1031 |
Mechanical, Electronic and Optical Properties of Strained Carbon Nanotubes / Mechanische, elektronische und optische Eigenschaften verspannter KohlenstoffnanoröhrchenWagner, Christian Friedemann 25 August 2017 (has links) (PDF)
This dissertation deals with the calculation of the mechanical properties, electronic structure, electronic transport, and optical properties of strained carbon nanotubes (CNTs). CNTs are discussed for straintronics as their electronic bands show a strong strain-sensitivity. Further, CNTs are stiff, possess a large rupture strain and they are chemically inert, which make them a suitable material in terms of reliability and functionality for straintronic devices.
Therefore, this work aims to explore the potential of strain-dependent CNT devices with regard to their mechanical, electronic, and optical properties from a first-principles point of view. There is no work so far that systematically compares these strain-dependent, physical properties from ab initio calculations, which are suitable for small CNTs only, to tight-binding calculations, which are suitable to model large CNTs.
First, the structural and mechanical properties of CNTs are investigated: Structural properties are obtained by geometry optimization of many CNTs using density functional theory (DFT). The mechanical properties of CNTs are calculated in the same way. The resulting stress-strain relations are investigated and their key parameters are systematically displayed with respect to the CNT chirality and radius.
The ground state electronic properties are calculated using tight-binding models and DFT. Both methods are compared systematically and it is explored where the tight-binding approximation can be applied in order to obtain meaningful results. On top of the electronic structure, a transport model is used to calculate the current through strained CNTs. The model includes the effect of ballistic conductance, parametrized electron-phonon scattering and the influence of an applied gate voltage. Finally, a computationally efficient model is described, which is able to predict the current through strained CNT transistors and enables to find optimal operation regimes for single-chirality devices and devices containing CNT mixtures.
Optical properties of strained CNTs are explored by calculating quasiparticle excitations by the means of the GW approximation and the solution of the Bethe-Salpeter equation for CNT excitons. Due to the numerical effort of these approaches, the data for just one CNT is obtained. Still, it is explored how the above-mentioned many-body properties can be related to the ground state results for this CNT. This finally leads to empirical approaches that approximately describe the many-body results from the ground state properties. It is elucidated how such a model can be generalized to other CNTs in order to describe the strain dependence of their optical transitions. / Diese Dissertation befasst sich mit der Berechnung der mechanischen Eigenschaften, der elektronischen Struktur, der Transport- und der optischen Eigenschaften von verspannten Kohlenstoffnanoröhrchen (engl. carbon nanotubes, CNTs). CNTs werden für die Straintronik diskutiert, da ihre elektronischen Bänder eine starke Dehnungsempfindlichkeit aufweisen. Weiterhin sind CNTs steif, besitzen eine hohe Zugfestigkeit und sind chemisch inert, weshalb sie in Bezug auf Zuverlässigkeit und Funktionalität ein geeignetes Material für straintronische Bauelemente sind.
Ziel dieser Arbeit ist es daher, das Potenzial von dehnungsabhängigen CNT-Bauteilen hinsichtlich ihrer mechanischen, elektronischen und optischen Eigenschaften aus der Perspektive von first principles-Methoden zu untersuchen. Es gibt bisher keine Arbeit, in der die Ergebnisse verschiedener Methoden – ab initio-basierte Berechnungen für kleine CNTs und tight-binding Berechnungen, die näherungsweise die elektronische Struktur großer CNTs beschreiben – miteinander systematisch vergleicht.
Einführend werden die strukturellen und mechanischen Eigenschaften von CNTs untersucht: Strukturelle Eigenschaften ergeben sich durch Geometrieoptimierung vieler CNTs mittels Dichtefunktionaltheorie (DFT). Die mechanischen Eigenschaften von CNTs werden in gleicher Weise berechnet. Die daraus resultierenden Spannungs-Dehnungs-Beziehungen werden untersucht und deren relevante Parameter systematisch in Abhängigkeit von CNT-Chiralität und CNT-Radius dargestellt.
Die Eigenschaften des CNT-Grundzustands werden unter Verwendung von tight-binding-Modellen und DFT berechnet. Beide Methoden werden systematisch verglichen und es wird untersucht, wo die tight-binding-Näherung angewendet werden kann, um aussagekräftige Ergebnisse zu erzielen. Basierend auf der elektronischen Struktur der CNTs wird ein Transportmodell aufgesetzt, durch das der Strom durch verspannte CNTs berechnet werden kann. Dieses Modell beinhaltet den Einfluss der ballistischen Leitfähigkeit, Elektron-Phonon-Streuung in parametrisierter Form und den Einfluss eines Gates. Damit wird ein numerisch effizientes Modell beschrieben, das in der Lage ist, den Strom durch verspannte CNT-Transistoren vorherzusagen. Auf dessen Basis wird es möglich, optimale Arbeitsbereiche für reine CNT-Bauelemente und Bauelemente mit CNT-Mischungen zu berechnen.
Die optischen Eigenschaften verspannter CNTs werden durch die Berechnung von Quasiteilchenanregungen mittels der GW-Approximation und der Lösung der Bethe-Salpeter-Gleichung für CNT-Exzitonen untersucht. Aufgrund des numerischen Aufwandes dieser Ansätze werden diese Daten für nur ein CNT erhalten. Daran wird der Zusammenhang zwischen den oben genannten Vielteilchen-Eigenschaften und den Grundzustandseigenschaften für dieses CNT demonstriert. Daraus ergeben sich empirische Ansätze, die es gestatten, die Vielteilchen-Ergebnisse näherungsweise auf die elektronischen Grundzustandseigenschaften zurückzuführen. Es wird dargestellt, wie ein solches Modell für andere CNTs verallgemeinert werden kann, um die Verspannungsabhängigkeit ihrer optischen Übergänge zu beschreiben.
|
1032 |
Computational Studies of Chemical Interactions: Molecules, Surfaces and Copper CorrosionHalldin Stenlid, Joakim January 2017 (has links)
The chemical bond – a corner stone in science and a prerequisite for life – is the focus of this thesis. Fundamental and applied aspects of chemical bonding are covered including the development of new computational methods for the characterization and rationalization of chemical interactions. The thesis also covers the study of corrosion of copper-based materials. The latter is motivated by the proposed use of copper as encapsulating material for spent nuclear fuel in Sweden. In close collaboration with experimental groups, state-of-the-art computational methods were employed for the study of chemistry at the atomic scale. First, oxidation of nanoparticulate copper was examined in anoxic aqueous media in order to better understand the copper-water thermodynamics in relation to the corrosion of copper material under oxygen free conditions. With a similar ambition, the water-cuprite interface was investigated with regards to its chemical composition and reactivity. This was compared to the behavior of methanol and hydrogen sulfide at the cuprite surface. An overall ambition during the development of computational methods for the analysis of chemical bonding was to bridge the gap between molecular and materials chemistry. Theory and results are thus presented and applied in both a molecular and a solid-state framework. A new property, the local electron attachment energy, for the characterization of a compound’s local electrophilicity was introduced. Together with the surface electrostatic potential, the new property predicts and rationalizes regioselectivity and trends of molecular reactions, and interactions on metal and oxide nanoparticles and extended surfaces. Detailed atomistic understanding of chemical processes is a prerequisite for the efficient development of chemistry. We therefore envisage that the results of this thesis will find widespread use in areas such as heterogeneous catalysis, drug discovery, and nanotechnology. / Den kemiska bindningen – en hörnsten inom naturvetenskapen och oumbärlig för allt liv – är det centrala temat i den här avhandlingen. Både grundläggande och tillämpade aspekter behandlas. Detta inkluderar utvecklingen av nya beräkningsmetoder för förståelse och karaktärisering av kemiska interaktioner. Dessutom behandlas korrosion av kopparbaserade material. Det sistnämnda är motiverat av förslaget att använda koppar som inkapslingsmaterial för hanteringen av kärnavfall i Sverige. Kvantkemiska beräkningsmetoder enligt state-of-the-art har använts för att studera kemi på atomnivå, detta i nära sammabete med experimentella grupper. Initialt studerades oxidation av kopparnanopartiklar under syrgasfria och vattenrika förhållanden. Detta för att bättre kartlägga koppar-vattensystemets termodynamik. Av samma orsak detaljstuderades även gränsskiktet mellan vatten och kuprit med fokus på dess kemiska sammansättning och reaktivitet. Resultaten har jämförts med metanols och vätesulfids kemiska beteende på ytan av kuprit. En övergripande målsättningen under arbetet med att utveckla nya beräkningsbaserade analysverktyg för kemiska bindningar har varit att överbrygga gapet mellan molekylär- och materialkemi. Därför presenteras teoretiska aspekter samt tillämpningar från både ett molekylärt samt ett fast-fas perspektiv. En ny deskriptor för karaktärisering av föreningars lokala elektrofilicitet har introducerats – den lokala elektronadditionsenergin. Tillsammans med den elektrostatiska potentialen uppvisar den nya deskriptorn förmåga att förutsäga samt förklara regioselektivitet och trender för molekylära reaktioner, och för interaktioner på metal- och oxidbaserade nanopartiklar och ytor. En detaljerad förståelse av kemiska processer på atomnivå är en nödvändighet för ett effektivt utvecklande av kemivetenskapen. Vi förutspår därför att resultaten från den här avhandlingen kommer att få omfattande användning inom områden som heterogen katalys, läkemedelsdesign och nanoteknologi. / <p>QC 20170829</p>
|
1033 |
Calcul de la réponse à la déformation et au champ électrique dans le formalisme "Projector Augmented-Wave". Application au calcul de vitesse du son de matériaux d'intérêt géophysique. / « Projector Augmented-Wave » formulation of response to strain and electric field perturbation within the DFPT. Application to the calculation of sound velocities in materials of geophysical interest.Martin, Alexandre 06 November 2015 (has links)
La composition interne de notre planète est un vaste sujet d’étude auquel participent de nombreuses disciplines scientifiques. Les conditions extrêmes de pression et de température qui règnent à l’intérieur du noyau (constitué principalement de fer et de nickel) et du manteau terrestre (à base de pérovskites) rendent très difficile la détermination de leur compositions exactes. Ce projet de thèse contribue aux études récentes dont l’enjeu est de déterminer plus précisément le chimisme des minéraux présents. Il a pour objet le développement d’un outil de calcul des vitesses de propagation des ondes sismiques a l’aide d’une méthode fondée sur les simulations ab initio. Ces vitesses sont déduites du tenseur élastique complet, incluant la relaxation atomique et les modifications induites du champ cristallin. Nous utilisons l’approche de la théorie de perturbation de la fonctionnelle de la densité (DFPT) qui permet de s'affranchir des incertitudes numériques qu’impliquent les méthodes classiques basées sur des différences finies. Nous combinons cette approche avec le formalisme « Projector Augmented-Wave » (PAW) qui permet, avec un coût de calcul faible, de prendre en compte tous les électrons du système. Nous avons appliqué la méthode sur des matériaux du noyau et du manteau terrestre. Nous avons déterminé les effets de différents éléments légers (Si, S, C, O et H) sur les vitesses de propagation des ondes sismiques dans le fer pur ainsi que celui de l’aluminium dans la pérovskite MgSiO3. / The internal composition of our planet is a large topic of study and involves many scientific disciplines. The extreme conditions of pressure and temperature prevailing inside the core (consisting primarily of iron and nickel) and the mantle (consisting mainly of perovskites) make the determination of the exact compositions very difficult. This thesis contributes to recent studies whose aim is to determine more accurately the chemistry of these minerals. Its purpose is the development of a tool for the calculation of seismic wave velocities within methods based on ab-initio simulations. These velocities are calculated from the full elastic tensor, including the atomic relaxation and induced changes in the crystal field. We use the approach of the density functional perturbation theory (DFPT) to eliminate numerical uncertainties induced by conventional methods based on finite differences. We combine this approach with the « Projector Augmented-Wave » (PAW) formalism that takes into account all the electrons of the system with a low computational cost. We apply the method on core and mantle materials and we determine the effects of various lights elements (Si, S, C, O and H) on the seismic wave velocities of pure iron, as well as the effect of aluminum in the perovskite MgSiO3.
|
1034 |
Influence de la liaison chimique sur la structure des surfaces d'alliages métalliques complexes / Influence of chemical bonding on surface structures of complex metallic alloysMeier, Matthias 09 December 2015 (has links)
Un alliage métallique complexe est un intermétallique dont la maille est constituée d'un nombre important d'atomes et dont la structure peut être souvent décrite comme un empilement de motifs d'atomes reliés par des liaisons de type covalent. Al5Co2 est l'un de ces composés et est un catalyseur potentiel pour la semi-hydrogénation d'acétylène. L'influence de la structure tridimensionnelle sur les surfaces bidimensionnelles et donc la réactivité est étudiée. Pour se faire, le système massif est analysé en utilisant la DFT afin d'éclaircir ses propriétés thermodynamiques, électroniques et vibrationnelles. Les valeurs calculées, expérimentales et celles de la littérature sont en bon accord. La structure des surfaces de bas indice, (001), (100) et (2-10) est étudiée. Une combinaison de techniques d'analyse de surface sous ultra-vide - LEED, STM - et de DFT est utilisée pour les déterminations structurales. Les résultats indiquent que: (i) la structure des surfaces dépend des conditions de préparation, comme la température de recuit, (ii) la structure des surfaces peut être interprétée comme étant constituée de motifs tronqués où certaines liaisons de type covalent sont brisées. Les sites et les énergies d'adsorption des molécules impliquées dans la réaction de semi-hydrogénation sont calculés pour les trois surfaces. Pour les sites favorables, des distances spécifiques entre atomes d'hydrogène adsorbés et atomes de Co de surface et de sous-surface peuvent être observées. Les atomes de Co de sous-surface ont un caractère donneur d'électrons, stabilisant les atomes adsorbés en surface. En se basant sur des calculs NEB, de possibles chemins réactionnels sur la surface (2-10) sont proposés. L'activité calculée est similaire à celle obtenue pour la surface d'Al13Co4, qui est considérée comme un bon catalyseur. La sélectivité - la compétition entre la désorption d'éthylène et son hydrogénation en éthyle - est discutée. / A complex metallic alloy is an intermetallic with a large unit cell and whose structure can often be seen as a stacking of motifs of strongly covalent-like bonded atoms. Al5Co2 is such a compound and is a potential catalyst for the semi-hydrogenation of acetylene. The influence of the 3-dimensional structure on 2-dimensional surfaces is investigated. Therefore, the bulk system is analysed using DFT to gain insight in the thermodynamic, electronic and vibrational properties. Good agreements between calculated results, experimental ones and results found in the literature are obtained. The low index (001), (100) and (2-10) surfaces are investigated. A combination of surface analysis techniques under ultra high vacuum - LEED, STM - and DFT calculations is used for the structural investigations. The results show that: (i) the surface structure depends on the preparation conditions, such as the annealing temperature, (ii) the surface structure can be interpreted as truncated motif parts, where the covalent-like bonds are broken. Adsorption sites and energies of molecules involved in the semi-hydrogenation reaction are calculated for all three surfaces. For favourable adsorption sites, specific distances of adsorbed H atoms with Co surface and subsurface atoms are observed. These Co subsurface atoms have an electron donor character, stabilising the adsorbed atoms at the surface. Based on NEB calculations, possible reaction paths on the (2-10) surface are proposed. The calculated activity is similar to the one obtained for the Al13Co4 surface, which is considered a good catalyst. The selectivity - the competition between desorption of ethylene and its further hydrogenation - is discussed.
|
1035 |
Electron energy loss spectroscopy of graphene and boron nitride with impurities or defects in the transmission electron microscopePan, Cheng-Ta January 2014 (has links)
The two-dimensional material graphene possesses many impressive properties such asextraordinary carrier mobility, mechanical stiffness and optical transmittance. However,the properties of pristine graphene do not always complement the requirements of applications. Of particular interest, a band gap is needed for electronic logic devices. Recent research shows that using few-layer hexagonal boron nitride as a substrate for graphene-based electronic devices can open a band gap in graphene. Also, introducing impurities such as hydrogen atoms, transition metals or silicon atoms on or within graphene can control the electronic properties according to recent studies. Furthermore, ion irradiation is an alternative option to tailor the properties of graphene by introducing defects. In this thesis, pristine, impure or defective graphene and few-layer boron nitride were characterised by scanning transmission electron microscopy (STEM) and electron energy loss (EEL) spectroscopy. Through STEM and EEL spectroscopy, lattice structures and electronic properties of these two-dimensional materials could be investigated at the atomic scale. This thesis focuses on the frontier studies of theoretical and experimental EEL spectroscopy of graphene and few-layer boron nitride with impurities. In the EEL spectra of pristine graphene and boron nitride two prominent peaks were observed, which are attributed to the plasmon excitations of π- and π+σ-electrons. By introducing impurities such as hydrogen adatoms on graphene and substitutional oxygen and carbon atoms within single-layer boron nitride, our experimental and simulated EEL spectra show that their π-plasmon peaks are modified. The concentrations of these impurities were then evaluated via EEL spectra and atomic-resolution images. If other impurities, such as various transition metals and silicon atoms, are introduced on or within single-layer graphene, our simulated EEL spectra demonstrate that the geometry of these impurity clusters affects the π-plasmon peak in graphene and some impurities even enhance it. Finally, experiments on in-situ transmission electron microscopy and ex-situ STEM and Raman spectroscopy were conducted to investigate ion irradiated graphene. Many topological defects were, for the first time, observed in atomic-resolution STEM images of ion irradiated graphene. Simulated EEL spectra of defective graphene are also reported, which suggests that corrugations and dangling bonds in defects can modify out-of-plane EEL spectra and introduce intraband transitions, respectively.
|
1036 |
Theoretical methods for the electronic structure and magnetism of strongly correlated materialsLocht, Inka L. M. January 2017 (has links)
In this work we study the interesting physics of the rare earths, and the microscopic state after ultrafast magnetization dynamics in iron. Moreover, this work covers the development, examination and application of several methods used in solid state physics. The first and the last part are related to strongly correlated electrons. The second part is related to the field of ultrafast magnetization dynamics. In the first part we apply density functional theory plus dynamical mean field theory within the Hubbard I approximation to describe the interesting physics of the rare-earth metals. These elements are characterized by the localized nature of the 4f electrons and the itinerant character of the other valence electrons. We calculate a wide range of properties of the rare-earth metals and find a good correspondence with experimental data. We argue that this theory can be the basis of future investigations addressing rare-earth based materials in general. In the second part of this thesis we develop a model, based on statistical arguments, to predict the microscopic state after ultrafast magnetization dynamics in iron. We predict that the microscopic state after ultrafast demagnetization is qualitatively different from the state after ultrafast increase of magnetization. This prediction is supported by previously published spectra obtained in magneto-optical experiments. Our model makes it possible to compare the measured data to results that are calculated from microscopic properties. We also investigate the relation between the magnetic asymmetry and the magnetization. In the last part of this work we examine several methods of analytic continuation that are used in many-body physics to obtain physical quantities on real energies from either imaginary time or Matsubara frequency data. In particular, we improve the Padé approximant method of analytic continuation. We compare the reliability and performance of this and other methods for both one and two-particle Green's functions. We also investigate the advantages of implementing a method of analytic continuation based on stochastic sampling on a graphics processing unit (GPU).
|
1037 |
Investigation of the supramolecular self-assembly, electronic properties, and on-surface reactions of porphyrin and phthalocyanine molecules / Untersuchung der supramolekularen Selbstorganisation, elektronischer Eigenschaften, und Reaktionen auf Oberflächen von Porphyrin- und PhthalocyaninmolekülenSmykalla, Lars 18 January 2017 (has links) (PDF)
Das grundlegende Verständnis der Adsorption, der Eigenschaften, und der Wechselwirkungen von komplexen organischen Molekülen auf Festkörperoberflächen ist für die Entwicklung neuer Anwendungen in der Nanotechnologie von entscheidender Bedeutung. Die in dieser Arbeit untersuchten funktionellen Bausteine gehören zu den Porphyrinen und Phthalocyaninen. Deren Adsorption, elektronische Struktur, und Reaktionen der Moleküle auf Edelmetalloberflächen wurden mit mehreren Methoden charakterisiert, insbesondere der Rastertunnelmikroskopie, Rastertunnelspektroskopie, Röntgen-Nahkanten-Absorptions-Spektroskopie und Photoelektronenspektroskopie, welche zudem durch theoretische Simulationen unter Verwendung der Dichtefunktionaltheorie ergänzt wurden.
Tetra(p-hydroxyphenyl)porphyrin Moleküle ordnen sich durch Selbstorganisation zu verschiedenen, durch Wasserstoffbrückenbindungen stabilisierten Nanostrukturen an, welche in Abhängigkeit von dem Substratoberflächengitter untersucht wurden um das komplizierte Zusammenspiel von Molekül−Molekül und Molekül−Substrat-Wechselwirkungen bei der Selbstorganisation zu verstehen. Erhitzen der Adsorbatschichten dieses Moleküls führt zu einer schrittweisen Deprotonierung, und außerdem konnte auch ein Schalten der Leitfähigkeit einzelner Porphyrin-Moleküle durch lokale Deprotonierung mittels Spannungspulsen demonstriert werden. Eine Polymerisationsreaktion, welche auf der Ullmann-Reaktion basiert, aber direkt auf einer Oberfläche stattfindet, wurde für Kupfer-octabromotetraphenylporphyrin Moleküle, die auf Au(111) adsorbiert sind, gefunden. Nach einer thermischen Abspaltung der Bromatome von den Molekülen reagieren dabei die Radikalmoleküle bei hohen Temperaturen miteinander und bilden geordnete, kovalent gebundene Netzwerke aus. Die Bromabspaltung und die nachfolgenden Reaktionen und Veränderungen der elektronischen Struktur der Moleküle wurden ausführlich für die Substratoberflächen Au(111) sowie Ag(110) untersucht. Weiterhin, wird die Adsorption und Selbstorganisation von metall-freien Phthalocyanin-Molekülen auf einer Ag(110)-Oberfläche, und deren Selbstmetallierungsreaktion mit Silberatomen des Substrats umfassend und verständlich beschrieben. Zuletzt wurden organische Hybrid-Grenzflächen zwischen verschiedenen Metall-Phthalocyaninen untersucht, wobei ein Ladungstransfer zwischen Kobalt- und Platin-Phthalocyanin-Molekülen gefunden wurde. Dotierung gemischter Metall-Phthalocyanin-Filme durch Einlagerung von Kaliumatomen und deren selektive Adsorption im Molekülgitter führt zu einer deutlichen Veränderung der elektronischen Eigenschaften, aufgrund einer Ladungsübertragung an die Kobalt-Phthalocyanin Moleküle.
|
1038 |
Teoretické studium nízkorozměrových magnetických materiálů / Theoretical Investigation of Low-dimensional Magnetic MaterialsLi, Shuo January 2021 (has links)
Low-dimensional (D) materials, such as graphene, transition metal dichalcogenides and chalcogenide nanowires, are attractive for spintronics and valleytronics due to their unique physical and chemical properties resulting from low dimensionality. Emerging concepts of spintronics devices will greatly benefit from using 1D and 2D materials, which opens up new ways to manipulate spin. A majority of 1D and 2D materials is non-magnetic, thus their applications in spintronics are limited. The exploration, design and synthesis of new 1D and 2D materials with intrinsic magnetism and high spin-polarization remains a challenge. In addition, the valley polarization and spin-valley coupling properties of 2D materials have attracted great attention for valleytronics, which not only manipulates the extra degree of freedom of electrons in the momentum space of crystals but also proposes a new way to store the information. The computational investigation of magnetic and electronic properties of low-dimensional materials is the subject of this thesis. We have systematically investigated geometric, electronic, magnetic and valleytronic properties of several 2D and 1D materials by using the density functional theory. These investigations not only theoretically show rich and adjustable magnetic properties of...
|
1039 |
Caractérisation d’auto-assemblages de polyoxométallates hybrides organiques-inorganiques par spectrométrie de mobilité ionique couplée à la spectrométrie de masse / Characterization of self-assemblies of organic-inorganic hybrid polyoxometalates by ion mobility spectrometry coupled to mass spectrometryHupin, Sébastien 03 December 2018 (has links)
Les polyoxométallates (POM) sont des composés anioniques constitués par l’assemblage de polyèdres d’oxydes métalliques {MOy}, (avec M, MoVI ou WVI) reliés entre eux par des atomes d'oxygène. Les POM forment ainsi une classe remarquable de clusters d’oxydes métalliques inorganiques nanométriques, avec une grande variété de charges et de structures. Il est possible de former des systèmes hybrides incluant la partie inorganique du POM et une partie organique greffée, permettant d’apporter de nouvelles fonctionnalités aux POM, tel que l’auto-assemblage. Nous avons consacré ces travaux de thèse à la caractérisation de systèmes classiques, hybrides et auto-assemblés de POM par spectrométrie de masse couplée à la spectrométrie à la mobilité ionique (IMS-MS). Une première approche expérimentale par spectrométrie de mobilité ionique en tube de dérive (DTIMS) nous a permis de déterminer les sections efficaces de collisions (CCS) de POM étalons dans l’hélium et dans l’azote. Les CCS des étalons POM nous ont ensuite permis d’étalonner une cellule IMS de type Travelling Wave (TWIMS). L’analyse par IMS-MS de POM hybrides organiques-inorganiques seuls ou en présence de PdCl2 a mis en évidence la présence de systèmes auto-assemblés triangulaires [POM3·cation3], carrés [POM4·cation4] ou pentagonaux [POM5·cation5] avec différents états de charges. Des valeurs de CCS de ces auto-assemblages ont également pu être estimées à partir de l’étalonnage de la cellule TWIMS. Par une approche théorique, nous avons modélisé plusieurs structures de POM standards avec et sans contre-ion tetrabutylammonium (TBA+) par la théorie de la fonctionnelle de la densité (DFT). Les structures optimisées ont été utilisées afin de déterminer des CCS théoriques grâce au logiciel MOBCAL, auquel nous avons incorporé les atomes de molybdène et de tungstène pour lesquels nous avons optimisé de nouveaux paramètres de potentiel de Lennard Jones. La correspondance des CCS expérimentales et théoriques des structures de POM standards offre de nouvelles possibilités pour une attribution structurale pour les POM hybrides auto-assemblés par coordination en présence de cations métalliques. / Polyoxometalates (POM) are anionic compounds formed by the assembly of metal oxide polyhedra {MOy}, (with M, MoVI or WVI) linked together by oxygen atoms. POM thus form a remarkable class of nanometric inorganic metal oxide clusters, with a wide variety of charges and structures. It is possible to form hybrid systems including the inorganic part of the POM and a grafted organic part, allowing new functionalities to be added to the POM, such as selfassembly. We have dedicated this thesis work to the characterization of standards, hybrid and self-assembled POM systems by mass spectrometry coupled to ion mobility spectrometry (IMS-MS). A first experimental approach using drift tube ion mobility spectrometry (DTIMS) allowed us to determine the collision cross sections (CCS) of standard POM in helium and nitrogen. The CCS of the POM standards then allowed us to calibrate an IMS cell of a Travelling Wave ion mobility instrument (TWIMS). The analysis by IMS-MS of organic-inorganic hybrid POMs alone or in the presence of transition metal cations revealed the presence of self-assembled triangular [POM3·cation3], square [POM4·cation4] or pentagonal [POM5·cation5] systems with different charge states. CCS values of these self-assemblies was estimated from the calibration of the TWIMS cell. Using a theoretical approach, we modelled several standard POM structures with and without tetrabutylammonium counterion (TBA+) using density functional theory (DFT). The optimized structures were used to determine theoretical CCS using the trajectory method of the MOBCAL software, in which we incorporated molybdenum and tungsten atoms for which we optimized new Lennard Jones potential parameters. The correspondence of experimental and theoretical CCS of standard POM structures offers new possibilities for structural attribution of self-assembled hybrid POM by coordination in the presence of metal cations.
|
1040 |
Reduction of Copper Oxide by Formic Acid: an ab-initio studySchmeißer, Martin 29 September 2011 (has links)
Four cluster models for a copper(I)oxide (111) surface have been designed, of which three were studied with respect to their applicability in density functional calculations in the general gradient approximation. Formic acid adsorption on these systems was modelled and yielded four different adsorption structures, of which two were found to have a high adsorption energy. The energetically most favourable adsorption structure was further investigated with respect to its decomposition and a few reactions with adsorbed H and OH species using synchronous transit methods to estimate reaction barriers and single point energy calculations for the reaction energy.:1 Introduction
1.1 Preliminary Work
1.2 Known Reactions and Issues
1.3 Overview of Reactions and Species involved in Formic Acid Decomposition
2 Theoretical Background
2.1 The Schrödinger-Equation
2.2 Density Functional Theory
2.3 Exchange-Correlation Functionals
2.4 The Self-Consistent-Field Procedure
2.5 Geometry Optimization and Transition State Searches
2.6 Kinetics
3 Computational Details
3.1 Synchronous Transit Schemes
3.2 Transition State Searches using Eigenvector Following
4 Model System
5 Results and Discussion
5.1 Geometry of the Cu2O cluster structures
5.2 Adsorption of formic acid
5.3 Decomposition and Reaction Paths
5.3.1 Vibrational Analysis of the adsorbed Formic Acid Molecule
5.3.2 Reaction Modelling using Linear Synchronous Transit
5.3.3 Transition State Searches using Eigenvector Following
6 Summary and Outlook
|
Page generated in 0.1293 seconds