que les D-branes de certaines d'entre elles. Les applications holographiques potentielles de ces theories sont soulignees.
33

L'Approche Twistorielle aux Compactifications de la Théorie des Cordes

Alexandrov, Sergey 05 March 2012 (has links) (PDF)
Un des aspects fascinants de la théorie des cordes, c'est qu'elle vit dans l'espace-temps de dix dimensions. Mais cela implique que, pour la relier à des observations phénoménologiques, elle devrait ȇtre compactifiées à quatre dimensions. Un cas particulièrement riche, mais toujours faisable correspond à la compactification sur une variété de Calabi-Yau qui donne à basse énergie une théorie effective avec la supersymétrie N=2. L'action de cette théorie est complètement déterminée par la métrique sur son espace des modules qui comporte deux composantes correspondant aux multiplets vectoriels et hypermultiplets. La première est classiquement exacte et bien comprise, alors que la dernière reçoit des corrections quantiques et est connue de porter une géométrie compliquée quaternion-Kählerrienne. Dans cette thèse, nous présentons nos résultats sur la description complète non-perturbative de l'espace des modules des hypermultiplets. Nous montrons comment toutes les corrections quantiques, qui comprennent des contributions perturbatives d'une boucle ainsi que celles non-perturbatives venant des D-branes et NS5-branes, sont incorporées dans le cadre de l'approche twisteurielle. Ce cadre, que nous élaborons ici en détail, fournit une description mathématique puissante des variétés hyperkähleriennes et quaternion-Kähleriennes et il est indispensable pour la formulation de la géométrie non-perturbative de l'espace des modules des hypermultiplets. Nous présentons également de nouveaux résultats sur la dualité-S, symétrie miroir quantique, les connexions à des modèles intégrables et aux cordes topologiques.
34

Modèles de matrices et problèmes de bord dans la gravité de Liouville

Bourgine, Jean-Emile 18 June 2010 (has links) (PDF)
L'objet de cette thèse est l'étude de divers problèmes de bord de la gravité bidimensionnelle en utilisant à la fois les méthodes de la gravité de Liouville et les modèles de matrices aléatoires. Elle s'articule autour de deux grands thèmes : le modèle $O(n)$ matriciel et la théorie des cordes en deux dimensions. La première partie expose la méthode développée pour analyser les conditions de bord des modèles statistiques sur réseaux. Celle-ci consiste à utiliser la formulation matricielle du modèle sur réseau aléatoire afin de dériver des équations de boucle dont on prend la limite continue. L'accent est mis sur l'étude des conditions de bords anisotropes récemment introduites pour le modèle $O(n)$. Cette méthode a permis d'obtenir le diagramme de phase associé aux conditions de bord, ainsi que la dimension des opérateurs de bord et le comportement sous les \english{flows} du groupe de renormalisation. Ces résultats peuvent être étendus à d'autres modèles statistiques tels que les modèles ADE. En seconde partie, on s'intéresse à une gravité de Liouville Lorentzienne couplée à un boson libre. Ce modèle peut se réinterpréter comme une théorie des cordes dans un espace cible à deux dimensions dont la version discrète est donnée par une mécanique quantique matricielle (MQM). L'amplitude de diffusion de deux cordes longues à l'ordre dominant est obtenue en utilisant le formalisme chiral de la MQM, le résultat trouvé est en accord avec les calculs effectués dans la théorie continue. En outre, une conjecture a été émise concernant l'amplitude d'un nombre quelconque de cordes longues.
35

Trous noirs en théorie des cordes : vers une compréhension de la gravité quantique

Ruef, Clément 18 June 2010 (has links) (PDF)
Dans cette thèse je présente les travaux effectués lors de mon doctorat à l'Institut de Physique Théorique (IPhT) du CEA de Saclay, sous la direction de Iosif Bena. Ceux-ci ont pour cadre la théorie des cordes, et plus précisément la supergravité à dix et onze dimensions, comme limite de basse énergie de la théorie des cordes. La première partie concerne l'étude des trous noirs et microétats de trous noirs supersymétriques à trois charges. En utilisant une D-brane supersymétrique appelée supertube, nous avons effectué une approche test et montré que cette approche capture dans tous les cas connus les propriétés physiques de la solution complête de supergravité. Nous avons aussi prouvé que le supertube, quand il est placé dans un fond ayant des charges magnétiques, voit son entropie augmentée par rapport à celle qu'il a en espace plat. Les solutions de supergravité sourcées par des supertubes étant régulières et sans horizon, elles peuvent être vues, dans le contexte du “fuzzball proposal”, comme des microétats de trous noirs. Cette entropie augmentée pourrait donc contribuer pour une large part dans le cadre d'un comptage microscopique de l'entropie de trou noir, . Dans la deuxième partie de la thèse, je présente une nouvelle classe de solutions non supersymétriques de supergravité `a onze dimensions, appelées solutions “à branes flottantes”. Les équations donnant ces nouvelles solutions généralisent les équations BPS, et ont, comme ces dernières, l'énorme avantage d'être partiellement du premier ordre et linéaires. Les équations BPS, et donc toutes les solutions supersymétriques, se retrouvent comme une sous-famille des équations à branes flottantes. Certaines de ces nouvelles solutions ont un horizon et sont donc des trous noirs – avec des topologies d'horizon variées – mais certaines sont complètement régulières et sans horizons et correspondraient à des microétats de trous noirs non extrémaux.
36

Theories des champs conformes non rationnelles et applications a la theorie des cordes.

Jego, Charles 01 June 2007 (has links) (PDF)
Cette these est dediee a l'etude de quelques theories conformes non rationnelles, qui apparaissent dans le cadre de la theorie des cordes. Contrairement aux theories conformes rationnelles, qui ont beneficie de tres nombreuses etudes dans les toutes dernieres decennies, les theories non rationnelles ne sont pas encore bien comprises. Une meilleure comprehension est pourtant necessaire pour mieux apprehender la theorie des cordes dans des fonds courbes non compacts, et pour pouvoir a terme s'attaquer a des problemes cosmologiques. Dans la mesure ou la these a frequemment recours a des notions et a des resultats de la theorie des groupes de Lie et de la theorie conforme des champs, des introductions detaillees a ces domaines sont presentees a l'attention des lecteurs qui ne sont pas familiarise avec eux. La these presente ensuite le travail qui a ete realise au cours du doctorat. Ce travail s'est attaque a des espaces presentant pour symetrie l'algebre de Heisenberg, a une extension de la formule de Verlinde pour des theories conformes non rationnelles (comme H_3^+), et aux cordes ouvertes rigides contraintes sur des orbites co-adjointes d'algebres de Lie.
37

Formation et agglomération de particules d'hydrate de gaz dans une émulsion eau dans huile : Etude expérimentale et modélisation

Le Ba, Hung 15 December 2009 (has links) (PDF)
Les hydrates de gaz sont des composés solides formés à partir de molécules de gaz emprisonnées dans des structures cristallines formées par des molécules d'eau reliées par liaisons hydrogène. Ils sont stables sous des conditions de haute pression et de basse température. Dans les conduites pétrolières, la formation d'hydrate de gaz peut être responsable du colmatage des conduites et du blocage des vannes. Pour éviter leur cristallisation, il existe plusieurs solutions : l'isolation ou le réchauffage de la conduite pétrolière ainsi que l'injection d'additifs cinétiques ou thermodynamiques. Une autre solution envisagée est l'utilisation d'additifs anti-agglomérants. Il s'agit d'agents tensio-actifs qui favorisent d'abord la formation d'une émulsion eau dans huile et ensuite limitent l'agglomération entre les cristaux une fois formés. De cette façon, la taille des particules d'hydrates serait limitée par la taille des gouttelettes d'eau dans l'émulsion. Cette méthode a été utilisée dans les travaux de Camargo (2001) à l'IFP et puis de Fidel-Dufour (2004) à l'ENSM de Saint-Etienne. Cette thèse est une étude consacrée à la caractérisation du couplage entre la cristallisation des hydrates et la rhéologie des écoulements pétroliers diphasiques (émulsion eau dans huile) laminaires ou turbulents dont l'objectif final est la production d'un modèle de cristallisation en écoulement. Elle s'appuie sur les mesures réalisées à l'aide de la sonde FBRM (Focused Beam Reflectance Measurement) qui permet des mesures en longueurs de cordes (CLD) in-situ lors de la formation d'hydrates en systèmes dispersés. La formation des hydrates de gaz en écoulement est étudiée de manière expérimentale sur deux dispositifs : une boucle de circulation Archimède située à l'ENSM-SE et une boucle de circulation Lyre à l'IFP Lyon. Les résultats obtenus avec les deux dispositifs sont comparés. La plus grande partie de ce travail a porté sur l'interprétation des mesures de longueurs de corde de la FBRM. Une série d'algorithmes permettant de générer des agrégats aléatoires ont été élaborés, suivis du calcul de leurs CLD. Ces CLD sont comparées avec les CLD obtenues expérimentalement permettant ainsi le suivi de l'agglomération pendant la cristallisation en écoulement.
38

Vers une approche interculturelle de l'enseignement de l'orchestre à cordes de la première secondaire

Laurin, Chantal 12 1900 (has links) (PDF)
L'augmentation du flux migratoire a amené plusieurs transformations tant politiques, que sociales, et éducationnelles au sein de la société québécoise. Sur le plan scolaire, l'école doit prendre en compte l'augmentation de la diversité ethnoculturelle. Dans un tel contexte, les acteurs de l'école québécoise, plus précisément les directions, les directions-adjointes et les enseignants doivent revoir les approches pédagogiques, mais aussi le matériel didactique à proposer aux élèves. Dans cette perspective, cette recherche vise à proposer des pratiques pédagogiques innovantes en enseignement de la musique de la première secondaire en contexte pluriculturel. Plus particulièrement, elle propose un modèle d'enseignement favorisant l'apprentissage de l'orchestre à cordes dans une perspective d'éducation interculturelle. Dans cette optique, les objectifs découlant de la question centrale de notre recherche sont : Objectif 1 : Développer un cadre de références théorique et conceptuel qui, inspiré par les contenus d'enseignement/apprentissage, permettrait aux élèves inscrits en musique orchestre à cordes de la première secondaire, à devenir des passeur culturel, Objectifs 2: Opérationnaliser, à partir de ses critères constitutifs, la sélection des pièces musicales à apprécier et à interpréter et/ou la création de matériel didactique et/ou pédagogique répondant aux exigences du programme de formation de l'école québécoise du MELS (2006), Objectif 3 : Proposer des planifications annuelles qui prendront en compte des contenus de savoir, de savoir-faire et de savoir-être. Cette recherche est de type qualitatif et exploratoire. En s'inspirant du modèle de Musique-Culture tel que développé par Titon (2009), du concept de passeur de culture de Zakhartchouk (1999), de la compétence de communication interculturelle de Lussier (2008), et des trois compétences disciplinaires du MELS (2006) nous avons élaboré des grilles d'analyse qui nous ont permis de procéder dans un premier temps à l'analyse technique des pièces musicales, puis à l'analyse sémantique du matériel audio, visuel, audio-visuel et écrit. Cette étude a permis de démontrer que certains critères peuvent aider les enseignants à mieux sélectionner le matériel proposé en classe par une approche interculturelle de l'enseignement de la musique (orchestre à cordes). Cette dernière a également démontré que l'éducation musicale interculturelle ne suggère pas seulement d'acquérir des connaissances culturellement diversifiés, mais de percevoir ces contenus de connaissance comme des ressources et des défis stimulants à relever plutôt que des problèmes difficiles à résoudre. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : éducation musicale interculturelle, orchestre à cordes, passeur de culture, compétence à la communication interculturelle.
39

D-branes et orientifolds dans des espaces courbes ou dépendant du temps

Couchoud, Nicolas 01 October 2004 (has links) (PDF)
Dans cette thèse nous étudions la théorie des cordes en présence de<br />D-branes et éventuellement d'orientifolds dans des espaces courbes ou dépendants du temps. Notre étude vise à comprendre certains aspects des espaces courbes et dépendant du temps, notamment à cause de leur importance en cosmologie.<br /><br />Le premier chapitre introduit quelques bases de la théorie des cordes.<br /><br />Le deuxième chapitre étudie les cordes non orientées sur les groupes compacts SU(2) et SO(3) : après un rappel des résultats connus sur les D-branes dans ces espaces, nous présentons nos résultats sur la position des orientifolds et leur interaction avec les cordes ouvertes et fermées.<br /><br />Le troisième chapitre étudie les D-branes dans certains fonds de type Ramond-Ramond, en utilisant la S-dualité qui les relie à des fonds de type Neveu-Schwarz, où on sait faire les calculs.<br /><br />Le dernier chapitre considère les cordes sur une D-brane parcourue par une onde plane, et introduit les outils y permettant l'étude des interactions.
40

Du développement topologique des modèles de matrices à la théorie des cordes topologiques:<br /> combinatoire de surfaces par la géométrie algébrique.

Orantin, Nicolas 13 September 2007 (has links) (PDF)
Le modèle à deux matrices a été introduit pour étudier le modèle d'Ising sur surface aléatoire. Depuis, le lien entre les modèles de matrices et la combinatoire de surfaces discrétisées s'est beaucoup développé Cette thèse a pour propos d'approfondir ces liens et de les étendre au delà des modèles de matrices en suivant l'évolution de mes travaux de recherche. Tout d'abord, je m'attache à définir rigoureusement le modèle à deux matrices hermitiennes formel donnant accès aux fonctions génératrices de surfaces discrétisées portant une structure de spin. Je montre alors comment calculer, par des méthodes de g'eométrie algébrique, tous les termes du développement topologique des observables comme formes différentielles définies sur une courbe algébrique associée au modèle: la courbe spectrale. Dans un second temps, je montre comment, imitant la construction du modèle à deux matrices, on peut définir de telles formes différentielles sur n'importe quelle courbe algébrique possédant de nombreuses propriétés d'invariance sous les déformations de la courbe algébrique considérée. En particulier, on peut montrer que si cette courbe est la courbe spectrale d'un modèle de matrices, ces invariants reconstituent les termes des développements topologiques des observables du modèle. Finalement,<br /><br />je montre que pour un choix particulier des paramètres, ces objets peuvent être rendus invariants modulaires et sont solutions des équations d'anomalie holomorphe de la théorie de Kodaira-Spencer donnant un nouvel élément vers la preuve de la conjecture de Dijkgraaf-Vafa.

Page generated in 0.0372 seconds