• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 22
  • 2
  • 2
  • 2
  • Tagged with
  • 104
  • 62
  • 59
  • 39
  • 25
  • 23
  • 21
  • 20
  • 16
  • 16
  • 14
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Identification du gène Anoctamine 5 responsable d'une nouvelle forme récessive de dystrophie musculaire des ceintures

Bolduc, Véronique 10 1900 (has links)
Les dystrophies musculaires des ceintures (ou limb-girdle muscular dystrophy, LGMD) sont un groupe hétérogène de dystrophies musculaires chez l’adulte et sont définies par une atrophie et une faiblesse progressive qui surviennent dans les muscles proximaux. Chez une cohorte canadienne-française, nous avons précédemment décrit une nouvelle forme récessive, désignée LGMD2L et marquée par une atrophie asymétrique du quadriceps, que nous avions cartographiée au chromosome 11p12-p13 grâce à des analyses de liaison. L’objectif de ce projet de thèse était de raffiner l’intervalle candidat, puis d’identifier et de caractériser le gène muté responsable de la LGMD2L. Grâce à une cartographie par homozygotie de polymorphismes de nucléotide simple (SNPs) réalisée sur une grande famille consanguine, nous avons redéfini l’intervalle candidat à une région du chromosome 11p14.3-p15.1. Par séquençage de l’ADN génomique et complémentaire au gène Anoctamine 5 (ANO5) inclus dans cet intervalle, nous avons identifié trois mutations, chez autant de familles: une substitution créant un site d’épissage aberrant, une insertion d’un nucléotide et une mutation faux-sens. Les deux premières mutations étaient associées à une hausse de la dégradation de l’ARN messager médiée par une troncation prématurée. Nous avons également identifié des mutations ANO5 chez une seconde dystrophie musculaire de type distal cartographiant au même locus que la LGMD2L, nommée MMD3, et dont la manifestation initiale était une faiblesse des mollets, mais qui pouvait progresser vers une atrophie des quadriceps. Une réparation membranaire défective avait été observée chez les fibroblastes de deux patients MMD3, suggérant un rôle pour ANO5 dans ce mécanisme. La localisation et la fonction d’ANO5 dans le muscle sont inconnues, mais cette protéine fait partie d’une famille conservée de protéines à huit domaines transmembranaires, les Anoctamines, dont certains membres sont des transporteurs chloriques activés par le calcium. Les résultats de nos études d’immunofluorescence suggèrent qu’ANO5 se localise peu au sarcolemme, mais plutôt à une structure intracellulaire qui suit la ligne Z des myofibrilles. De façon étonnante, cette localisation était préservée chez un patient LGMD2L porteur homozygote de la mutation d’épissage, en dépit du fait que cette dernière était considérée comme une mutation nulle. Néanmoins, nous avons identifié un épissage alternatif de l’exon 15 qui se produisait sur une proportion des transcrits porteurs de la mutation d’épissage, ce qui rétablirait le cadre de lecture, soulignant la complexité de la régulation de l’épissage d’ANO5 et laissant croire que la LGMD2L pourrait être causée par une perte de fonction partielle, et non complète, d’ANO5. Des études subséquentes par des groupes européens ont montré que les anoctaminopathies 5 sont une cause fréquente de dystrophies musculaires des ceintures chez l’adulte. Notre découverte de mutations au gène Anoctamine 5 a mis en évidence une nouvelle classe de protéines importantes pour la biologie du muscle et a ouvert la voie à de nouvelles pistes pour étudier les mécanismes par lesquels un défaut de réparation membranaire progresse en une dystrophie musculaire. / Limb-girdle muscular dystrophies (LGMD) encompass a broad spectrum of muscular dystrophies in which the initial weakness arises in proximal muscles. We previously described in French-Canadian (FC) families a new form of LGMD characterized by asymmetrical quadriceps femoris atrophy, named LGMD2L, which we mapped to chromosome 11p12-p13 using linkage analyses. The objectives of this thesis project were to refine the candidate interval, identify and characterize the LGMD2L gene. Using single nucleotide polymorphisms (SNPs) homozygosity mapping in a large consanguineous family, we narrowed down the LGMD2L candidate interval to a region on chromosome 11p14.3-p15.1, and identified three mutations in the Anoctamin 5 (ANO5) gene located in the interval. These mutations consisted of a missense, a one-bp duplication and a splice site mutation. We demonstrated that the latter two triggered the nonsense-mediated RNA decay pathway. In addition, we identified ANO5 mutations in cases affected by a non-dysferlin Miyoshi muscular dystrophy mapped also to chromosome 11, termed MMD3. In two MMD3 families of European descent, patients presented with calf weakness as the initial symptoms, sometimes evolving to quadriceps atrophy. Fibroblasts from one MMD3 family were shown to be defective for membrane repair. ANO5 localization and function in muscle are unknown, but it is a member of the conserved Anoctamin family of proteins with eight transmembrane domains, of which some function as calcium-activated chloride channel. Our immunofluorescence studies on longitudinal muscle sections suggest that ANO5 is not importantly localized to the sarcolemma, but rather to a structure following the Z-line. To our surprise, this localization was preserved for a LGMD2L patient homozygous for the splice site mutation, previously considered as a null mutation. By studying the splicing isoforms in this patient, we observed that skipping of exon 15 occurs on a proportion of transcripts, in addition to the aberrant splicing caused by the mutation. This alternative splicing event would recover the reading frame, thus underlining the complexity of ANO5 splicing and suggesting that LGMD2L could be the consequence of a partial, rather than complete, loss-of-function. Subsequent studies by other groups have shown that anoctaminopathies 5 are a common cause of adult-onset LGMD. Our discovery of ANO5 mutations has shed light on a new class of proteins important for the muscle biology and opened new research avenues to study how defective membrane repair progresses into muscular dystrophies.
52

Le rôle de l'élément répété D4Z4 et du facteur de transcription KLF15 dans la dystrophie musculaire facioscapulohumérale (FSHD)

Dmitriev, Petr 30 November 2011 (has links) (PDF)
La dystrophie musculaire facioscapulohumérale (FSHD) est la troisième myopathie la plus fréquente en Europe. La maladie atteint progressivement les muscles du visage, des bras et des jambes. Les symptômes apparaissent dans la majorité des cas avant 20 ans et la maladie, souvent douloureuse, provoque fréquemment un handicap majeur qui nécessite de se déplacer en fauteuil roulant. J'ai démontré que la protéine KLF15 est surexprimée dans les tissus des patients FSHD et dans les myoblastes cultivés in vitro et prélevés sur des patients FSHD. Des résultats préliminaires indiquent que la surexpression du facteur KLF15 pourrait être expliquée par le stress oxydant induit par DUX4 et la surexpression de certains facteurs de myogenèse induits par DUX4c. J'ai démontré que KLF15 interagit directement avec les répétitions D4Z4 et contrôle leur fonction d'activation de transcription. Ainsi KLF15 sert de médiateur entre les répétitions D4Z4 et deux gènes dans la région 4q35: FRG2 et DUX4c ce que explique la surexpression de ces deux gènes dans la FSHD. La surexpression du gène DUX4c, homologue du DUX4, perturbe le programme de différentiation musculaire en activant certains facteurs de myogenèse (myomiRs ou microRNAs myogéniques). En somme, la découverte du rôle du facteur KLF15 dans la FSHD met en évidence une boucle de rétrocontrôle positif qui relie la surexpression du facteur KLF15 avec la surexpression des gènes codés dans la région 4q35. Le rôle central du facteur KLF15 dans ce nouveau modèle de la maladie permet d'envisager une nouvelle piste thérapeutique pour la dystrophie FSHD basé sur l'inhibition du facteur KLF15.
53

Rôle des entrées capacitives et de TRPV2 dans la dérégulation de l'homéostasie calcique dans le muscle squelettique humain : implication dans la dystrophie musculaire de Duchenne / Involvement of capacitive entry and TRPV2 in the deregulation of calcium homeostasis in Duchenne muscular dystrophy human skeletal muscle

Harisseh, Rania 06 July 2012 (has links)
La dystrophie musculaire de Duchenne (DMD) est la conséquence de la perte de la dystrophine, une protéine cytosquelettique indispensable au maintien mécanique et fonctionnel du sarcolemme. Notre équipe a largement étudié les entrées cationiques dans les lignées murines et a montré : 1- une augmentation anormale des influx dépendant des stocks calciques (SOCE) dans les myotubes (MT) déficients en dystrophine (dys-), 2- que les influx SOCE sont médiés par les canaux TRPC1 et TRPC4, 3- que la dérégulation des SOCE dans les MT dys- est corrigée grâce à la surexpression de l'α1-syntrophine. Au jour d'aujourd’hui, il existe peu d'éléments dans la littérature quant à la caractérisation des entrées SOCEs dans les cellules musculaires humaines et dans la DMD. Ce travail de thèse s'articule autour de deux parties : Le modèle murin, dans lequel nous avons montré un rôle indispensable de STIM1 et Orai1 dans la mise en place des entrées SOCEs et l'implication de la voie Ca2+/PLC/PKC dans l'augmentation anormale de ces entrées dans les MT murins dys-. Le modèle humain primaire, dans lequel nous avons mis en évidence : 1- une augmentation anormale des influx SOCEs dans les MT DMD et établit le profil d'expression des différentes protéines nécessaires à la mise en place de ces entrées ; 2- l'implication de la voie Ca2+/PLC/PKC dans la dérégulation des SOCEs dans les MT humains DMD et le rôle de l'α1-syntrophine dans la régulation de ces entrées dans les MT humains ; 3- la dérégulation de l'homéostasie calcique dans la DMD qui se produit par l'intermédiaire des entrées cationiques dépendantes de TRPV2 dans les cellules musculaires dystrophiques. / Duchenne muscular dystrophy (DMD) is the consequence of the loss of dystrophin, a cytoskeletal protein essential for the mechanical and functional maintenance of the sarcolemma. Our group has extensively studied store-operated cation influx (SOCE) in mouse cell lines and highlighted: 1- an abnormal increase in SOCE in dystrophin-deficient (dys-) mouse myotubes (MT), 2- That SOCE are mediated by TRPC1 and TRPC4, 3- that SOCE deregulation in dys- MT is corrected by overexpression of α1-syntrophin. As of today, there is little evidence in the literature regarding the characterization of SOCE in human muscle cells and in human DMD. This thesis work is divided in two parts : In the murine model, we demonstrated an essential role of STIM1 and Orai1 in the establishment of SOCE and highlighted the involvement of Ca2+/PLC/PKC pathway in the abnormal increase of cation entry in dystrophin-deficient mouse myotubes.In primary human model, we showed: 1- an abnormal increase of SOCE in DMD MT and established the expression profile of various proteins necessary for the implementation of this influx; 2- the involvement of Ca2+/PLC/PKC in SOCE deregulation in human DMD MT and the role of α1-syntrophin in the regulation of cation entry in human MT; 3- the deregulation of calcium homeostasis in DMD that occurs through TRPV2. This work proposes a new regulatory pathway, Ca2+/PLC/PKC, for SOCE in skeletal muscle cells and provides the first elements of the disruption of calcium homeostasis in DMD human myotubes due to the absence of SOCE's regulation by the α1-syntrophin and to the overactivation of TRPV2 channels.
54

Conséquences pathologiques des expansions CTG sur le système nerveux central d’un modèle murin de la dystrophie myotonique de Steinert : approches moléculaires, protéomiques et cellulaires / Pathological consequences of CTG expansions on the central nervous system of a mouse model of the myotonic dystrophy of Steinert : molecular, proteomics and cellular approaches

Sicot, Géraldine 24 September 2013 (has links)
La dystrophie myotonique de type I (DM1) constitue la plus fréquente des pathologies musculaires héréditaires chez l’adulte. Bien qu’initialement considérée comme une maladie musculaire, la DM1 présente une atteinte neurologique très handicapante. Cette maladie autosomique dominante résulte de l’expansion anormale d’un triplet CTG dans la partie 3’UTR du gène DMPK. Un effet trans du transcrit DMPK muté entraine une dérégulation de l‘épissage alternatif dans de nombreux tissus. Cependant, les mécanismes pathologiques de la DM1 dans le cerveau restent encore peu compris. Afin de disséquer ce mécanisme, notre laboratoire a créé des souris transgéniques exprimant le transcrit DMPK avec de larges expansions CUG dans de nombreux tissus. Ces souris nommées DMSXL, recréent d’importants aspects pathologiques de la DM1, comme des anomalies du comportement et électrophysiologiques du cerveau. Elles représentent donc un excellent outil pour explorer l’effet pathologique de la mutation dans le SNC. En m’appuyant sur ce modèle, j’ai exploré dans un premier temps l’effet trans des ARNs toxiques et l’ampleur de la splicéopathie dans le SNC. De façon intéressante, certains défauts d’épissage sont régions spécifiques, et ne montrent pas d’aggravation avec l’âge des souris DMSXL. Mes résultats démontrent que les ARNs mutés sont capables de déréguler l’épissage alternatif dans l’ensemble du SNC. La région du cervelet a aussi montré des anomalies de l’épissage dans les souris DMSXL, qui, en plus, présentent des perturbations cognitives dépendantes de cette région cérébrale. Le cervelet des souris DMSXL présente aussi des déficits électrophysiologiques suggérant une dysfonction cérébelleuse et plus précisément une dysfonction des cellules de Purkinje. Dans la recherche des populations cellulaires les plus affectées dans le cervelet, j’ai démontré la présence de signes de la toxicité de l’ARN plus marqués dans la glie de Bergman, entourant les cellules de Purkinje. Pour trouver les voies moléculaires perturbées dans le cervelet, et disséquer le mécanisme derrière les anomalies observées, j’ai réalisé une approche protéomique globale et trouvé une sévère baisse de l’expression du transporteur glial de glutamate GLT1/EAAT2, suggérant une dysfonction du cervelet, en conséquence d’un possible métabolisme anormal du glutamate. L’analyse protéomique globale du cerveau des souris DM1 a aussi identifié des différences d’expression et des modifications post-traductionnelles de protéines impliquées dans la signalisation du calcium. L’étude du métabolisme des ARNm dans la DM1 a mis en évidence la dérégulation de l’épissage de gènes impliqués dans le métabolisme du calcium, soutenant l’hypothèse d’une dysfonction calcique dans le SNC. Pour étudier les conséquences de la mutation sur les variations calciques cellulaires, j’ai caractérisé un modèle cellulaire astrocytaire de la DM1. Ce modèle m’a permis de démontrer une localisation anormale du récepteur GRIN1/NMDAR1, ainsi qu’une réponse calcique anormale dans les astrocytes primaires porteurs des amplifications CTG. Malgré les avancés thérapeutiques dans le muscle, on ne sait pas à quel point les stratégies en cours de développement sont efficaces dans le SNC. Pour étudier ce problème, j’ai utilisé le modèle astrocytaire de la DM1 afin de valider in cellulo une stratégie thérapeutique qui vise à rétablir une activité normale du facteur d’épissage MBNL1 endogène. Mes travaux de thèse ont permis d’avancer dans la compréhension de la neuropathologie de la DM1. Ils ont mis en évidence pour la première fois une dysfonction du cervelet, ainsi que la possible dérégulation de la voix calcique dans le SNC. Mes résultats ont donc contribué à mieux comprendre le mécanisme de la DM1 dans le SNC, pour, à long terme, développer des approches thérapeutiques ciblant des évènements moléculaires précis. / Myotonic dystrophy type 1 (DM1) is the most frequent inherited muscular disorder in adults. Although traditionally regarded as a muscle disease, DM1 presents debilitating neurological manifestations. DM1 is an autosomic dominant disease caused by the abnormal expansion of a CTG triplet within the 3’UTR of the DMPK gene. Many molecular aspects of the DM1 are mediated by a trans effect of the expanded DMPK transcripts, whose accumulation leads to splicing deregulation in many tissues. Despite recent progress in the understanding of DM1 pathogenesis in muscle and central nervous system (CNS), the detailed molecular disease mechanism operating in the brain is still poorly understood. In order to investigate the pathophysiology, our laboratory has generated DMSXL transgenic mice expressing DMPK transcripts containing large CUG expansions in many tissues. DMSXL mice mimic important features of the DM1, notably in the CNS, showing behaviour as well as electrophysiological abnormalities. Therefore, this mouse line represents an excellent tool to investigate the toxic effects of the mutation in the CNS. Taking advantages of this transgenic model, I have first explored the trans effect of the toxic RNA and the extent of DM1-associated spliceopathy in the CNS. Interestingly, some splicing defects were region-specific, and their severity did not increase with the age of the DMSXL mice. My data demonstrate that CUG-containing RNAs have a wide deleterious effect and deregulate alternative splicing in many areas of the CNS. In addition to splicing abnormalities in cerebellum, DMSXL mice also displayed deficits in cerebellum-dependant motor coordination. Plus, DMSXL cerebellum showed electrophysiological abnormalities, suggesting cerebellar dysfunction and more precisely Purkinje cell dysfunction. In the search for the cellular populations showing the greatest susceptibility to RNA toxicity in the cerebellum, I have found extensive foci accumulation as well as pronounced splicing defects in the Bergman glia, surrounding Purkinje cells, in DMSXL and DM1 patients cerebellum. In order to identify molecular pathways and mechanisms behind the behaviour and electrophysiological abnormalities detected, I have performed a global proteomics approach and found a severe decrease in the expression of a glial glutamate transporter GLT1/EAAT2, suggesting that DM1 causes cerebellum dysfunction, through abnormal glutamate metabolism. Global proteomic analysis of DMSXL cerebellum also identified expression and post-translational changes of several proteins involved in calcium signalling. Missplicing of different transcripts involved in calcium metabolism reinforces the idea of calcium dysfunction in the neuropathogenesis of the DM1. To study the effects of toxic RNA on calcium homeostasis and flux, I have established and characterised a brain cell model of DM1. DMSXL primary astrocyte cultures allowed me to show the mislocalisation of the glutamate receptor GRIN1/NMDAR1, as well as abnormal calcium responses to stimulation. Despite recent therapeutic advances in muscle, we do not know the CNS efficiency of the therapeutic strategies currently being developed. To address this problem, I have used the DM1 astrocyte cell model to validate in cellulo a therapeutic strategy aiming to restore the activity of the endogenous splicing factor MBNL1. My thesis work provided a significant step in the understanding of the DM1 pathology in the CNS. My results revealed for the first time signs of cerebellum dysfunction in DM1, as well as signs of calcium homeostasis deregulation in the SNC. My work contributed to better understand the pathological mechanisms of DM1, the brain pathways and cell types most susceptible to toxic RNA. In the long term, my data will contribute to the rational development of therapeutic strategies targeting precise and deleterious molecular events.
55

Thérapie cellulaire dans un modèle préclinique de Dystrophie Musculaire de Duchenne : Développement par édition génomique de cellules thérapeutiques et traçables in vivo par imagerie médicale / Cell therapy in a preclinical model of Duchenne Muscular Dystrophy : Development by gene editing of therapeutics cells, allowing their tracking in vivo

Mauduit, David 12 December 2016 (has links)
La dystrophie musculaire de Duchenne de Boulogne (DMD) est une myopathie héréditaire liée au chromosome X et causée par une mutation du gène de la dystrophine. Affectant un garçon sur 5000, cette maladie entraine une dégénérescence progressive des muscles striés squelettiques et cardiaques. A ce jour, la DMD demeure une maladie invalidante, incurable et les personnes atteintes ont une espérance de vie de 30 ans. Parmi les thérapies innovantes en cours de développement, la thérapie cellulaire est une stratégie prometteuse. Cependant elle présente plusieurs limitations notamment liées à l’efficacité des types cellulaires utilisés et le devenir des cellules après injection in vivo. Le premier objectif de cette thèse est le développement d’une méthode d’imagerie pour étudier à l’échelle de l’organisme et de façon non invasive la biodistribution et la survie des cellules suite à leur injection systémique dans un modèle préclinique pertinent, le chien GRMD (Golden Retriever Muscular Dystrophy), un modèle animal reproduisant fidèlement le phénotype DMD. Notre attention s’est portée sur l’utilisation du symporteur sodium iode (NIS) pour le suivi non invasif des cellules. Nous avons obtenu des cellules myogéniques exprimant le NIS, autorisant leur visualisation par scintigraphie grâce à la propriété d’absorption du technétium 99m conférée par ce symporteur. Nous avons montré in vitro que le NIS est fonctionnel pour la capture de radioactivité même après une différentiation avancée des cellules. En parallèle, nous nous sommes intéressés au type cellulaire. Les cellules primaires ayant une capacité de renouvellement limitée, cela restreint leur utilisation en thérapie et leur modification génomique. Afin de contourner cette limitation, plusieurs protocoles visant à obtenir des cellules souches pluripotentes induites (iPSCs) dérivées de cellules canines ont été utilisés. De plus, pour ne plus être dépendant de l’immunosuppression imposée par les greffes allogéniques, nous avons utilisé le système d’édition génomique CRISPR/Cas9 pour mettre au point une correction des cellules GRMD afin de permettre la réalisation de greffes autologues. Nous avons également utilisé le système CRISPR/Cas9 pour réaliser l’insertion ciblée du gène NIS dans un site précis du génome des cellules. Les résultats obtenus autorisent le développement de programmes comparant le potentiel thérapeutique de cellules dans un modèle préclinique de la DMD. / Duchenne muscular dystrophy (DMD), an X-linked recessive myopathy, is caused by mutations in the dystrophin gene. One boy out of 5000 is affected by this disease, which induces a progressive loss of skeletal striated and cardiac muscles. To date, DMD remains an invalidating disease and there is no cure for it. People suffering from DMD usually die in their 30’s. Among the innovative therapies currently under development, cell therapy is a promising strategy. However, it has some limitations related notably to a low efficiency of tested therapeutic cells and their tracking in vivo after injection. The first aim of this thesis is to develop an imaging method allowing non-invasive monitoring of biodistribution and survival of cells at the scale of a large organism, following systemic injection in the GRMD dog (Golden retriever muscular Dystrophy, a relevant animal model of DMD, as it replicates finely the DMD phenotype). We took interest in the sodium iodide symporter (NIS) as an imaging reporter. We induced the expression of the NIS in myogenic cells to allow visualization of the cells by scintigraphy thanks to its ability to uptake technetium 99m. We showed that NIS is functional in the cells and they maintain their ability to differentiate. Primary cells have a limited self-renewal capability restraining their use in human cell therapy and gene editing. To overcome this limitation, we used several protocols to derive induced pluripotent stem cells (iPSCs) from adult canine cells. Furthermore, to avoid immune suppression protocols, we used the CRISPR/Cas9 gene editing tools to design a correction strategy of the GRMD mutation for future autologous injections. We also used CRISPR/Cas9 to perform a targeted integration of the NIS gene in a safe harbor locus. Results allow us to develop protocols to compare the therapeutic potential of candidate cells in a preclinical model of DMD.
56

Identification des mécanismes moléculaires et physiopathologiques impliqués dans la dystrophie facioscapulohumérale / Identification of molecular and pathophysiological mechanisms involved in facioscapulohumeral muscular dystrophy

El Khatib, Nour 14 September 2016 (has links)
La dystrophie musculaire facioscapulohumérale (FSHD) est une maladie autosomique dominante, caractérisée par une faiblesse et une atrophie progressive de certains muscles squelettiques. La FSHD est liée à une répression inefficace de la région des macrosatellites D4Z4 sur le chromosome 4, entraînant l'expression inappropriée dans le muscle squelettique, d’un gène à double homeobox 4 (DUX4), et la dérégulation des gènes avoisinants. La surexpression de DUX4 est responsable du phénotype atrophié des myotubes FSHD et induit la dérégulation de gènes impliqués dans la réponse au stress oxydant. Malgré les avancés majeures dans la compréhension du locus morbide, les mécanismes exacts impliqués dans la FSHD ne sont pas totalement compris et aucun traitement curatif n’est disponible. Cependant, de nombreuses données montrent le rôle prépondérant du stress oxydant dans la FSHD. Récemment, nous avons caractérisé la présence d’un stress oxydant dans les biopsies musculaires et les prélèvements sanguins des patients atteints de FSHD. Nous avons démontré que ce stress est corrélé à une altération de la fonction musculaire chez ces patients et qu’une supplémentation en antioxydants adaptée améliore la fonction musculaire et réduit les dommages oxydatifs. Par ailleurs, nous avons démontré que les myoblastes dérivés des biopsies FSHD sont plus sensibles à des agents pro-oxydants et présentent des défauts de différenciation. L’objectif de nos travaux est de caractériser les mécanismes moléculaires impliqués dans la FSHD afin de faciliter la mise en place d’approches thérapeutiques. Ce projet de thèse original réunit à la fois une approche fondamentale et clinique.Grâce à la mise en place d’un nouveau modèle in vitro de culture primaire de myoblastes de patients atteints de FSHD, nous avons montré la présence d’un stress oxydant dans ces myoblastes corroborant les observations précédemment obtenues aux niveaux systémiques et musculaires chez ces patients. Par ailleurs, les traitements par des agents pro-oxydants (paraquat et peroxyde d'hydrogène) ont un effet différentiel sur l’expression des enzymes antioxydantes par rapport aux contrôles suggérant un défaut dans les mécanismes d'adaptation au stress oxydant chez les patients atteints de FSHD.D’autre part, afin d'améliorer les procédures de réadaptation pour les patients atteints de FSHD, nous avons proposé d'étudier la faisabilité, la sécurité et l'efficacité de l’entraînement de force par électrostimulation neuromusculaire (ESNM) pour contrer la faiblesse musculaire des quadriceps chez ces patients. Cette étude, en cours, semble être une stratégie de réhabilitation prometteuse pour les patients atteints de FSHD et n’a montré aucun effets indésirables jusqu’à présent. / Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disease, characterized by progressive weakness and atrophy of specific skeletal muscles. FSHD is linked to an inefficient repeat-mediated epigenetic repression of the D4Z4 macrosatellite repeat array on chromosome 4, resulting in the unappropriated expression in skeletal muscle of the double homeobox 4 (DUX4) retrogene. DUX4 overexpression leads to atrophic myotubes phenotype and dysregulation of antioxidant genes. Despite major progress in the understanding of the genetic locus, exact mechanisms that lead to FSHD defects are not completely understood and no curative treatment is available. However, several lines of evidence have proposed oxidative stress and myogenesis defect as the major biological processes affected in FSHD. Recently, we characterized oxidative stress in skeletal muscle biopsies and blood samples from patients with FSHD. We demonstrated that oxidative stress is associated with reduced physical performance in patients with FSHD and that antioxidants adapted strategy was effective to reduce oxidative stress and maintain muscle functions. Furthermore, satellite cell-derived myoblasts from these patients were more susceptible to pro-oxidant agents than control myoblasts and showed a defect in differentiation. The originality of this project relies on creating a synergy between basic and clinical research. The major goal of this work is to identify molecular mechanisms involved in FSHD oxidative stress in order to identify therapeutic approaches.Using in vitro cell model of FSHD, recently developed and optimized in our team, we demonstrate the presence of oxidative stress in FSHD primary myoblast cultures that corroborates previous observations at systemic and muscular levels. Furthermore, treatments with different pro-oxidant agents (paraquat and hydrogen peroxide) have a differential effect on the expression of antioxidant enzymes compared to controls, suggesting a defect in the oxidative stress adaptive response in FSHD myoblasts.Furthermore, in order to improve rehabilitation procedures for patients affected with FSHD, we proposed to investigate the feasibility, safety, and effectiveness of neuromuscular electrostimulation (NMES) strength training to counteract quadriceps muscle weakness in these patients. This ongoing study appears to be a promising rehabilitation strategy and shows no adverse effect for patients with FSHD.
57

Etude du collagène VI dans le développement musculaire chez le poisson zèbre : implications pour les myopathies liées au COLVI / Study of collagen VI during the zebrafish muscle development : implications for COLVI-related myopathies

Ramanoudjame, Laetitia 11 December 2014 (has links)
Les muscles sont des structures très organisées qui nous permettent d’effectuer un grand nombre de fonctions. Ils sont constitués de cellules musculaires mais aussi de tissus conjonctifs qui comprennent à la fois des cellules et la matrice extracellulaire. Les interactions entre les cellules musculaires et le tissu conjonctif sont cruciales pour la physiologie du muscle. Le collagène VI (COLVI) est une molécule hétérotrimérique ubiquitaire située dans les tissus conjonctifs, qui est impliquée dans un grand nombre de processus biologiques. Les trimères de COLVI sont composés de 2 chaines dites “courtes” et d’une chaine “longue”. Chez les mammifères, il existe à ce jour, 6 chaines COLVI (deux courtes (α1-2(VI) et 4 chaines longues (α3-6(VI)). Peu de choses sont encore connues à propos de l’assemblage des chaines les plus récemment décrites α4-6(VI) avec les chaines courtes ainsi qu’une la potentielle compensation entre les différentes chaines longues. De plus, chez l’homme, un déficit en α1-3(VI) du fait de mutations dans les gènes correspondants COL6A1-3 conduit à un spectre de maladies neuromusculaires appelées myopathies liées au COLVI. Pendant ma thèse, je me suis intéressée au COLVI durant le développement du poisson-zèbre, un modèle pertinent pour l’étude de maladies neuromusculaires. Dans la première partie de mon travail, j’ai identifié 2 orthologues des chaines α4-6(VI) chez le poisson-zèbre grâce à des études bio-informatiques. Du fait de leur plus grande homologie avec la chaine α4(VI) murine, nous les avons nommés col6a4a et col6a4b. Pour mieux comprendre les rôles des protéines correspondantes, j’ai créé des embryons de poissons-zèbres déficients en COLVI en utilisant l’approche transitoire par oligo morpholino antisens (MOs). Nous avons dessiné des MOs ciblant des sites d’épissage des pré-messagers col6a2, col6a4a et col6a4b, provoquant un saut d’exon et conduisant à un stop prématuré (PTC). J’ai observé une forte diminution des transcrits ciblés. Tous les embryons injectés (morphants) ont présenté des phénotypes morphologiques macroscopiques qui ont conduit à des défauts fonctionnels. Ces phénotypes ont été confirmés au niveau ultra-structural par microscopie électronique. Toutefois, l’analyse de la croissance des motoneurones a permis de mettre en évidence des différences entre ces morphants. Par la suite, j’ai voulu créer deux types de lignées transgéniques, pour pouvoir à la fois étudier le déficit en COLVI à plus long terme (grâce à l’utilisation de Zinc Finger Nucleases) et tester des approches de cribles pharmacologiques (lignée transgénique col6a2 contenant un PTC, fusionné à la GFP). J’ai effectué les clonages nécessaires à l’obtention des différentes constructions, et ces dernières ont été testées in vitro pour validation, lorsque cela était possible. Malheureusement, du fait des forts taux de mortalité in vivo dans les deux cas, nous avons dû nous résoudre à arrêter ces projets. En parallèle, ma connaissance du modèle poisson-zèbre m’a donné l’opportunité, dans le cadre d’une collaboration avec l’équipe de Denis Furling, d’aborder une autre problématique. Ce groupe, qui travaille sur la Dystrophie Myotonique de type 1 (DM1), s’est intéressé à la réexpression d’une isoforme fœtale de la dystrophine retrouvée chez les patients DM1 et à sa possible implication dans la pathologie. L’isoforme fœtale diffère de la forme adulte notamment par l’exclusion de l’exon 78, conduisant à un changement de cadre de lecture et un changement dans la partie 3’ de l’ARN de la dystrophine. Nous avons montré que le maintien de l’isoforme fœtale de la dystrophine était délétère pendant le développement du poisson-zèbre, puisque ces embryons ont présenté un phénotype macroscopique dépendant de la dose de MO injectée ainsi que des troubles de la mobilité. / Muscles are highly organized structures that allow us to perform many functions. They are made from muscular cells but also surrounding tissues that comprise both cells and extracellular matrix. The interactions between them are crucial for the muscle physiology. Collagen VI (COLVI) is a heterotrimeric protein, ubiquitously expressed in connective tissues. It plays multiple biological roles in the maintenance of structural integrity, cellular adhesion, migration and survival. COLVI trimers are formed by the assembly of 2 “short” chains and 1 “long” chain. To date, six COLVI chains are recognized in mammalians with 2 short (α1-2(VI)) and 3 long (α3-6(VI)) chains. Little is known regarding the possible assembly of the newly characterized α4-6(VI) polypeptides with the short chains, and a putative functional compensation between the different long chains. Furthermore, in humans, deficiency in α1-3(VI) due to mutations in the COL6A1-3 genes causes a heterogeneous group of neuromuscular disorders collectively termed COLVI-myopathies. During my Ph.D, I got interested in COLVI during the development of zebrafish, a relevant model of neuromuscular disorders. In the first part of my work, I identified 2 orthologs of the α4-6(VI) chains in zebrafish thanks to bio-informatics studies. In light of their stronger homology with the mammalian α4(VI) chain, we named the genes encoding the novel chains col6a4a and col6a4b. To further unveil the roles of the corresponding proteins, we created COLVI deficient zebrafish embryos using a morpholino antisense oligonucleotides approach (MO) . We chose to design MOs that block splicing of col6a2, col6a4a and col6a4b, thereby creating premature termination codons. As expected, the targeted transcripts levels were drastically reduced, likely due to degradation by the nonsense mediated RNA decay. All morphant embryos presented macroscopic and morphologic phenotypes that overall resulted in functional muscle defects: altered muscle structure detected by birefringence analysis and impaired motility upon touch-evoked escape test. These alterations were confirmed at the ultra-structural level by electron microscopy. Nevertheless, some phenotypical specificities were uncovered between the different col6a2, col6a4a and col6a4b morphants, with the discovery of axon outgrowth defects. In a second part, we wanted to create stable zebrafish lines to study COLVI deficiency at later stages using Zinc Finger Nucleases (ZFN) and to be able to carry out pharmacological screenings with a transgenic line containing col6a2 with a premature codon (PTC) fused to the GFP. I performed clonings to obtain the different constructs. When possible, constructs were tested in vitro. Unfortunately, due to high mortality in vivo in both cases, we had to interrupt these projects. In parallel, my knowledge of the zebrafish model gave me the opportunity to be part of another project, in collaboration with the team of Denis Furling...
58

Characterization of the dystrophic muscle by ²³Na NMR and ¹H NMR T₂ spectrum / Caractérisation du muscle dystrophique par RMN du ²³Na et spectre RMN T₂ du ¹H

Gerhalter, Teresa 12 July 2018 (has links)
Le but de la thèse était d'étudier la sensibilité de nouveaux biomarqueurs RMN visant à quantifier les changements pathologiques dans le muscle dystrophique. La dystrophie musculaire (DM) désigne un groupe hétérogène de maladies avec une atrophie musculaire progressive associée à un état de faiblesse. Elle est caractérisée par des degrés variables de nécrose, de régénération, de troubles de l'homéostasie ionique, d'inflammation chronique et finalement par le remplacement des muscles par du tissu fibro-graisseux. Mon objectif était d’évaluer la RMN du ²³Na et les techniques avancées de mesure du temps de relaxation transversal ¹H (T₂) en tant que des biomarqueurs sensibles et précoces. La RMN du ²³Na mesure les concentrations de sodium étroitement contrôlées et donne sa distribution dans le tissu. Cette information peut être utilisée pour évaluer l'homéostasie ionique et l'intégrité cellulaire. Cependant, la concentration in vivo en ²³Na est faible, la RMN du ²³Na souffre donc d'une faible sensibilité par rapport à ¹H. L’altération du T₂ ¹H du muscle, communément interprétée comme un indicateur de l'activité de la maladie, est liée à une variété d’événements non-spécifiques tels que l'œdème, l'inflammation ou la nécrose, qui précèdent le remplacement musculaire par la graisse. Des protocoles comprenant diverses méthodes de RMN du ²³Na et de ¹H T₂ ont été mis en œuvre pour évaluer les tissus musculaires squelettiques sains et dystrophiques sur des modèles animaux et sur patients. Ce travail fournit des preuves que la RMN du ²³Na pourrait offrir un biomarqueur sensible capable de surveiller l'altération spécifique du muscle dystrophique à un stade très précoce. / The aim of the thesis is to investigate the sensitivity of novel NMR outcome measures (OM) aiming to quantify pathological changes in the dystrophic muscle. Muscular dystrophy (MD) refers to a heterogeneous group of diseases with progressive muscle wasting and associated weakness characterized by variable degrees of necrosis, regeneration, ionic homeostasis disturbances, chronic inflammation, and, ultimately, resulting in the replacement of muscles by fibro-fatty tissue. My focus was on the evaluation of ²³Na NMR and advanced ¹H transverse relaxation time (T₂) techniques as early, sensitive OM. ²³Na NMR measures the tightly controlled sodium concentrations and distribution in skeletal muscle tissue. This biophysical information can be used to assess ion homeostasis and cell integrity. However, ²³Na NMR suffers from a low sensitivity and in vivo concentration compared to ¹H. Alterations in the muscle ¹H T₂, commonly interpreted as an indicator of disease activity, are linked to a variety of non-specific events like oedema, inflammation, or necrosis that precede the actual muscle replacement by fat. Protocols including different ²³Na NMR and ¹H T₂ methods were implemented to evaluate healthy and dystrophic skeletal muscle tissues of animal models and patients. This work provides evidence that ²³Na NMR could offer a sensitive outcome measure able to monitor specific alteration of the dystrophic muscle at a very early stage.
59

Des mécanismes moléculaires pathologiques aux stratégies de correction génomique in vitro de la Dystrophie Facio-Scapulo-Humérale / Molecular mechanisms and in vitro genome correction strategies of Facioscapulohumeral dystrophy

Bou saada, Yara 28 September 2016 (has links)
La dystrophie Facio-Scapulo-Humérale (FSHD) fait partie des maladies musculaires génétiques les plus fréquentes. Elle se caractérise par une dégénérescence progressive et asymétrique d’un groupe spécifique de muscles striés squelettiques, dont principalement les muscles faciaux, scapulaires et huméraux. D’un point de vue génétique, la FSHD est une maladie multifactorielle qui résulte d’évènements génétiques situés sur la région sub-télomérique du chromosome 4, ainsi que d’évènements épigénétiques altérant l’organisation chromatinienne du locus 4q35. Ces anomalies provoquent une relaxation chromatinienne et une surexpression de la majorité des gènes du locus 4q35, dont DUX4, gène majeur impliqué dans la FSHD. Les répercussions de l’ensemble de ces altérations se traduisent notamment par une dérégulation de la signature transcriptionnelle des myoblastes primaires issus des patients FSHD, et par des anomalies de leur différenciation myogénique in vitro et leur hypersensibilité au stress oxydant. Plusieurs aspects de la maladie demeurent incompris, et la complexité de cette myopathie rend difficile le choix d’une stratégie thérapeutique optimale. Cependant, la découverte des outils de l’édition du génome et la multiplication de leurs applications à visée thérapeutique dans le cadre de maladies humaines, notamment les myopathies, ouvre de nouvelles perspectives pour la FSHD qui reste, jusque-là, incurable.Le travail de thèse a concerné, dans un premier temps, l’implication des dommages de l’ADN et du stress oxydant dans la pathophysiologie de la FSHD. Nous avons mis en évidence l’omniprésence de ces caractéristiques cellulaires dans les myoblastes FSHD, leur lien à l’expression aberrante de DUX4 et leur participation à la morphologie défectueuse des myotubes FSHD in vitro. Dans un second temps, le travail de thèse a consisté à concevoir et à développer des outils de l’édition génomique et épigénomique, capables de cibler spécifiquement un des évènements génétiques causal de la FSHD, le variant pathogénique 4qA161 touchant un site d’attachement à la matrice nucléaire, FR-MAR. A partir de ces outils développés, deux stratégies de corrections génomique et épigénomique à visée thérapeutique peuvent être alors envisagées in vitro, ayant pour but ultime de rétablir la fonction d’insulation de FR-MAR et la conformation chromatinienne de la région 4q35. / Facioscapulohumeral dystrophy (FSHD) is one of the most common genetic myopathies characterized by a progressive and asymmetric weakening of a specific group of skeletal muscles, typically facial, shoulder girdle and upper arms muscles. FSHD is a multifactorial disease that results from the combination of genetic and epigenetic events mapped at the 4q35 locus. These genetic and epigenetic alterations lead to chromatin relaxation and the subsequent overexpression of the majority of 4q35 genes, notably DUX4, the major actor in FSHD pathology. These genomic alterations lead to molecular and cellular defects observed in vitro. Cultured-FSHD myoblasts show a distinct transcription profile, they exhibit morphological differentiation defects and are sensitive to oxidative stress. Several aspects of the disease remain poorly understood, and the elaboration of an appropriate therapeutic strategy is limited by the complexity of this myopathy. However, the discovery of genome editing tools and their successful therapeutic applications in vitro and in animal models of several human diseases, including myopathies, open doors to potential therapeutic strategies for FSHD.This work highlighted the involvement of DNA damage and oxidative stress in the pathophysiology of FSHD, by revealing their constitutive presence in FSHD myoblasts, their link to DUX4 expression and their participation in morphological defects of FSHD myotubes observed in vitro. The second part of this work was aimed at developing genome- and epigenome-editing tools capable of specifically targeting one of the genetic events causing FSHD, a pathogenic variant 4qA161 that contains an insulator and a nuclear matrix attachment site (FR-MAR). These engineered tools will be then used to develop in vitro therapeutic strategies, with the intention of restoring the insulator activity of FR-MAR and the chromatin organization of 4q35 locus.
60

Le rôle des Annexines dans la réparation membranaire des cellules musculaires squelettiques humaines / Annexins in membrane repair of human muscle cells

Croissant, Coralie 09 December 2019 (has links)
Les dystrophies musculaires sont un groupe de pathologies génétiques qui cause une faiblesse et une perte progressive des muscles squelettiques. Parmi elles, la dystrophie des ceintures de type 2B (LGMD2B) est caractérisée par des mutations dans le gène de la dysferline, entrainant de sévères dysfonctionnements, dont un défaut de réparation membranaire. Les ruptures de la membrane plasmique sont des évènements physiologiques induits par des contraintes mécaniques, comme lors de la contraction des fibres musculaires. Les cellules eucaryotes possèdent donc une machinerie protéique assurant une réparation rapide de larges ruptures membranaires. La liste exhaustive des composants de la machinerie de réparation et leur mode d’action reste à établir.Les annexines (Anx) sont de petites protéines solubles, au nombre de 12 chez les mammifères, qui partagent la propriété de lier les membranes exposant des phospholipides chargés négativement en présence de Ca2+. De nombreuses études ont montré l’implication de certaines Anx (AnxA1, A2, A4, A5, A6 et A7) dans la réparation membranaire de différents types cellulaires (muscle, cancer, endothélium…) et dans différentes espèces (souris, poisson-zèbre, homme…). La présence des Anx dans le muscle squelettique, et la participation de plusieurs membres de cette famille dans la réparation membranaire, soulèvent la question d’un rôle collectif de ces protéines dans la protection et la réparation des ruptures du sarcolemme.Les objectifs de ce travail ont été 1) d’identifier les Anx impliquées dans la réparation membranaire des cellules musculaires squelettiques humaines, 2) développer une stratégie de microscopie corrélative pour étudier le site de rupture et la distribution subcellulaire des Anx à haute résolution, 3) élucider la fonction des Anx dans le mécanisme de réparation, et 4) analyser les Anx dans des cellules musculaires dystrophiques. Avec des approches en biologie cellulaire et moléculaire, et en microscopie de fluorescence et électronique, nous avons donc étudié le comportement des Anx lors d’un dommage du sarcolemme.Nous avons ainsi montré que les AnxA1, A2, A4, A5 et A6 sont exprimées dans les myoblastes et les myotubes humains, et sont recrutées au site de rupture quelques secondes après le dommage, en formant une structure dense à l’extérieur du myotube endommagé appelé domaine « cap ». De plus, nous avons pu déterminer l’ordre relatif de recrutement des Anx au site membranaire endommagé. Les premières Anx à être recrutées sont l’AnxA1, suivies des AnxA6 et A5, les moins sensibles au Ca2+. Les dernières Anx recrutées sont les plus sensibles au Ca2+, les AnxA4 puis A2, qui semblent se lier à des vésicules intracellulaires initialement éloignées du site de rupture. Nous avons également étudié l’ultrastructure du site de rupture à haute résolution. Nos résultats ont révélé que le domaine « cap » correspondait à une accumulation de matériel membranaire qui est associé au Anx. En s’appuyant sur nos résultats et la littérature, nous avons proposé un modèle de réparation membranaire, impliquant les AnxA1, A2, A4, A5 et A6, dans les cellules musculaires squelettiques humaines. Nous nous sommes également intéressés à l’expression des Anx dans des lignées de cellules musculaires dystrophiques issues de patients atteints de dystrophies musculaires des ceintures de type 2B (déficients en dysferline) et 1C (déficients en cavéoline-3). Nous avons ainsi montré que le contexte pathologique perturbait l’expression de certaines Anx, sans en modifier leur localisation subcellulaire.En conclusion, ce travail de thèse montre que plusieurs membres de la famille des Anx sont impliqués dans la réparation membranaire, et agissent de concert pour réparer un dommage de la membrane plasmique. L’implication des Anx dans d’autres pathologies, comme le cancer et la pré-éclampsie, renforce l’intérêt de leur étude dans les processus de réparation membranaire et en font une cible thérapeutique potentielle. / Muscular dystrophy encompasses a group of genetic disorders which cause progressive weakness and wasting of skeletal muscle. Among them, limb girdle muscular dystrophy type 2B (LGMD2B) is characterized by mutations in the dysferlin gene leading to several dysfunctions including a failure in cell membrane repair process. Cell membrane disruption is a physiological phenomenon induced by mechanical stress, such as contraction of muscle fibers. Thus, eukaryotic cells have a repair protein machinery ensuring a rapid resealing of large cell membrane ruptures. The exhaustive list of components of the repair machinery and their interplay remain to be established.The annexin (Anx) family consists of twelve soluble proteins in mammals and share the property of binding to membranes exposing negatively charged phospholipids in a Ca2+-dependent manner. Several studies have shown the involvement of Anx (AnxA1, A2, A4, A5, A6 and A7) in membrane repair of different cell types (muscle, cancer, endothelium…) in different species (mouse, zebrafish, human…). The presence of different Anx in skeletal muscle, together with the participation of several members of the Anx family in membrane repair processes, raise the question of a collective role of these proteins in the protection and repair of sarcolemma injuries.The PhD project aimed 1) at identifying Anx that are essential for membrane repair in human skeletal muscle cells, 2) developing a correlative light and electron microscopy to study the wounded site and the Anx distribution at high resolution, 3) elucidating the function of each Anx in this process and 4) analyzing Anx in dystrophic muscle cells. Using approaches including cellular and molecular biology, fluorescence microscopy and transmission electron microscopy, we studied the behavior of Anx during sarcolemma damage.We showed that AnxA1, A2, A4, A5 and A6 are expressed in human myoblasts and myotubes, and are recruited at the disruption site within seconds after the sarcolemmal damage, forming a dense structure outside the cell, named the “cap” domain. Furthermore, we determined the relative order of Anx recruitment at the disruption site. The first Anx recruited are AnxA1, followed by AnxA6 and A5, the less sensitive to Ca2+. The last Anx recruited are the most sensitive to Ca2+, AnxA4 and A2. AnxA2 and A4 are instead rapidly recruited to intracellular vesicles present deeper in the cytosol. We also studied the ultrastructure of the disruption site at high resolution. Our results revealed that the “cap” domain correspond to a disorganized membrane structure, associated with the Anx. Thanks to our results and the literature, we have proposed a model for membrane repair involving Anx in human skeletal muscle cells. We also looked at the expression of Anx in dystrophic muscle cell lines from patients with limb girdle muscular dystrophy type 2B (dysferline deficient) and 1C (deficient in cadaveoline-3). We have thus shown that the pathological context disrupts the expression of some Anx, without altering their subcellular location.In conclusion, this work shows that several members of the Anx family are involved in membrane repair and act together to repair plasma membrane damage. The implication of Anx in other pathologies, such as preeclampsia or cancer, reinforces the interest of their study in the process of membrane repair.

Page generated in 0.09 seconds