• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effects of Memory Alteration in Schizophrenic Patients Treated with Electroconvulsive Shock Therapy

Redding, Kaye George 08 1900 (has links)
The problem of this investigation is twofold. First, to demonstrate the effects of the variation of convulsive-nonconvulsive electroshock treatment used in this study in relation to memory alteration in schizophrenia as measured by the Wechsler Memory Scale. Second, to determine those aspects of memory that are the most affected, and those that are the least affected by this form of treatment.
2

Modification of the Antiepileptic Actions of Phenobarbital and Phenytoin by the Taurine Transport Inhibitor, Guanidinoethane Sulfonate

Izumi, Kanji, Kishita, Chikara, Nakagawa, Kazuo, Huxtable, Ryan J., Shimizu, Takao, Koja, Takeshi, Fukuda, Takeo 02 April 1985 (has links)
We investigated whether chronic administration of guanidinoethane sulfonate, an inhibitor of taurine uptake, could modify the antiepileptic actions of phenobarbital and phenytoin on maximal electroshock seizures in mice. Treatment with 1% guanidinoethane sulfonate decreased the taurine concentration in the brain to 76% of the control value. Under these conditions, neither the severity of tonic convulsions of maximal electroshock seizures nor the threshold for tonic extension caused by electroshock was altered. However, treatment with guanidinoethane sulfonate lessened the antiepileptic actions of phenobarbital and phenytoin on electroshock seizures. The brain concentrations of phenobarbital and phenytoin were unaltered by administration of guanidinoethane sulfonate. The brain concentrations of guanidinoethane sulfonate and total guanidino compounds were unchanged by the injection of either phenobarbital or phenytoin. It is suggested that the observed loss of anticonvulsive potency of phenobarbital and phenytoin may have been related to the decrease in taurine concentration produced by guanidinoethane sulfonate.
3

Electrophysiological Studies on the Impact of Repeated Electroconvulsive Shocks on Catecholamine Systems in the Rat Brain

Tsen, Peter 10 June 2011 (has links)
Electroconvulsive therapy (ECT) effectively treats depression by administration of repeated seizure-inducing electrical stimuli. Sprague-Dawley rats were administered 6 electroconvulsive shocks (ECS) over 2 weeks, and in vivo single unit extracellular electrophysiological activity was recorded after 48 hours. Overall firing activity in the locus coeruleus and ventral tegmental area was unchanged, suggesting the therapeutic efficacy of ECT may not be attributed to increased norepinephrine and dopamine release. There were more spontaneously active neurons in the substantia nigra pars compacta (SNc), indicating greater dopamine tone in the nigrostriatal motor pathway, which may contribute to alleviation of psychomotor retardation. In the facial motor nucleus (FMN), locally administered norepinephrine, but not serotonin, facilitated greater glutamate-induced firing, which may contribute to improved facial motricity. Current results indicate that repeated ECS enhances postsynaptic norepinephrine neurotransmission in the FMN and SNc dopamine neurotransmission, which could represent the mechanism behind the alleviation of depressive symptoms including psychomotor retardation.
4

Electrophysiological Studies on the Impact of Repeated Electroconvulsive Shocks on Catecholamine Systems in the Rat Brain

Tsen, Peter 10 June 2011 (has links)
Electroconvulsive therapy (ECT) effectively treats depression by administration of repeated seizure-inducing electrical stimuli. Sprague-Dawley rats were administered 6 electroconvulsive shocks (ECS) over 2 weeks, and in vivo single unit extracellular electrophysiological activity was recorded after 48 hours. Overall firing activity in the locus coeruleus and ventral tegmental area was unchanged, suggesting the therapeutic efficacy of ECT may not be attributed to increased norepinephrine and dopamine release. There were more spontaneously active neurons in the substantia nigra pars compacta (SNc), indicating greater dopamine tone in the nigrostriatal motor pathway, which may contribute to alleviation of psychomotor retardation. In the facial motor nucleus (FMN), locally administered norepinephrine, but not serotonin, facilitated greater glutamate-induced firing, which may contribute to improved facial motricity. Current results indicate that repeated ECS enhances postsynaptic norepinephrine neurotransmission in the FMN and SNc dopamine neurotransmission, which could represent the mechanism behind the alleviation of depressive symptoms including psychomotor retardation.
5

Electrophysiological Studies on the Impact of Repeated Electroconvulsive Shocks on Catecholamine Systems in the Rat Brain

Tsen, Peter 10 June 2011 (has links)
Electroconvulsive therapy (ECT) effectively treats depression by administration of repeated seizure-inducing electrical stimuli. Sprague-Dawley rats were administered 6 electroconvulsive shocks (ECS) over 2 weeks, and in vivo single unit extracellular electrophysiological activity was recorded after 48 hours. Overall firing activity in the locus coeruleus and ventral tegmental area was unchanged, suggesting the therapeutic efficacy of ECT may not be attributed to increased norepinephrine and dopamine release. There were more spontaneously active neurons in the substantia nigra pars compacta (SNc), indicating greater dopamine tone in the nigrostriatal motor pathway, which may contribute to alleviation of psychomotor retardation. In the facial motor nucleus (FMN), locally administered norepinephrine, but not serotonin, facilitated greater glutamate-induced firing, which may contribute to improved facial motricity. Current results indicate that repeated ECS enhances postsynaptic norepinephrine neurotransmission in the FMN and SNc dopamine neurotransmission, which could represent the mechanism behind the alleviation of depressive symptoms including psychomotor retardation.
6

Electrophysiological Studies on the Impact of Repeated Electroconvulsive Shocks on Catecholamine Systems in the Rat Brain

Tsen, Peter January 2011 (has links)
Electroconvulsive therapy (ECT) effectively treats depression by administration of repeated seizure-inducing electrical stimuli. Sprague-Dawley rats were administered 6 electroconvulsive shocks (ECS) over 2 weeks, and in vivo single unit extracellular electrophysiological activity was recorded after 48 hours. Overall firing activity in the locus coeruleus and ventral tegmental area was unchanged, suggesting the therapeutic efficacy of ECT may not be attributed to increased norepinephrine and dopamine release. There were more spontaneously active neurons in the substantia nigra pars compacta (SNc), indicating greater dopamine tone in the nigrostriatal motor pathway, which may contribute to alleviation of psychomotor retardation. In the facial motor nucleus (FMN), locally administered norepinephrine, but not serotonin, facilitated greater glutamate-induced firing, which may contribute to improved facial motricity. Current results indicate that repeated ECS enhances postsynaptic norepinephrine neurotransmission in the FMN and SNc dopamine neurotransmission, which could represent the mechanism behind the alleviation of depressive symptoms including psychomotor retardation.
7

Laut, Ton, Stärke

Schreiner, Florian 03 May 2010 (has links)
Historisch wird die Arbeit von zwei Daten her begrenzt, von den ersten hör-physiologischen Experimenten seit 1850, und von den massenwirksamen akustischen Inszenierungen der 1930er Jahre in „real auditory perspective“. Die Arbeit beginnt in Kapitel I mit dem tragischen Fall des Regisseurs und langjährigen Psychiatrie-Patienten Antonin Artaud, der die Sprache zugunsten von Lauten, Gebärden und Schreien verlässt. Seine Experimente zum Theater geben zu einer ersten Korrektur von Bildlichkeit Anlass. In Kapitel II wird der Vorrang der Bildlichkeit grundsätzlich in Frage gestellt, die Differenz von Bild und Klang wissenschaftshistorisch auseinandergesetzt, und ein „acoustic turn“ zur Welt vorbereitet. Die Untersuchungen des Physiologen und Akustikers Hermann von Helmholtz sind hier maßgeblich, denn sie beeinflussen die Technische Akustik von ihren Anfängen her. Das Kapitel III schließlich untersucht im transatlantischen Vergleich die technischen Bedingungen nach 1900. Die Beschallungsanlage hat nun die Fähigkeit, alltäglich in den Dienst genommen zu werden, und auch politischen Manipulationen diensthaft zu sein. / Historically the work is framed by two dates, by the physiological experiments of hearing and the mise en scène of a massed and sonic attack in so called „real auditory perspective“ of the 1930s. The first chapter starts with the tragedic and long living psychiatric case Antonin Artaud, who moves away from clarity of sounds to phones, gestures and crying. Such experiments give cause for a fundamental rethinking of meaning in the sense of picture, and leads to the second chapter which argues in more detail for the lap of our sonic understanding of the world. This way speeds up to an „acoutic turn“ by a retour to the biological grounds of sonic perception. The physiological and acoustic inquiries of Hermann von Helmholtz fit here to the ground for him being starting point of what will later be called „technische Akustik“. The third chapter bridges Europe´s early Telefunken-years with the United States and their chief acousticians at the legendary Bell Laboratories, and seeks finally for light in scientific amnesia against progress and control, or what the germans call „Betriebsamkeit“ and „Gestell.“ (Heidegger)

Page generated in 0.0893 seconds