• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energianalys av fastigheten Björnen : Kvarteret Björnen i Mariestad / Energy analysis of a multi-useproperty : The block Björnen in Mariestad

Östanbäck, Kristian January 2015 (has links)
Denna rapport behandlar en energianalys av fastigheten Björnen i Mariestad. I rapportenkommer aspekter som antags vara kritiska för byggnadens energianvändning att behandlas.Exempel presenteras på hur framtagande av dokumentation och behandling av existerandesådan gjordes. Att dokumentation saknas eller inte är uppdaterad kan innebära problem dåfastigheten skall analyseras. Detta problem eftersträvas delvis att elimineras i denna rapportgenom de analyser som görs.Ett syfte med rapporten är att ta fram möjliga förtjänster som framtida energieffektiviseringsåtgärder påverkar. Exempelvis vid en renovering. Emellertid är en heltäckande förståelse förhur den i fastighetens tillförda fjärrvärmeenergi tillförs och används i byggnaden central. Enkartläggning av hur fastigheten fungerar i nuläget med till exempel energisignatur, samt samladstatistik finns också att tillgå. Detta skall fungera som ett underlag inför eventuella framtidaenergieffektiviserande åtgärder i fastigheten. / This report is covering an energy analysis of the property Björnen, Mariestad. The report willcover aspects assumed to have a critical impact on the energy use of this property in particular.Examples on how produce documentation and analysis of existing documentation is covered.Missing documentation or badly organized one can cause major problems in an energy analysis.This problem is sought to be partially eliminated through this report.One purpose of this report is to declare possible profits that may be the result of proposed energyefficiency actions regarding this property. Actions such as renovation. The central purpose,however, is to create an understanding of how this property in particular is using the energydelivered to it. A survey of how the property is functioning in these aspects with appurtenantstatistics and analysis are covered. This should act as a base of thought to consider for possibleactions taken with this property in the future.
2

Modellering av energisignatur för flerbostadshus : En studie över möjligheter och begränsningar med olika sätt att beräkna energianvändning, baserad på energianvändning i sex hus belägna i Linköping

Wahlqvist, Max January 2018 (has links)
This thesis is conducted within the project of categorizing the building stock in Sweden, which is a part of the research program Spara and bevara initiated by the Swedish Energy Agency. Categorizing the building stock is done to find typical buildings of which to analyze for energy efficiency measures. The purpose of this thesis is to evaluate the performance of energy signatures calculated with different time steps and methods in order to find out how energy signatures can be used as a supplement to the categorization and to compare the energy use in buildings to their Energy Performance Certificate (energideklaration). The certificates are found in the database GRIPEN, provided by the National Board of Housing, Building and Planning (Boverket). The results show that an energy signature with time resolution of hours or days can be used for an accurate prediction of the energy use in a building. With larger time steps the accuracy is reduced. The prediction of the buildings use of domestic hot water is scattered and need to be compared to measured values for a better result. When the energy use (corrected for climate) is compared to the Energy Performance of a building there is a large difference, at the most 26 %, with the conclusion that the corrected energy use has to be calculated over a couple of years for a good estimation. Furthermore the results show that grouping measured energy use in even intervals of temperature is better when the specific energy loss of the building is to be predicted. The coefficient of determination (R2) can be used to detect an abnormal energy use in a building. When equivalent temperature (Te) is used the value of R2 increases. Further studies are required to determine whether effects of solar radiation and wind on the building can be predicted from the value of R2 for different temperature sets.
3

Energikartläggning av en industri : En jämförelse av olika beräkningsmetoder / Energy mapping of an indusrty : A comparative study of different calculation methods

Persson, Anton January 2023 (has links)
Energieffektivisering blir en allt viktigare åtgärd för äldre fastigheter i takt med att energipriserna stiger, det minskar samtidigt klimatpåverkan. Syftet med arbetet har varit att presentera åtgärder för minskad energianvändning för Noxon AB samt att utvärdera olika energiberäkningsprogram för J&E Energikonsult. Arbetet bygger på statistik från fastighetsägaren, mätningar, litteraturstudie samt genom rådgörande med experter inom området. Byggnadens årliga uppvärmningsbehov jämfördes i IDA ICE, BV2 samt genom handberäkningar med Energisignaturmetoden. Resultaten från IDA ICE och BV2 ligger inom 1% från varandra medans handberäkningarna överskattar uppvärmingsbehovet med 5%. Byggnaden och föreslagna åtgärder har simulerats i BV2 samt IDA ICE där byggnaden delades in i 9 zoner baserat på klimatskal, ventilationssystem och värmesy- stem. För att uppskatta åtgärdernas energibesparingspotential baserat på den insamlade informationen. Med hjälp av IDA ICE har sex stycken kostnadseffektiva åtgärder identi- fierats för fastigheten, där återbetalningstiden för samtliga åtgärder beräknas till mellan 8 - 12 år baserat på 4 scenarier på hur elpriset utvecklas i framtiden.
4

Kv. Cirkusängen : Studie av installationsprojekteringen med fokus på byggnadens Energisignatur / Kv. Cirkusängen : Study of the Building Service System Design with Focus on the Energy Signature

Stolt, Fanny January 2014 (has links)
För att uppnå Boverkets och Miljöbyggnads energi- och miljökrav finns ett intresse av att förstå fastigheters energianvändning. Fastighetsföretaget Humlegården har uppfört ett nytt huvudkontor för bankföretaget Swedbank: kv. Cirkusängen i Sundbyberg, Stockholm och Humlegården har ett intresse av långsiktig driftförvaltning och optimering av fastighetens energisystem. Detta examensarbete undersöker den manuella (statiska) och dynamiska energiberäkningen av kv. Cirkusängen med fokus på den dynamiska modellen i energi- och inomhusklimatsimuleringsprogrammet IDA ICE. Syftet med examensarbetet är att definiera kv. Cirkusängens Energisignatur för att senare kunna användas som underlag vid driftförvaltning. En byggnads Energisignatur kan definieras av uppmätt energianvändning och/eller av den dynamiska modellen i IDA ICE och kan användas vid långtidsmätning och energianalys samt för realtidsvisualisering av byggnadens energiprestanda. Genom modifiering av IDA-modellen har parametrars påverkan på energianvändningen analyserats i syfte att optimera och skapa en representativ IDA-modell och därmed en väldefinierad Energisignatur. Målet med detta examensarbete är att ge en god förståelse för hur IDA ICE kan användas för att definiera kv. Cirkusängens Energisignatur.    Detta examensarbete vänder sig främst till engagerade parter inom byggsektorn; driftförvaltare, energiingenjörer, hyresgäster och myndigheter. / To fulfill the building codes of Boverket – The Swedish National Board of Housing, Building and Planning and receive the environmental certificate from SGBC – Swedish Green Building Council there is an interest in energy consumption predictions and energy monitoring. The Swedish real estate company Humlegården has constructed a new headquarter for the banking business Swedbank: kv. Cirkusängen in Sundbyberg, Stockholm, Sweden and Humlegården has an interest in long-term energy management and optimization of the property´s energy system. This Master thesis investigates the static and dynamic energy calculations of kv. Cirkusängen focusing on the dynamical model in Indoor Climate and Energy simulation software IDA ICE. The purpose of the thesis is to define the Energy Signature of kv. Cirkusängen to be used as basis for the energy management. A building´s Energy Signature can be defined by measured energy consumption and/or by the dynamical model in IDA ICE and can be used for long-term measurement and energy analysis and real-time visualization of consumed energy. The IDA model of kv. Cirkusängen has been modified to investigate the impact of certain parameters on the energy consumption. The aim has been to optimize and create a representative IDA model and thereby create a well-defined Energy Signature. Furthermore, the aim of the thesis is to give a good understanding of how IDA ICE can be used to define the Energy Signature of kv. Cirkusängen.
5

Energiutvärdering av Undervisningshuset på Kungliga Tekniska Högskolan i Stockholm : Uppföljning av energianvändning medelst normalårskorrigering / Energy evaluation of Undervisningshuset at The Royal Institute of Technology in Stockholm : Follow-up of energy use by means of standard year correction

Pehrs, Malin, Hjort, Lina January 2020 (has links)
Bostad- och servicesektorn står för cirka 40 % av den totala årliga energianvändningen i Sverige. För nybyggda hus med ambitiösa miljökrav, såsom objektet för denna studie, är en viktig del i hållbarhetsarbetet uppföljning och feedback av energianvändningen för att illustrera sambandet mellan ambition och faktiskt resultat. Energiuppföljning i Undervisningshuset, en byggnad på KTH Campus med ambitiösa visioner om hållbarhet och pedagogik, är därför syftet med denna studie. För att jämföra energianvändningen mellan olika år måste energianvändningen normaliseras vilket sker i två steg; korrigering för normalt brukande och normalårskorrigering. I denna rapport beräknas Undervisningshusets normaliserade energianvändning medelst energisignatur och graddagar, vilken jämförs med den enligt Energideklarationen förväntade energianvändningen som normaliserats med SMHI:s energi-index. Undervisningshusets energiprestanda är enligt energisignaturmetoden 56 kWh/m2 och år och enligt graddagsmetoden 59 kWh/m2 och år, jämfört med den förväntade energiprestandan i Energideklarationen på 60 kWh/m2 och år. Både resultaten för denna rapport och Energideklarationen klassificerar därmed Undervisningshuset med Energiklass B. / The housing- and service sector makes up about 40 % of the total yearly energy use in Sweden. For new buildings with ambitious requirements, such as the object of this study, an important part of the work towards sustainability is follow-up and feedback on its energy use to illustrate the connection between ambition and actual result. Energy follow-up for Undervisningshuset, a building on KTH Campus with ambitious visions of sustainability and pedagogy, is therefore the aim of this study. To compare the energy use in buildings between different years the energy use must be normalized which is done in two steps; correction for normal occupancy and standard year correction. In this report the normalized energy use of Undervisningshuset is calculated by means of energy signature and degree-days, which is compared to the expected energy use according to the Energy Declaration normalized by SMHI’s energy-index. The energy performance of Undervisningshuset is 56 kWh/m2 and year according to the energy signature method and 59 kWh/m2 according to the degree-day method, compared to the expected energy performance in the Energy Declaration of 60 kWh/m2 and year. Both the results of this report and the Energy Declaration thereby classifies Undervisninshuset with Energy Class B.
6

Värmereglering utifrån byggnadens tidskonstant i en värmetrög fastighet : Prognostiseringar utav värmeenergianvändningen och dess ekonomiska kostnader

Berner Wik, Petter January 2018 (has links)
För att pådriva utvecklingen mot ett mer hållbart Gävle kommer Gävle Energi AB implementera en ny säsongsbaserad kapacitetsmodell ifrån årsskiftet 2019. Som ska skapa ekonomiska incitament för energieffektivisering i fastigheter inom Gävles fjärrvärmenät. Denna studie kartlägger värmeenergianvändningen i en fastighet som riskerar en förhöjd totalkostnad för fjärrvärmen till följd av den nya prismodellen. Målet med studien är att reducera värmeenergianvändningen utan att investera i fastigheten, vilket möjliggörs genom att värmeenergitillförseln till fastigheten regleras. Genom att programmera ett års historisk data av temperaturer, solinstrålning, el- och värmeeffekter så prognostiseras värmetillförseln på samma sätt som fastighetens styrsystem Kabona Eco-pilot. Styrsystemet tillämpar en flytande inomhustemperatur vilket bidrar till att fastighetens värmetröghet inkluderas i värmeregleringen. Studien inkluderar två prognoser som jämförs med den verkliga värmeenergianvändningen och den nya kapacitetsprismodellen. Prognos 1 är baserad på en årscykel och prognos 2 baseras på intervallet november 2017 till mars 2018. Syftet med prognos 2 är att tillämpa en strategisk värmelaststyrning för att sänka värmekapacitetsbehovet vid -10˚C. Prognos 1 indikerar att en värmeenergibesparing på 26% kan uppnås. Prognosen tar hänsyn till solinstrålning och vissa delar utav den interna värmegenereringen. Utan att Diös fastigheter AB investerat i några energibesparingsåtgärder prognostiseras en besparing på 44 700SEK under ett års drift. Fastigheten har idag energiprestanda energiklass D och kommer efter besparingen att kunna uppnå energiklass C. Prognos 2 indikerar att en kapacitetsreducering kan uppnås motsvarande 46,1% samtidigt som den rörliga värmeenergianvändningen minskar. Totalt sett finns en besparingspotential på 47,8% och 216 700 SEK under perioden 2017-11-01 till 2018-03-31, dock med följd att inomhustemperaturen sjunker. / In order to continue the development towards a more sustainable city of Gävle, Gävle Energi AB will implement a new season-based capacity model by the year 2019. It creates economic incentives for energy efficiency in real estate’s within Gävle's district heating network. This report investigates how the heat energy is used for a building that risks an increased heat energy cost, due to the new pricing model. The aim of the study is to reduce the heat energy usage without investing in the building, which is made possible by regulating the thermal energy supply to the building. By programming one year of historical data of temperatures, solar radiation, power- and heat effects the heat supply is forecasted the same way as the building's control system Kabona Eco-pilot is working. The control system applies a floating indoor temperature, which contribute that the thermal inertia of the building is included in the heat load control. The study includes two forecasts that are compared to the actual heat energy use and the new capacity price model. Forecast 1 is based on an annual cycle and forecast 2 is based on the range of November 2017 to Mars 2018. The aim of forecast 2 is to apply a strategic heat load control to reduce the heat capacity needed at -10˚C. Forecast 1 indicates a potential heat energy saving of 26% even though Diös Fastigheter AB does not invest in any energy saving technology. A saving of approximately 44 700 SEK is forecasted for the annual cycle. The building has an energy class D and has the potential to achieve energy class C after the change of control system parameters. Forecast 2 indicates a potential capacity reduction corresponding to 46,1% while the variable heat energy consumption decreases. Overall, there is an approximated heat energy saving potential of 47,8%, which corresponds to 216 700 SEK, during the range of 2017-11-01 to 2018-03-31. Due to the consequence of a lower indoor temperature.
7

A Statistical Approach to Estimate Thermal Performance and Energy Renovation of Multifamily Buildings : Case study on a Swedish city district

Eriksson, Martin January 2022 (has links)
Several climate and energy goals have been set in the European Union, one of them being to increase energy efficiency. In Sweden, a large potential for increased energy efficiency lies in the residential and service sectors, which account for about 40% of total energy use. A large share of buildings in Sweden were built in the Million Homes Program in the 1960s and ’70s. These buildings are now in need of renovation, which enables renovation with the ambition of reducing energy use.  In this thesis, the purpose is to develop an energy signature method, a bottom-up statistical method. This method has been validated using a building energy simulation software called IDA ICE, for two kinds of multifamily buildings from the Million Homes Program. The energy signature method has then been applied to a district located in Gävle, Sweden, containing more than 90 multifamily buildings with similar construction. In addition to characterizing current thermal performance of the buildings, the energy signature method is further developed so that potential for energy renovation of the district can be simulated. Simulated energy renovation is developed to comply with building energy use requirements, according to the most recent Swedish building regulations.  Both on building and district level, sensitivity analysis is performed. In both cases the energy signature method is insensitive to changes in internal heat gains and indoor temperature. To investigate the effects of simulated renovation on a local district heating system, results are visualized in a duration diagram, where energy use reduction in different load periods is displayed. Thus, it is demonstrated how the energy signature method can be used as a rapid way of simulating energy renovation on district level and with readily available data. / EU har beslutat om flera klimat- och energimål, bland annat att energi ska användas mer effektivt. I Sverige finns en stor potential för ökad energieffektivitet i bostads- och servicesektorn, som står för cirka 40 % av den totala energianvändningen. En stor av del Sveriges byggnadsbestånd består av miljonprogramsbyggnader från 1960- och 1970-talen. Dessa byggnader är i behov av renovering, vilket möjliggör ytterligare renovering med syfte att sänka energianvändningen. Syftet med denna studie är att utveckla en energisignaturmetod, en ”bottom-up” statistisk metod. Metoden har validerats med byggnadsenergisimuleringsprogrammet, IDA ICE, för två typer av flerbostadshus från miljonprogrammet. Energisignaturmetoden har sedan applicerats på ett distrikt i Gävle som innehåller fler än 90 flerbostadshus med liknande konstruktion. Förutom att karakterisera byggnadernas nuvarande termiska prestanda, vidareutvecklas energisignaturmetoden så att även energirenovering kan simuleras. Denna metod utvecklas för att uppfylla Boverkets krav på byggnaders energianvändning, enligt gällande svenska byggnadsreglerna.  Känslighetsanalys utförs både på byggnads- och distriktsnivå. I båda fallen visar sig energisignaturmetoden vara okänslig för förändringar i intern värmegenerering och inomhustemperatur. Effekterna av den simulerade renoveringen presenteras i ett varaktighetsdiagram, som visar de möjliga effekterna på ett lokalt fjärrvärmesystem. På detta sätt demonstreras hur energisignaturmetoden kan användas för att snabbt simulera energirenovering på distriktsnivå och med lättillgänglig data.
8

Styrning av värmesystem i kontorsbyggnader : Jämförelse mellan prognosstyrning, styrning som utnyttjar byggnadens värmetröghet, samt traditionell styrning

Larmérus, Alexander January 2014 (has links)
En stor del av Sveriges energianvändning går till bostäder och lokaler. Ur en nationell synvinkel är energieffektiviseringar i befintliga byggnader därför en potentiellt viktig del för att kunna nå de satta klimatmålen till år 2020. I ett traditionellt styr- och reglersystem styrs framledningstemperaturen i ett vätskeburet värmesystem efter en kurva som beror på utomhustemperaturen. En del nya styr- och reglersystem tar även hänsyn till andra parametrar, såsom byggnaders värmetröghet och lokala väderprognoser. Ett exempel på ett sådant system är Ecopilot, utvecklat av Kabona. Nuvarande kunskap angående hur stor energibesparing som styr- och reglersystem med prognosstyrning och styrning som utnyttjar byggnadens värmetröghet ger upphov till består till största del av referensfall som jämför byggnaders energianvändning före och efter installationen. I detta examensarbete undersöktes hur energianvändning och inomhusklimat påverkades av prognosstyrning och styrning som utnyttjar byggnaders värmetröghet. Mätningar utfördes på två kontorsbyggnader vid namn Fräsaren 10 och Fräsaren 11. Båda byggnaderna är belägna i Sundbyberg och har Kabona Ecopilot installerat. Mätdata loggades genom redan utsatta givare och en enklare form av validering av dessa gjordes. I Fräsaren 10 och Fräsaren 11 jämfördes Ecopilot i normal drift med driftfallet då prognosstyrningsfunktionen stängdes av i Ecopilot. Även ett tredje driftfall undersöktes i Fräsaren 10. Under detta driftfall stängdes Ecopilot av och framledningstemperaturen styrdes med hjälp av reglerkurvor. I luftbehandlingsaggregaten sattes tilluftstemperaturens börvärde, till 19-20 °C. Varje driftfall hade en mätperiod på minst 14 dagar. Energisignaturer användes för att jämföra energianvändningen och en osäkerhetsanalys av de anpassade linjerna gjordes. En egen modell för att undersöka toppbelastningar i radiatorsystemet, VS1, i Fräsaren 10 togs fram. Även en modell för att undersöka hur temperaturen varierat inomhus mellan de olika mätperioderna togs fram. Energisignaturer för radiatorsystemen VS1 och VS2 i Fräsaren 10 visade på att likvärdiga energisignaturer kunde fås för samtliga av de undersökta driftfallen under det temperaturintervall som undersöktes. Energisignaturer för värmeanvändning i luftbehandlingsaggregatet, LB2601, visade på att en konstant tillufttemperatur på 19 °C som användes då Ecopilot var avstängd, kunde ge en högre värmeanvändning jämfört med fallen då Ecopilot var i normal drift och då Ecopilot hade sin prognosstyrning avstängd. Från jämförelse mellan fallen då Ecopilot var i normal drift och då Ecopilots prognosstyrning var avstängd kunde inga substantiella skillnader hittas mellan energisignaturerna. Det betyder dock inte att prognosstyrningen inte ger upphov till energibesparingar, utan att eventuella energibesparingarna var för små relativt mätningarnas osäkerhet vid en konfidensnivå på 65 % eller 95 %. Osäkerheten kan minskas om mätningar utförs över en längre tidsperiod än som var möjligt under detta examensarbete. Värmetoppbelastningar som undersöktes i radiatorsystemet i VS1 Fräsaren 10 visade inte på att några signifikanta skillnader mellan antalet uppmätta värmeeffekttoppar under de olika mätperioderna. Det förekom dock en viss indikation att det kan leda till fler värmeeffekttoppar om prognosstyrningen stängs av i Ecopilot. För att få ett mer tillförlitligt resultat behöver mätningar göras under en längre tidsperiod. Inomhustemperaturen undersöktes i Fräsaren 10 och Fräsaren 11. I Fräsaren 10 uppgick medeltemperatur till 21,5 °C för fallen då Ecopilot var i normal drift och då prognosstyrningen var avstängd. Då Ecopilot var avstängd var medeltemperaturen 22,1 °C. Under mätperioderna uppmättes en variation som understeg ± 1 °C från medelvärdet för respektive mätperiod. Baserat på resultaten presenterade i detta examensarbete antaganden angående hur stor besparing av värme som Ecopilot ger upphov till revideras. Att jämföra energianvändning före och efter installation av styrsystem såsom Ecopilot kan ge en dålig bild av hur stor del av energibesparingen som orsakats av Ecopilot, speciellt om reglerkurvorna i det gamla systemet var dåligt intrimmade.

Page generated in 0.0389 seconds