• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 12
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 130
  • 74
  • 57
  • 44
  • 35
  • 28
  • 25
  • 19
  • 19
  • 17
  • 17
  • 17
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Existência e multiplicidade de soluções limitadas para uma classe de equações quasilineares elípticas

Macedo, Shirley da Silva 30 March 2009 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2009. / Submitted by Elna Araújo (elna@bce.unb.br) on 2010-04-23T19:58:56Z No. of bitstreams: 1 2009_ShirleydaSilvaMacedo.pdf: 376909 bytes, checksum: 3e295dccc55e90feb613e18f534a4d31 (MD5) / Approved for entry into archive by Daniel Ribeiro(daniel@bce.unb.br) on 2010-05-13T20:44:31Z (GMT) No. of bitstreams: 1 2009_ShirleydaSilvaMacedo.pdf: 376909 bytes, checksum: 3e295dccc55e90feb613e18f534a4d31 (MD5) / Made available in DSpace on 2010-05-13T20:44:31Z (GMT). No. of bitstreams: 1 2009_ShirleydaSilvaMacedo.pdf: 376909 bytes, checksum: 3e295dccc55e90feb613e18f534a4d31 (MD5) Previous issue date: 2009-03-30 / Neste trabalho estudamos a existência de soluções inteiras positivas de equacões elípticas quasilineares de segunda ordem do tipo (P)p : -div(|▼u|p-2▼u) = f(x, u), RN onde f(x; u) é uma função contínua em RN x (0,∞) e p > 1. Usando o conceito de sub e supersolução, demonstraremos que a equação acima possui uma infinidade de soluções positivas limitadas em RN. Analisaremos também questões relacionadas ao comportamento assintótico dessas soluções e que as mesmas são limitadas inferiormente por uma constante positiva. _________________________________________________________________________________ ABSTRACT / In this work we study the existence of entire positive solutions for quasilinear elliptic equations of second order of the type (P)p : -div(|▼u|p-2▼u) = f(x, u), RN where f(x; u) is a continue function in RN x (0,∞) e p > 1. Using the concept of lower and upper solutions, we prove that the above equation has infinetely many bounded positive solutions in RN. We also analyze questions related with the asymptotic behavior of these solutions and that they are limited from below by a positive constant.
22

Existência de soluções inteiras minimais para sistemas elípticos semi-lineares com termos singulares e superlineares

Reis, Mariana Ramos January 2009 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2009. / Submitted by Raquel Viana (tempestade_b@hotmail.com) on 2010-04-26T18:26:29Z No. of bitstreams: 1 2009_MarianaRamosReis.pdf: 642382 bytes, checksum: 00894bbaf4b8aa754e03988fde64726b (MD5) / Approved for entry into archive by Daniel Ribeiro(daniel@bce.unb.br) on 2010-05-13T20:48:35Z (GMT) No. of bitstreams: 1 2009_MarianaRamosReis.pdf: 642382 bytes, checksum: 00894bbaf4b8aa754e03988fde64726b (MD5) / Made available in DSpace on 2010-05-13T20:48:35Z (GMT). No. of bitstreams: 1 2009_MarianaRamosReis.pdf: 642382 bytes, checksum: 00894bbaf4b8aa754e03988fde64726b (MD5) Previous issue date: 2009 / Consideramos neste trabalho duas classes de problemas de equações diferenciais parciais elípticas, ambas semilineares com termos singulares, superlineares e sublineares, envolvendo funções não-negativas e localmente Holder contínuas, sendo uma das classes composta de uma equação e a outra de duas equações. Em relação a esses problemas, mostramos a existência de soluções positivas, inteiras minimais, onde a demonstração na primeira classe de problemas se baseia no uso de Teorema de Sub e Supersolução. No segundo caso, usamos Teoremas de Ponto Fixo, como por exemplo, o Teorema de Ponto Fixo de Schauder-Tychonoff em espaços vetoriais topológicos de Hausdorff localmente convexos. _________________________________________________________________________________ ABSTRACT / In this work, two classes of problems are considered both semilinears with singular, superlinear and sublinear terms envolving non-negative and locally Holder continuous functions, where one class is compose to one equation and the other with two equations. In these problems, we are showing the existence of positive, entire minimal solutions, where the demonstration of the first class of the problem to be based on the usage of lower-upper solution argument. In the second case, we use fixed-point Theorem, for example, fixed-point Theorem of Schauder-Tychonoff in Hausdorff locally convex vectorial topological spaces.
23

Multiplicidade de soluções radiais do problema de Dirichlet para o p-Laplaciano

Pereira, Gisliane Alves 26 July 2007 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2007. / Submitted by Érika Rayanne Carvalho (carvalho.erika@ymail.com) on 2010-09-09T17:34:55Z No. of bitstreams: 1 2007_GislianeAlvesPereira.pdf: 646708 bytes, checksum: 5e3545c5a38f7d3ebf81fdab5d01ff95 (MD5) / Approved for entry into archive by Carolina Campos(carolinacamposmaia@gmail.com) on 2010-09-28T13:30:00Z (GMT) No. of bitstreams: 1 2007_GislianeAlvesPereira.pdf: 646708 bytes, checksum: 5e3545c5a38f7d3ebf81fdab5d01ff95 (MD5) / Made available in DSpace on 2010-09-28T13:30:00Z (GMT). No. of bitstreams: 1 2007_GislianeAlvesPereira.pdf: 646708 bytes, checksum: 5e3545c5a38f7d3ebf81fdab5d01ff95 (MD5) Previous issue date: 2007-07-26 / Neste trabalho examinamos a existência e a multiplicidade de soluções radiais do problema de Dirichlet. Usando o método de "Shooting" mostramos que esse problema tem infinitas soluções, cada uma com um número específico de zeros interiores em [0, 1]. _____________________________________________________________________________ ABSTRACT / In this work we examine the existence and the multiplicity of radial solutions of the Dirichlet problem. Using the Shooting method we show that this problem has an infinite number of radial solutions, each one with a specific number of interior zeros in [0, 1].
24

Existência e multiplicidade de soluções de um problema elíptico superlinear indefinido

Silva, Maxwell Lizete da 16 April 2010 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2010. / Submitted by Shayane Marques Zica (marquacizh@uol.com.br) on 2011-02-17T12:39:59Z No. of bitstreams: 1 2010_MaxwellLizetedaSilva.pdf: 831448 bytes, checksum: f15f4701e9ba427c098fdf4159c112c2 (MD5) / Approved for entry into archive by Daniel Ribeiro(daniel@bce.unb.br) on 2011-03-30T02:26:39Z (GMT) No. of bitstreams: 1 2010_MaxwellLizetedaSilva.pdf: 831448 bytes, checksum: f15f4701e9ba427c098fdf4159c112c2 (MD5) / Made available in DSpace on 2011-03-30T02:26:39Z (GMT). No. of bitstreams: 1 2010_MaxwellLizetedaSilva.pdf: 831448 bytes, checksum: f15f4701e9ba427c098fdf4159c112c2 (MD5) / Consideramos o problema semilinear -∆u+m(x)u = a (x) f (u) em um domínio suave limitado Ω∁RN; sob as condições de Neumann na fronteira, quando a ∈ C(Ω) troca de sinal eDigite a equação aqui.m e f : R ! R possui crescimento superlinear subcrítico. Os resultados estão baseados no primeiro autovalor do operador- ∆ + m; sob as mesmas condições de fronteira. Inicialmente, utilizando o método de minimização com vínculo, estabelecemos a existência de uma solução positiva para o problema superlinear homogêneo no caso de perturbações adequadas do potencial m: Posteriormente, aplicamos o método de minimax e a teoria de Morse em dimensão infinita para demonstrar que o problema não homogêneo possui pelo menos três soluções não triviais. Um resultado de existência de três soluções para o problema perturbado também é apresentado. _________________________________________________________________________________ ABSTRACT / We consider the semilinear problem -∆u+m(x)u = a (x) f (u) on a bounded smooth domain Ω∁RN; under Neumann boundary conditions, when a ∈ C(Ω)changes sign in and f : R ! R has superlinear and subcritical growth. The results are based on the first eigenvalue for the operator ∆ + m; under the same boundary conditions. Initially, using the constrained minimization method, we establish the existence of a positive solution for the homogeneous superlinear problem when we have a suitable perturbation of the potential function m: Posteriorly, applying the minimax method and the infinite dimensional Morse theory, we establish the existence of at least three nontrivial solutions for the nonhomogeneous problem. A result concerning the existence of three solution for the perturbed problem is also presented.
25

Problemas elípticos quasilineares com termos singulares, superlineares e convectivos

Rezende, Manuela Caetano Martins de 24 February 2011 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2011. / Submitted by alcianira lima persch (alcyrpl@yahoo.com.br) on 2011-06-28T19:47:54Z No. of bitstreams: 1 2011_ManuelaCaetanoMartinsdeRezende.pdf: 2564047 bytes, checksum: 97b9b2a9bf641f22916bd222874a0c57 (MD5) / Approved for entry into archive by Elna Araújo(elna@bce.unb.br) on 2011-06-29T16:13:14Z (GMT) No. of bitstreams: 1 2011_ManuelaCaetanoMartinsdeRezende.pdf: 2564047 bytes, checksum: 97b9b2a9bf641f22916bd222874a0c57 (MD5) / Made available in DSpace on 2011-06-29T16:13:14Z (GMT). No. of bitstreams: 1 2011_ManuelaCaetanoMartinsdeRezende.pdf: 2564047 bytes, checksum: 97b9b2a9bf641f22916bd222874a0c57 (MD5) / Neste trabalho, estabelecemos existência de soluções positivas para a classe de problemas <: _p u = g(x; u) + _f(x; u) + _V (x;ru) em u > 0 em e u = 0 em @; em que _p é o operador p-Laplaciano, 1 < p < 1; _ > 0 e _ _ 0 são parâmetros reais; g; f : _(0;1) ! [0;1) e V : _RN ! R são funções contínuas satisfazendo hipóteses adequadas e _ RN é um domínio limitado regular ou = RN. Quando = RN, a condição u(x) = 0 quando x 2 @ significa que u(x) ! 0 quando jxj ! 1. Nenhuma condição de monotonicidade e (ou) singularidade é exigida das nãolinearidades g e f, mas termos singulares e superlineares são incluídos em nossos resultados, que utilizam uma técnica de monotonização-regularização, métodos de sub e supersolução e argumentos de aproximação. As dificuldades decorrentes da presença do termo convectivo V e da perda de elipticidade do operador p-Laplaciano são contornadas por meio de princípios de comparação, um deles estabelecido neste trabalho. _________________________________________________________________________________ ABSTRACT / In this work, we establish the existence of positive solutions for the problem <: _p u = g(x; u) + _f(x; u) + _V (x;ru) in u > 0 in e u = 0 on @; where _p is the p-Laplacian operator, 1 < p < 1; _ and _ are real parameters; g; f : _ (0;1) ! [0;1) and V : _ RN ! R are continuous functions satisfying appropriated hypotheses and _ RN is a smooth bounded domain or = RN. When = RN, the condition u(x) = 0 on @ means that u(x) ! 0 when jxj ! 1. No monotonicity conditions and (or) the existence of singularity is required on the nonlinearities g and f, but singular and super linear terms are included in our results, which use a regularization and monotonicity technique, sub and super solutions methods and approximation arguments. The difficulties arising from the presence of the convective term V and the loss elipticity of the p-Laplacian operator are overcome by comparison principles, one of this principle is established in this work.
26

Formas Modulares e o Problema dos Números Congruentes

REIS, A. S. 29 October 2015 (has links)
Made available in DSpace on 2018-08-01T22:30:15Z (GMT). No. of bitstreams: 1 tese_9340_Dissertação 15-12-2015.pdf: 1459636 bytes, checksum: c14de6f7f9fd1d2bfc66ea8cae8c2d43 (MD5) Previous issue date: 2015-10-29 / A teoria das curvas elípticas constitue um dos temas mais versáteis em matemática, com abrangência desde a teoria dos códigos corretores de erros, passando pela geometria diferencial de superfícies mínimas, até a teoria dos números. Por exemplo, ela foi um dos importantes ingredientes usados na de- monstração do teorema de Fermat, por Andrew Wiles em 1994. No presente projeto de dissertação, as curvas elípticas serão abordadas de duas formas. Na primeira, elas serão introduzidas a partir da ação do grupo linear no semiplano superior do plano complexo. Isto permitir &#769;a considerar os chamados grupos modulares, com a finalidade de introduzir as chamadas formas modulares e também as curvas modulares. Em particular, por meio do invariante modular, descreve-se o espaço de moduli das curvas elípticas definidas sobre o corpo dos números complexos. Na segunda, as curvas elípticas serão abordadas por meio da função P de Weierstrass, associada a um reticulado do plano complexo. Neste caso, a partir das duas funções P e P, obtêm-se o corpo das funções meromorfas duplamente periódicas. Daí surge uma motivação natural para definição de curvas. Elípticas sobre um corpo qualquer. Como aplicação dos resultados desenvolvidos, consideraremos o problema dos números congruentes, isto é, os números inteiros que são dados como áreas de triângulos retângulos, tendo nacionais como medidas dos seus lados. Tal problema está relacionado com a estrutura de grupo de certas curvas elípticas, e a sua solução, em geral, depende da chamada conjectura de Birch e Swinnerton-Dyer. Essa conjectura é um dosseis famosos problemas do milênio, estabelecidos pelo instituto Clay.
27

Criptossistemas baseados em curvas elipticas : estudo de casos e implementação em processador de sinais digitais

Almeida Junior, Arnaldo Jorge de, 1968- 01 August 2018 (has links)
Orientador : Marco Aurelio Amaral Henriques / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-01T22:13:17Z (GMT). No. of bitstreams: 1 AlmeidaJunior_ArnaldoJorgede_M.pdf: 605236 bytes, checksum: 2e581d70ca90b2c8412a7fc6947db565 (MD5) Previous issue date: 2002 / Mestrado
28

Contributions to local and nonlocal elliptic differential equations

Wang, Ying January 2015 (has links)
Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática / Esta tesis doctoral está dividida en cuatro partes. La primera parte está dedicada al estudio de la simetría radial y las propiedades de monotonicidad de soluciones positivas de ecuaciones elípticas fraccionarias en la bola unitaria o en todo el espacio, usando el método de planos móviles. En la segunda parte, se consideran propiedades de decaimiento y simetría de las soluciones positivas para ecuaciones integro-diferenciales en todo el espacio. Estudiamos el decaimiento, construyendo super y subsoluciones apropiadas y usamos el método de los planos móviles para probar las propiedades de simetría. La tercera parte es investigar la existencia y unicidad de soluciones débiles de la ecuación del calor fraccionaria, involucrando medidas de Radon. Más aún, analizamos el comportamiento asintótico de la solución débil cuando la medida de Radon es la masa de Dirac. En la cuarta parte, estudiamos la existencia de soluciones a problemas elípticos no lineales que provienen del modelamiento de dispositivos de sistemas micro-electromecánicos en el caso en que la membrana elástica entra en contacto con la placa inferior en la frontera. Mostramos, en este caso, como el decaimiento de la membrana afecta la existencia de soluciones y la tensión pull-in.
29

Teoria de funções elípticas e aplicações em soluções de sistemas periódicos em mecânica / Theory of elliptic functions and applications in periodic system solutions in mechanics

Bergamo, José Vinícius Zapte 24 April 2018 (has links)
Submitted by JOSE VINICIUS ZAPTE BERGAMO (vinni.zapte@gmail.com) on 2018-05-21T01:27:15Z No. of bitstreams: 1 Versão Final.pdf: 1512028 bytes, checksum: 03a7fa4505560dd5c8c218ebc20d5c7a (MD5) / Rejected by Ana Paula Santulo Custódio de Medeiros null (asantulo@rc.unesp.br), reason: A ficha catalográfica deve ser solicitada à biblioteca, pelo site: http://ib.rc.unesp.br/#!/biblioteca/biblioteca/ , clicar em Serviços, Ficha Catalográfica. A ficha catalográfica só pode ser elaborada por um bibliotecário. De acordo com a Resolução CFB nº 184/2017 de 29/09/2017 – na Ficha catalográfica deve constar o nome do Bibliotecário/CRB, e ser elaborada de acordo com as normas vigentes segundo à AACR2. É proibido perante a lei (Art. 297 – Código Penal) qualquer alteração documental, sem autorização do Bibliotecário responsável. DA FALSIDADE DOCUMENTAL: (I) FALSIDADE DE DOCUMENTO PUBLICO ART. 297: Falsificar, no todo ou em parte, documento publico, ou alterar documento publico verdadeiro: Pena – reclusão, de dois a seis anos, e multa. DOCUMENTO PUBLICO: é aquele elaborado por funcionário publico, de acordo com as formalidades, e desempenho de suas funções. Art. 232, CPP - Consideram-se documentos quaisquer escritos, instrumentos ou papéis, públicos ou particulares. Obs: O arquivo da dissertação também está com várias páginas em branco. Favor removê-las. on 2018-05-21T16:44:27Z (GMT) / Submitted by JOSE VINICIUS ZAPTE BERGAMO (vinni.zapte@gmail.com) on 2018-05-22T21:00:36Z No. of bitstreams: 1 Versão final.pdf: 2094478 bytes, checksum: d2ae82de50952a7c6fd4a2c3bcfafa7a (MD5) / Approved for entry into archive by Ana Paula Santulo Custódio de Medeiros null (asantulo@rc.unesp.br) on 2018-05-23T11:37:05Z (GMT) No. of bitstreams: 1 bergamo_jvz_me_rcla.pdf: 2053307 bytes, checksum: 136b1ac8c78bcede6e781522c69ee3c6 (MD5) / Made available in DSpace on 2018-05-23T11:37:05Z (GMT). No. of bitstreams: 1 bergamo_jvz_me_rcla.pdf: 2053307 bytes, checksum: 136b1ac8c78bcede6e781522c69ee3c6 (MD5) Previous issue date: 2018-04-24 / É bem conhecido que em Mecânica Analítica muitos problemas integráveis não tem primitivas escritas em forma de funções elementares, tais como: corpo rígido assimétrico em rotação livre; pêndulo esférico, entre outros. O uso de funções elípticas faz-se necessário para se buscar soluções analíticas desses problemas. Neste trabalho, faremos primeiramente uma revisão da teoria dessas funções adotando como referência alguns textos clássicos. Feito isso, estudaremos a formulação de problemas de dinâmica, a saber o pêndulo simples e o pião simétrico. Por fim, com as integrais desses problemas em mãos, iremos determinar suas soluções com o uso das funções elípticas de Jacobi e Weierstrass. / It is well known that in Analytical Mechanics many simple integrable problems cannot be written in terms of elementary functions, such as: rigid asymmetrical body in free rotation, spherical pendulum, among others. The use of elliptic functions becomes necessary in order to obtain analytical solutions of these problems. In this work, we present a review of the theory of these functions accordingly to some classical texts. In the sequence, we study two problems of mechanics: the simple pendulum and the symmetrical top. Finally, we will determine the solutions to these problems using of the Jacobi and Weierstrass elliptic functions.
30

Existencia de solución débil de un problema semilineal elíptico

Rojas Bazán, Edwar Augusto January 2016 (has links)
Prueba la existencia de la solución débil del problema de Dirichlet semilineal donde Ω es undominio (abierto y conexo) acotado en RN de clase C2 , f : Ω x R R es una función de Carathéodory que satisface ciertas condiciones y h E Lp (Ω). La existencia de la solución débil del problema Dirichlet semilineal se prueba por medio del siguiente resultado: todo funcional definido en un espacio de Banach que tiene mínimo y es Fréchet diferenciable en dicho espacio, posee un punto crítico. En nuestro trabajo construiremos un funcional sobre H10 (Ω) cuyo punto crítico será la solución débil del problema mencionado.

Page generated in 0.0572 seconds