• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 12
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 48
  • 48
  • 17
  • 14
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Studium dielektrických vlastností struktur tenkých vrstev organických materiálů / Study of dielectrical properties of organic material thin films

Pospíšil, Jan January 2016 (has links)
The dissertation is focused on the study of electric and especially dielectric properties of thin film organic materials with their huge potential for optoelectronics and other industrial sectors. The theoretical part deals with the use of organic materials in organic photovoltaic cells, the methods of deposition techniques and characterization. The theoretical knowledge of the dielectric spectroscopy, including methods for determining the physical properties and evaluation of experimental data are also described. The experimental part is devoted to the study of small molecule organic solar cells with bulk heterojunction composed of electron donor molecule of DPP(TBFu)2 and electron acceptor fullerene derivatives, such as PC60BM, PC70BM and TC60BM. The experimental part is divided into two main parts. The first part deals with the study of processes occurring at the interface between the active layer and the contact; the second part is focused on transport processes inside the structure of photovoltaic cells and also contains a study of perovskite solar cells.
22

Studium elektrických a dielektrických vlastností plynových senzorů na bázi iontových kapalin / The study of the electrical and dielectric properties of gas sensors based on ionic liquids

Maráčková, Lucie January 2017 (has links)
This diploma´s thesis is focused on a study of electrical and dielectric properties of gas sensors based on ionic liquids. Measurements were done on two different types of OECT substrates (0099 and 0160). Three ionic liquids and physiological solution PBS were chosen as electrolytes. Direct current current-voltage characteristic was measured. Switching rations of transistors with this electrolyte were determined by current-voltage characteristic. Alternating resistivity dependence on frequency were measured as well. Better properties showed OECT 0099 substrates.
23

Křemíkové sluneční články: experimentální studium a modelování základních materiálových parametrů / Silicon solar cells: methods for experimental study and evaluation of material parameters in advanced structures

Holovský, Jakub January 2012 (has links)
This work concerns with today's challenges of photoelectrical characterization methods in the research and development of thin film silicon solar cells. Relevant results are obtained only when photocurrent spectroscopy and measurement of current-voltage characteristics, are applied on the real structures that can however be multi-layered, multi-junction devices with nanostructured interfaces. Analytical and numerical optical models comprising light scattering are used for analysis of light absorption and for evaluation of optical absorption coefficient of silicon layers in sub-gap region. The slope of absorption edge and residual absorption in mid-gap indicate material disorder and defect density. Based on the investigation of electrical interaction between sub-cells in the dual-junction solar cell we developed new methods of evaluation of photocurrent spectra and current-voltage characteristics individually for each sub-cell with no need to contact them directly. Usability of Fourier Transform Photocurrent Spectroscopy as a robust method for photocurrent spectroscopy of amorphous silicon is thoroughly analyzed here. The issues of frequency dependence are addressed in detail and comparison with photothermal deflection spectroscopy is made.
24

Characterization of Electrical Properties of Thin-Film Solar Cells

Awni, Rasha A. January 2020 (has links)
No description available.
25

Caractérisations de matériaux et tests de composants des cellules solaires à base des nitrures des éléments III-V / Material characterizations and devices tests of solar cells based on III-V elements nitrides

Gorge, Vanessa 02 May 2012 (has links)
Parmi les nitrures III-V, le matériau InGaN a été intensément étudié depuis les années 2000 pour des applications photovoltaïques, en particulier pour des cellules multi-jonctions, grâce à son large gap modulable pouvant couvrir quasiment tout le spectre solaire. On pourrait alors atteindre de hauts rendements tout en assurant de bas coûts. Cependant, l’un des problèmes de l’InGaN est l’absence de substrat accordé en maille provoquant une grande densité de défauts et limitant ainsi les performances des composants. Nous avons donc étudié la faisabilité de cellules solaires simples jonctions à base d’InGaN sur des substrats alternatifs comme le silicium et le verre afin de baisser les coûts et d’avoir de larges applications. Afin d’adapter l’InGaN sur ces substrats alternatifs, nous avons utilisé une couche tampon en ZnO. Ce travail a été réalisé dans le cadre du projet ANR NewPVonGlass. Plus particulièrement, dans ce projet, mon travail avait pour objectifs de réaliser des caractérisations électriques et optiques des matériaux et des composants. Les deux premières parties de cette thèse introduisent le matériau InGaN et l’effet photovoltaïque. Les techniques de caractérisation utilisées sont expliquées dans le troisième chapitre. Ensuite, les résultats obtenus lors de la caractérisation cristalline du matériau InGaN sont présentés en fonction du substrat, de la concentration d’indium et de l’épaisseur de la couche. Puis, la cinquième partie développe les caractérisations des premières cellules à base d’InGaN sur saphir. Enfin, dans le dernier chapitre, des simulations de cellules solaires à base d’InGaN ont été réalisées. Le modèle développé nous a permis d’optimiser la structure et le dopage du composant et de déterminer les paramètres critiques. Nous montrons donc, dans ce travail, le développement d’une cellule solaire à base d’InGaN : des caractérisations des matériaux de base à celles des cellules solaires, en passant par la modélisation. / Among III-V nitrides, the InGaN material has intensively been studied since the year 2000 for photovoltaic applications, in particular for multi-junction solar cells, thanks to its large tunable band gap covering almost the entire solar spectrum. Then, it will be possible to reach high efficiency and low cost. However, one of the problems of InGaN material is the absence of lattice-matched substrate leading to high defect density which limits device performances. We have thus studied the feasibility of single junction InGaN based solar cells on alternative substrate such as silicon and glass in order to lower the price and to benefit from their wide application fields. To adapt InGaN material on these new substrates, we have utilized ZnO buffer layer. This work has been carried out within the framework of the ANR project NewPVonGlass. More particularly, in this project, I was in charge of the electrical and optical characterizations of the materials and devices. In the two first parts of this manuscript, the InGaN material and the photovoltaic effect are introduced. Then, the characterization techniques are explained in the third chapter. In the fourth part, the results obtained during crystalline characterization of the InGaN materials are presented depending on the substrate, the indium percentage and the InGaN layer thickness. Then, the fifth chapter presents the first InGaN-based solar cell characteristics on sapphire substrate. Finally, in the last part, simulations of InGaN-based solar cell have been performed. The developed model was able to optimize the structure and to determine the critical parameters. Thus, we have shown in this work the development of an InGaN-based solar cell from the base material characterizations to the device tests, through modeling.
26

On the Zero and Low Field Vortex Dynamics : An Experimental Study of Type-II Superconductors

Festin, Örjan January 2003 (has links)
<p>Dynamic properties of type-II superconductors have been experimentally studied in zero and low magnetic fields using SQUID magnetometry and <i>I–V</i> measurements.</p><p>In zero magnetic field close to the critical temperature, the physical properties of type-II superconductors are dominated by spontaneously created vortices. In three dimensions (3D) such vortices take the form of vortex loops and in two dimensions (2D) as vortex-antivortex pairs.</p><p>The 2D vortex dynamics has been probed using mutual inductance and flux noise measurements on YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> (YBCO) and MgB<sub>2</sub> thin films in zero and low magnetic fields. In such measurements, information about vortex correlations is obtained through a temperature dependent characteristic frequency, below (above) which the vortex movements are uncorrelated (correlated). The results obtained in zero magnetic field indicate that sample heterogeneities influence the vortex physics and hinder the divergence of the vortex-antivortex correlation length.</p><p>In low magnetic fields the vortex dynamics is strongly dependent on the applied magnetic field and a power law dependence of the characteristic frequency with respect to the magnetic field is observed. The results indicate that there is a co-existence of thermally and field generated vortices.</p><p>The <i>I–V</i> characteristics of untwinned YBCO single crystals show that only a small broadening of the transition region influences the length scale over which the vortex movements are correlated. The dynamic and static critical exponents therefore exhibit values being larger in magnitude as compared to values predicted by relevant theoretical models. The results also suggest that the copper oxide planes in YBCO decouple slightly below the mean field critical temperature and hence, the system has a crossover from 3D to 2D behaviour as the temperature is increased. </p><p>From temperature dependent DC-magnetisation measurements performed on untwinned YBCO single crystals in weak applied fields, detailed information about the critical current density and the irreversibility line is obtained.</p>
27

On the Zero and Low Field Vortex Dynamics : An Experimental Study of Type-II Superconductors

Festin, Örjan January 2003 (has links)
Dynamic properties of type-II superconductors have been experimentally studied in zero and low magnetic fields using SQUID magnetometry and I–V measurements. In zero magnetic field close to the critical temperature, the physical properties of type-II superconductors are dominated by spontaneously created vortices. In three dimensions (3D) such vortices take the form of vortex loops and in two dimensions (2D) as vortex-antivortex pairs. The 2D vortex dynamics has been probed using mutual inductance and flux noise measurements on YBa2Cu3O7 (YBCO) and MgB2 thin films in zero and low magnetic fields. In such measurements, information about vortex correlations is obtained through a temperature dependent characteristic frequency, below (above) which the vortex movements are uncorrelated (correlated). The results obtained in zero magnetic field indicate that sample heterogeneities influence the vortex physics and hinder the divergence of the vortex-antivortex correlation length. In low magnetic fields the vortex dynamics is strongly dependent on the applied magnetic field and a power law dependence of the characteristic frequency with respect to the magnetic field is observed. The results indicate that there is a co-existence of thermally and field generated vortices. The I–V characteristics of untwinned YBCO single crystals show that only a small broadening of the transition region influences the length scale over which the vortex movements are correlated. The dynamic and static critical exponents therefore exhibit values being larger in magnitude as compared to values predicted by relevant theoretical models. The results also suggest that the copper oxide planes in YBCO decouple slightly below the mean field critical temperature and hence, the system has a crossover from 3D to 2D behaviour as the temperature is increased. From temperature dependent DC-magnetisation measurements performed on untwinned YBCO single crystals in weak applied fields, detailed information about the critical current density and the irreversibility line is obtained.
28

Charge Transport through Organized Organic Assemblies in Confined Geometries

Schuckman, Amanda Eileen 2011 May 1900 (has links)
Organic molecules such as porphyrins and alkanethiols are currently being investigated for applications such as sensors, light-emitting diodes and single electron transistors. Porphyrins are stable, highly conjugated compounds and the choice of metal ion and substituents bound to the macrocycle as well as other effects such as chemical surrounding and cluster size modulate the electronic and photonic properties of the molecule. Porphyrins and their derivatives are relatively non-toxic and their very rich photo- and electro-chemistry, and small HOMO-LUMO gaps make them outstanding candidates for use in molecularly-enhanced electronic applications. For these studies, self-assembled tri-pyridyl porphyrin thiol derivatives have been fully characterized on Au(111) surfaces. A variety of surface characterization techniques such as Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy (STM), FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS) have been implemented in order to obtain information regarding the attachment orientation based on the angle and physical height of the molecule, conductivity which is determined based on the apparent height and current-voltage (I-V) measurements of the molecule, conductance switching behavior due to conformational or other effects as well as the stability of the molecular ensembles. Specifically, the transport properties of free base and zinc coordinated tri-pyridyl porphyrin thiol molecular islands inserted into a dodecanethiol matrix on Au(111) were investigated using STM and cross-wire inelastic electron tunneling spectroscopy (IETS). The zinc porphyrin thiol islands observed by STM exhibited reversible bias induced switching at high surface coverage due to the formation of Coulomb islands of ca. 10 nm diameter driven by porphyrin aggregation. Low temperature measurements (~ 4 K) from crossed-wire junctions verified the appearance of a Coulomb staircase and blockade which was not observed for single molecules of this compound or for the analogous free base. Scanning probe lithography via nanografting has been implemented to directly assemble nanoscale patterns of zinc porphyrin thiols and 16-mercapotohexadecanoic acid on Au surfaces. Matrix effects during nanopatterning including solvent and background SAMs have been investigated and ultimately ~ 10 nm islands of zinc porphyrins have been fabricated which is the optimal size for the observed switching effect.
29

Organic modification of Metal/Semiconductor contacts

Henry Alberto, Mendez Pinzon 10 August 2006 (has links) (PDF)
In the present work a Metal / organic / inorganic semiconductor hybrid heterostructure (Ag / DiMe−PTCDI / GaAs) was built under UHV conditions and characterised in situ. The aim was to investigate the influence of the organic layer in the surface properties of GaAs(100) and in the electrical response of organic−modified Ag / GaAs Schottky diodes. The device was tested by combining surface−sensitive techniques (Photoemission spectroscopy and NEXAFS) with electrical measurements (current−voltage, capacitance−voltage, impedance and charge transient spectroscopies). Core level examination by PES confirms removal of native oxide layers on sulphur passivated (S−GaAs) and hydrogen plasma treated GaAs(100) (H+GaAs) surfaces. Additional deposition of ultrathin layers of DiMe−PTCDI may lead to a reduction of the surface defects density and thereby to an improvement of the electronic properties of GaAs. The energy level alignment through the heterostructure was deduced by combining UPS and I−V measurements. This allows fitting of the I−V characteristics with electron as majority carriers injected over a barrier by thermionic emission as a primary event. For thin organic layers (below 8 nm thickness) several techniques (UPS, I−V, C−V, QTS and AFM) show non homogeneous layer growth, leading to formation of voids. The coverage of the H+GaAs substrate as a function of the nominal thickness of DiMe−PTCDI was assessed via C−V measurements assuming a voltage independent capacitance of the organic layer. The frequency response of the device was evaluated through C−V and impedance measurements in the range 1 kHz−1 MHz. The almost independent behaviour of the capacitance in the measured frequency range confirmed the assumption of a near geometrical capacitor, which was used for modelling the impedance with an equivalent circuit of seven components. From there it was found a predominance of the space charge region impedance, so that A.C. conduction can only takes place through the parallel conductance, with a significant contribution of the back contact. Additionally a non linear behaviour of the organic layer resistance probably due to the presence of traps was deduced. ( ) ω ' R QTS measurements performed on the heterostructure showed the presence of two relaxations induced by deposition of the organic layer. The first one is attributed to the presence of a deep trap probably located at the metal / organic interface, while the second one has very small activation energy ( ~ 20 meV) which are probably due to disorder at the organic film. Those processes with small activation energies proved to be determinant for fitting the I−V characteristics of DiMe−PTCDI organic modified diodes using the expressions of a trapped charge limited current regime TCLC. Such a model was the best analytical approach found for fitting the I−V response. Further improving probably will involve implementation of numerical calculations or additional considerations in the physics of the device.
30

Electrical characterization of ZnO and metal ZnO contacts

Mtangi, Wilbert 11 February 2010 (has links)
The electrical properties of ZnO and contacts to ZnO have been investigated using different techniques. Temperature dependent Hall (TDH) effect measurements have been used to characterize the as-received melt grown ZnO samples in the 20 – 330 K temperature range. The effect of argon annealing on hydrogen peroxide treated ZnO samples has been investigated in the 200 – 800oC temperature range by the TDH effect measurement technique. The experimental data has been analysed by fitting a theoretical model written in Matlab to the data. Donor concentrations and acceptor concentrations together with the associated energy levels have been extracted by fitting the models to the experimentally obtained carrier concentration data by assuming a multi-donor and single charged acceptor in solving the charge balance equation. TDH measurements have revealed the dominance of surface conduction in melt grown ZnO in the 20 – 40 K temperature range. Surface conduction effects have proved to increase with the increase in annealing temperature. Surface donor volume concentrations have been determined in the 200 – 800oC by use of theory developed by D. C. Look. Good rectifying Schottky contacts have been fabricated on ZnO after treating the samples with boiling hydrogen peroxide. Electrical properties of these Schottky contacts have been investigated using current-voltage (IV) and capacitance-voltage (CV) measurements in the 60 – 300 K temperature range. The Schottky contacts have revealed the dominance of predominantly thermionic emission at room temperature and the existence of other current transport mechanisms at temperatures below room temperature. Polarity effects on the Schottky contacts deposited on the O-polar and Zn-polar faces of ZnO have been demonstrated by the IV technique on the Pd and Au Schottky contacts at room temperature. Results obtained indicate a strong dependence of the Schottky contact quality on the polarity of the samples at room temperature. The quality of the Schottky contacts have also indicated their dependence on the type of metal used with the Pd producing contacts with the better quality as compared to the Au. Schottky barrier heights determined using temperature dependent IV measurements have been observed to increase with increasing temperature and this has been explained as an effect of barrier inhomogeneities, while the ones obtained from CV measurements have proved to follow the negative temperature coefficient of the II – VI semiconductor material, i.e. a decrease in barrier height with increasing temperature. However, the values have proved to be larger than the energy gap of ZnO, an effect that has been explained as caused by an inversion layer. Copyright / Dissertation (MSc)--University of Pretoria, 2010. / Physics / unrestricted

Page generated in 0.07 seconds