• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 9
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 17
  • 14
  • 12
  • 12
  • 12
  • 12
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Definition von Schutzradien

Lerbs, Nikolaus, Korn, Michael 05 October 2020 (has links)
Die Schriftenreihe informiert über die Ergebnisse des Forschungsprojektes, zum Schutz seismischer Registrierungen vor den Emissionen von Windkraftanlagen. Als Ergebnis konnte festgestellt, werden, dass Windkraftanlagen deutlich messbare Schallemissionen in den Untergrund abstrahlen. Es wurde ein Verfahren entwickelt, um diese Emissionen standortindividuell mit einfachen Mitteln modellieren zu können. Dieses bemerkenswerte Verfahren wurde erstmalig in Deutschland umgesetzt. Die Ergebnisse sollen zukünftig der Regionalplanung helfen die Windkraftflächen zu maximieren, bei gleichzeitigem Schutz der seismischen Stationen. Redaktionsschluss: 12.08.2020
12

Steigender Strompreis und kein Ende?

14 May 2019 (has links)
Viele Energieunternehmen begründen Preiserhöhungen mit der Förderung von Wind-, Biomasse- und Sonnenstrom durch das Erneuerbare-Energien-Gesetz (EEG) nach dem Motto: „Weil so viele Windräder und Solaranlagen gebaut werden, steigt der Strompreis!“ Mit dem erfolgreichen Ausbau der erneuerbaren Energien hat die Preisentwicklung der letzten 15 Jahre aber fast nichts zu tun. Verschwiegen wird zudem der ökonomische Nutzen erneuerbarer Energien. Diese haben im Gegensatz zu Kohle und Atomkraft ehrliche Preise, denn es entstehen keine Folgekosten, die nicht im Preis enthalten sind. Atommüll, Klima- und Umweltschäden müssen dagegen von der Allgemeinheit bezahlt werden.
13

Biomass and waste as a renewable and sustainable energy source in Vietnam: Review paper

Schirmer, Matthias 25 August 2015 (has links)
Due to Vietnam’s economic development its energy demand will continue to rise by 12–16% annually over the next few years. The government has realized that supply problems in the energy sector pose a significant threat to further development. Therefore, it is making concerted efforts to modernize the existing energy sector and expand the generating structure. There are ambitious expansion plans in the field of renewable energy sources, too. Owing to its very high potential, biomass could play a key role in energy production. This paper attempts to analyze the current status of biomass based energy production in Vietnam addressing variety of aspects such as biomass potential, legal framework as well as financial aspect. Section 4 contains an overview of ongoing bioenergy projects. Instead of providing a complete picture, these examples are intended to illustrate the various ways in which biomass can be used in different economic sectors. Finally existing barriers as well as action to incentivise bioenergy are discussed. / Do phát triển kinh tế, nhu cầu năng lượng của Việt Nam sẽ tiếp tục tăng 12-16% mỗi năm trong vài năm tới. Chính phủ đã nhận ra rằng vấn đề cung cấp trong lĩnh vực năng lượng gây ra một mối đe dọa đáng kể cho sự phát triển tiếp theo. Vì vậy, có các nỗ lực để hiện đại hóa ngành năng lượng hiện có và mở rộng cấu trúc sản sinh năng lượng. Cũng có những kế hoạch mở rộng đầy tham vọng trong lĩnh vự nguồn năng lượng tái tạo. Do có tiềm năng rất cao, sinh khối có thể đóng một vai trò quan trọng trong sản xuất năng lượng. Bài viết này cố gắng phân tích tình trạng hiện tại của sản xuất năng lượng sinh khối tại Việt Nam giải quyết nhiều khía cạnh nhưtiềm năng sinh khối, khuôn khổ pháp lý cũng như các khía cạnh về tài chính. Tổng quan về các dự án năng lượng sinh học đang diễn ra được trình bày trong phần 4. Thay vì cung cấp một bức tranh hoàn chỉnh, các ví dụ được dùng để minh họa cho những cách khác nhau, trong đó sinh khối có thể được sử dụng trong các lĩnh vực kinh tế khác nhau. Rào cản cuối cùng hiện tại cũng nhưhành động để khuyến khích năng lượng sinh học sẽ được thảo luận.
14

Developing a Decision Making Approach for District Cooling Systems Design using Multi-objective Optimization

Kamali, Aslan 18 August 2016 (has links) (PDF)
Energy consumption rates have been dramatically increasing on a global scale within the last few decades. A significant role in this increase is subjected by the recent high temperature levels especially at summer time which caused a rapid increase in the air conditioning demands. Such phenomena can be clearly observed in developing countries, especially those in hot climate regions, where people depend mainly on conventional air conditioning systems. These systems often show poor performance and thus negatively impact the environment which in turn contributes to global warming phenomena. In recent years, the demand for urban or district cooling technologies and networks has been increasing significantly as an alternative to conventional systems due to their higher efficiency and improved ecological impact. However, to obtain an efficient design for district cooling systems is a complex task that requires considering a wide range of cooling technologies, various network layout configuration possibilities, and several energy resources to be integrated. Thus, critical decisions have to be made regarding a variety of opportunities, options and technologies. The main objective of this thesis is to develop a tool to obtain preliminary design configurations and operation patterns for district cooling energy systems by performing roughly detailed optimizations and further, to introduce a decision-making approach to help decision makers in evaluating the economic aspects and environmental performance of urban cooling systems at an early design stage. Different aspects of the subject have been investigated in the literature by several researchers. A brief survey of the state of the art was carried out and revealed that mathematical programming models were the most common and successful technique for configuring and designing cooling systems for urban areas. As an outcome of the survey, multi objective optimization models were decided to be utilized to support the decision-making process. Hence, a multi objective optimization model has been developed to address the complicated issue of decision-making when designing a cooling system for an urban area or district. The model aims to optimize several elements of a cooling system such as: cooling network, cooling technologies, capacity and location of system equipment. In addition, various energy resources have been taken into consideration as well as different solar technologies such as: trough solar concentrators, vacuum solar collectors and PV panels. The model was developed based on the mixed integer linear programming method (MILP) and implemented using GAMS language. Two case studies were investigated using the developed model. The first case study consists of seven buildings representing a residential district while the second case study was a university campus district dominated by non-residential buildings. The study was carried out for several groups of scenarios investigating certain design parameters and operation conditions such as: Available area, production plant location, cold storage location constraints, piping prices, investment cost, constant and variable electricity tariffs, solar energy integration policy, waste heat availability, load shifting strategies, and the effect of outdoor temperature in hot regions on the district cooling system performance. The investigation consisted of three stages, with total annual cost and CO2 emissions being the first and second single objective optimization stages. The third stage was a multi objective optimization combining the earlier two single objectives. Later on, non-dominated solutions, i.e. Pareto solutions, were generated by obtaining several multi objective optimization scenarios based on the decision-makers’ preferences. Eventually, a decision-making approach was developed to help decision-makers in selecting a specific solution that best fits the designers’ or decision makers’ desires, based on the difference between the Utopia and Nadir values, i.e. total annual cost and CO2 emissions obtained at the single optimization stages. / Die Energieverbrauchsraten haben in den letzten Jahrzehnten auf globaler Ebene dramatisch zugenommen. Diese Erhöhung ist zu einem großen Teil in den jüngst hohen Temperaturniveaus, vor allem in der Sommerzeit, begründet, die einen starken Anstieg der Nachfrage nach Klimaanlagen verursachen. Solche Ereignisse sind deutlich in Entwicklungsländern zu beobachten, vor allem in heißen Klimaregionen, wo Menschen vor allem konventionelle Klimaanlagensysteme benutzen. Diese Systeme verfügen meist über eine ineffiziente Leistungsfähigkeit und wirken sich somit negativ auf die Umwelt aus, was wiederum zur globalen Erwärmung beiträgt. In den letzten Jahren ist die Nachfrage nach Stadt- oder Fernkältetechnologien und -Netzwerken als Alternative zu konventionellen Systemen aufgrund ihrer höheren Effizienz und besseren ökologischen Verträglichkeit satrk gestiegen. Ein effizientes Design für Fernkühlsysteme zu erhalten, ist allerdings eine komplexe Aufgabe, die die Integration einer breite Palette von Kühltechnologien, verschiedener Konfigurationsmöglichkeiten von Netzwerk-Layouts und unterschiedlicher Energiequellen erfordert. Hierfür ist das Treffen kritischer Entscheidungen hinsichtlich einer Vielzahl von Möglichkeiten, Optionen und Technologien unabdingbar. Das Hauptziel dieser Arbeit ist es, ein Werkzeug zu entwickeln, das vorläufige Design-Konfigurationen und Betriebsmuster für Fernkälteenergiesysteme liefert, indem aureichend detaillierte Optimierungen durchgeführt werden. Zudem soll auch ein Ansatz zur Entscheidungsfindung vorgestellt werden, der Entscheidungsträger in einem frühen Planungsstadium bei der Bewertung städtischer Kühlungssysteme hinsichtlich der wirtschaftlichen Aspekte und Umweltleistung unterstützen soll. Unterschiedliche Aspekte dieser Problemstellung wurden in der Literatur von verschiedenen Forschern untersucht. Eine kurze Analyse des derzeitigen Stands der Technik ergab, dass mathematische Programmiermodelle die am weitesten verbreitete und erfolgreichste Methode für die Konfiguration und Gestaltung von Kühlsystemen für städtische Gebiete sind. Ein weiteres Ergebnis der Analyse war die Festlegung von Mehrzieloptimierungs-Modelles für die Unterstützung des Entscheidungsprozesses. Darauf basierend wurde im Rahmen der vorliegenden Arbeit ein Mehrzieloptimierungs-Modell für die Lösung des komplexen Entscheidungsfindungsprozesses bei der Gestaltung eines Kühlsystems für ein Stadtgebiet oder einen Bezirk entwickelt. Das Modell zielt darauf ab, mehrere Elemente des Kühlsystems zu optimieren, wie beispielsweise Kühlnetzwerke, Kühltechnologien sowie Kapazität und Lage der Systemtechnik. Zusätzlich werden verschiedene Energiequellen, auch solare wie Solarkonzentratoren, Vakuum-Solarkollektoren und PV-Module, berücksichtigt. Das Modell wurde auf Basis der gemischt-ganzzahlig linearen Optimierung (MILP) entwickelt und in GAMS Sprache implementiert. Zwei Fallstudien wurden mit dem entwickelten Modell untersucht. Die erste Fallstudie besteht aus sieben Gebäuden, die ein Wohnviertel darstellen, während die zweite Fallstudie einen Universitätscampus dominiert von Nichtwohngebäuden repräsentiert. Die Untersuchung wurde für mehrere Gruppen von Szenarien durchgeführt, wobei bestimmte Designparameter und Betriebsbedingungen überprüft werden, wie zum Beispiel die zur Verfügung stehende Fläche, Lage der Kühlanlage, örtliche Restriktionen der Kältespeicherung, Rohrpreise, Investitionskosten, konstante und variable Stromtarife, Strategie zur Einbindung der Solarenergie, Verfügbarkeit von Abwärme, Strategien der Lastenverschiebung, und die Wirkung der Außentemperatur in heißen Regionen auf die Leistung des Kühlsystems. Die Untersuchung bestand aus drei Stufen, wobei die jährlichen Gesamtkosten und die CO2-Emissionen die erste und zweite Einzelzieloptimierungsstufe darstellen. Die dritte Stufe war ein Pareto-Optimierung, die die beiden ersten Ziele kombiniert. Im Anschluss wurden nicht-dominante Lösungen, also Pareto-Lösungen, erzeugt, indem mehrere Pareto-Optimierungs-Szenarien basierend auf den Präferenzen der Entscheidungsträger abgebildet wurden. Schließlich wurde ein Ansatz zur Entscheidungsfindung entwickelt, um Entscheidungsträger bei der Auswahl einer bestimmten Lösung zu unterstützen, die am besten den Präferenzen des Planers oder des Entscheidungsträgers enstpricht, basierend auf der Differenz der Utopia und Nadir Werte, d.h. der jährlichen Gesamtkosten und CO2-Emissionen, die Ergebnis der einzelnen Optimierungsstufen sind.
15

Bautechnik-Forum Chemnitz 2004

Baradiy, Saad, Möckel, Wolfgang, Nitzsche, Gunhild, Urbaneck, Thorsten 10 June 2004 (has links) (PDF)
Inhalt: Nachhaltiger Stadtumbau und Erneuerbare Energien - Ansatz und Konzepte einer ökologischen Stadtentwicklung Wohnprojekt Dresden Pillnitz - Innovatives Energiekonzept für zwei Mehrfamilienhäuser in Passivhausbauweise Tiefbautechnik in der Praxis - Die spektakuläre Gablenzbach-Sanierung Mauern für die Ewigkeit - Rekonstruktion, Sanierung und Neubau von Mauerwerksbauten Wärmebrückenbeheizung - Ein Widerspruch? Solares Heizen mit Großanlagen - Chancen und Perspektiven Bauphysikalische Wertung von belüfteten und nicht belüfteten Dächern Kritische Aspekte zum sommerlichen Wärmeschutz – Vorbemessung
16

Betriebsführung und Instandhaltung regenerativer Energieanlagen: Fachtagung BIREA am 24. und 25. September 2012 in Leipzig

Kühne, Stefan, Schmidt, Johannes 11 December 2014 (has links)
Der vorliegende 38. Band der Reihe 'Leipziger Beiträge zur Informatik' fasst die Ergebnisse der Fachtagung 'Betriebsführung und Instandhaltung regenerativer Energieanlagen (BIREA)' am 24. und 25. September 2012 in Leipzig zusammen. Die Fachtagung adressierte aktuelle Herausforderungen der Energiewirtschaft im Allgemeinen und der Branche der Erneuerbaren Energien im Speziellen. Der Anteil erneuerbarer Energien am Bruttostromverbrauch wird sich von derzeit ca. 17 % im Jahre 2020 auf 35% verdoppeln und langfristig bis auf 80% steigen. Mit der wachsenden Bedeutung steigen auch die Anforderungen an die regenerative Energiebranche. Dabei stehen im Vordergrund: a) die Versorgungssicherheit und Netzstabilität, b) sinkende Einspeisevergütungen, c) die Betriebsoptimierung regenerativer Energieanlagen, d) die effiziente Instandhaltung regenerativer Energieanlagen, e) die Vernetzung von Energieerzeugern und -verbrauchern zu virtuellen Kraftwerken, f) Verfügbarkeitsgarantien für Energieanlagen sowie Strom- und Ausfallprognosen. Die Fachtagung fokussierte folgende Themen des Betriebs und der Instandhaltung regenerativer Energieanlagen: a) neuartige Dienstleistungen (z. B. Wirkungsgradanalyse, Ertragsprognosen, Ausfallprognosen), b) Standardisierungsprozesse (z. B. RDS-PP, IEC 61850 / IEC 61400-25), c) die IKT-unterstützte Optimierung (z. B. Lebenslaufakte, Betriebsführung, Instandhaltungsplanung).
17

Developing a Decision Making Approach for District Cooling Systems Design using Multi-objective Optimization

Kamali, Aslan 29 June 2016 (has links)
Energy consumption rates have been dramatically increasing on a global scale within the last few decades. A significant role in this increase is subjected by the recent high temperature levels especially at summer time which caused a rapid increase in the air conditioning demands. Such phenomena can be clearly observed in developing countries, especially those in hot climate regions, where people depend mainly on conventional air conditioning systems. These systems often show poor performance and thus negatively impact the environment which in turn contributes to global warming phenomena. In recent years, the demand for urban or district cooling technologies and networks has been increasing significantly as an alternative to conventional systems due to their higher efficiency and improved ecological impact. However, to obtain an efficient design for district cooling systems is a complex task that requires considering a wide range of cooling technologies, various network layout configuration possibilities, and several energy resources to be integrated. Thus, critical decisions have to be made regarding a variety of opportunities, options and technologies. The main objective of this thesis is to develop a tool to obtain preliminary design configurations and operation patterns for district cooling energy systems by performing roughly detailed optimizations and further, to introduce a decision-making approach to help decision makers in evaluating the economic aspects and environmental performance of urban cooling systems at an early design stage. Different aspects of the subject have been investigated in the literature by several researchers. A brief survey of the state of the art was carried out and revealed that mathematical programming models were the most common and successful technique for configuring and designing cooling systems for urban areas. As an outcome of the survey, multi objective optimization models were decided to be utilized to support the decision-making process. Hence, a multi objective optimization model has been developed to address the complicated issue of decision-making when designing a cooling system for an urban area or district. The model aims to optimize several elements of a cooling system such as: cooling network, cooling technologies, capacity and location of system equipment. In addition, various energy resources have been taken into consideration as well as different solar technologies such as: trough solar concentrators, vacuum solar collectors and PV panels. The model was developed based on the mixed integer linear programming method (MILP) and implemented using GAMS language. Two case studies were investigated using the developed model. The first case study consists of seven buildings representing a residential district while the second case study was a university campus district dominated by non-residential buildings. The study was carried out for several groups of scenarios investigating certain design parameters and operation conditions such as: Available area, production plant location, cold storage location constraints, piping prices, investment cost, constant and variable electricity tariffs, solar energy integration policy, waste heat availability, load shifting strategies, and the effect of outdoor temperature in hot regions on the district cooling system performance. The investigation consisted of three stages, with total annual cost and CO2 emissions being the first and second single objective optimization stages. The third stage was a multi objective optimization combining the earlier two single objectives. Later on, non-dominated solutions, i.e. Pareto solutions, were generated by obtaining several multi objective optimization scenarios based on the decision-makers’ preferences. Eventually, a decision-making approach was developed to help decision-makers in selecting a specific solution that best fits the designers’ or decision makers’ desires, based on the difference between the Utopia and Nadir values, i.e. total annual cost and CO2 emissions obtained at the single optimization stages. / Die Energieverbrauchsraten haben in den letzten Jahrzehnten auf globaler Ebene dramatisch zugenommen. Diese Erhöhung ist zu einem großen Teil in den jüngst hohen Temperaturniveaus, vor allem in der Sommerzeit, begründet, die einen starken Anstieg der Nachfrage nach Klimaanlagen verursachen. Solche Ereignisse sind deutlich in Entwicklungsländern zu beobachten, vor allem in heißen Klimaregionen, wo Menschen vor allem konventionelle Klimaanlagensysteme benutzen. Diese Systeme verfügen meist über eine ineffiziente Leistungsfähigkeit und wirken sich somit negativ auf die Umwelt aus, was wiederum zur globalen Erwärmung beiträgt. In den letzten Jahren ist die Nachfrage nach Stadt- oder Fernkältetechnologien und -Netzwerken als Alternative zu konventionellen Systemen aufgrund ihrer höheren Effizienz und besseren ökologischen Verträglichkeit satrk gestiegen. Ein effizientes Design für Fernkühlsysteme zu erhalten, ist allerdings eine komplexe Aufgabe, die die Integration einer breite Palette von Kühltechnologien, verschiedener Konfigurationsmöglichkeiten von Netzwerk-Layouts und unterschiedlicher Energiequellen erfordert. Hierfür ist das Treffen kritischer Entscheidungen hinsichtlich einer Vielzahl von Möglichkeiten, Optionen und Technologien unabdingbar. Das Hauptziel dieser Arbeit ist es, ein Werkzeug zu entwickeln, das vorläufige Design-Konfigurationen und Betriebsmuster für Fernkälteenergiesysteme liefert, indem aureichend detaillierte Optimierungen durchgeführt werden. Zudem soll auch ein Ansatz zur Entscheidungsfindung vorgestellt werden, der Entscheidungsträger in einem frühen Planungsstadium bei der Bewertung städtischer Kühlungssysteme hinsichtlich der wirtschaftlichen Aspekte und Umweltleistung unterstützen soll. Unterschiedliche Aspekte dieser Problemstellung wurden in der Literatur von verschiedenen Forschern untersucht. Eine kurze Analyse des derzeitigen Stands der Technik ergab, dass mathematische Programmiermodelle die am weitesten verbreitete und erfolgreichste Methode für die Konfiguration und Gestaltung von Kühlsystemen für städtische Gebiete sind. Ein weiteres Ergebnis der Analyse war die Festlegung von Mehrzieloptimierungs-Modelles für die Unterstützung des Entscheidungsprozesses. Darauf basierend wurde im Rahmen der vorliegenden Arbeit ein Mehrzieloptimierungs-Modell für die Lösung des komplexen Entscheidungsfindungsprozesses bei der Gestaltung eines Kühlsystems für ein Stadtgebiet oder einen Bezirk entwickelt. Das Modell zielt darauf ab, mehrere Elemente des Kühlsystems zu optimieren, wie beispielsweise Kühlnetzwerke, Kühltechnologien sowie Kapazität und Lage der Systemtechnik. Zusätzlich werden verschiedene Energiequellen, auch solare wie Solarkonzentratoren, Vakuum-Solarkollektoren und PV-Module, berücksichtigt. Das Modell wurde auf Basis der gemischt-ganzzahlig linearen Optimierung (MILP) entwickelt und in GAMS Sprache implementiert. Zwei Fallstudien wurden mit dem entwickelten Modell untersucht. Die erste Fallstudie besteht aus sieben Gebäuden, die ein Wohnviertel darstellen, während die zweite Fallstudie einen Universitätscampus dominiert von Nichtwohngebäuden repräsentiert. Die Untersuchung wurde für mehrere Gruppen von Szenarien durchgeführt, wobei bestimmte Designparameter und Betriebsbedingungen überprüft werden, wie zum Beispiel die zur Verfügung stehende Fläche, Lage der Kühlanlage, örtliche Restriktionen der Kältespeicherung, Rohrpreise, Investitionskosten, konstante und variable Stromtarife, Strategie zur Einbindung der Solarenergie, Verfügbarkeit von Abwärme, Strategien der Lastenverschiebung, und die Wirkung der Außentemperatur in heißen Regionen auf die Leistung des Kühlsystems. Die Untersuchung bestand aus drei Stufen, wobei die jährlichen Gesamtkosten und die CO2-Emissionen die erste und zweite Einzelzieloptimierungsstufe darstellen. Die dritte Stufe war ein Pareto-Optimierung, die die beiden ersten Ziele kombiniert. Im Anschluss wurden nicht-dominante Lösungen, also Pareto-Lösungen, erzeugt, indem mehrere Pareto-Optimierungs-Szenarien basierend auf den Präferenzen der Entscheidungsträger abgebildet wurden. Schließlich wurde ein Ansatz zur Entscheidungsfindung entwickelt, um Entscheidungsträger bei der Auswahl einer bestimmten Lösung zu unterstützen, die am besten den Präferenzen des Planers oder des Entscheidungsträgers enstpricht, basierend auf der Differenz der Utopia und Nadir Werte, d.h. der jährlichen Gesamtkosten und CO2-Emissionen, die Ergebnis der einzelnen Optimierungsstufen sind.
18

Benchmarking Renewable Energy Supply Forecasts

Ulbricht, Robert 19 July 2021 (has links)
The ability of generating precise numerical forecasts is important to successful Enterprises in order to prepare themselves for undetermined future developments. For Utility companies, forecasts of prospective energy demand are a crucial component in order to maintain the physical stability and reliability of electricity grids. The constantly increasing capacity of fluctuating renewable energy sources creates a challenge in balancing power supply and demand. To allow for better integration, supply forecasting has become an important topic in the research field of energy data management and many new forecasting methods have been proposed in the literature. However, choosing the optimal solution for a specific forecasting problem remains a time- and work-intensive Task as meaningful benchmarks are rare and there is still no standard, easy-to-use, and robust approach. Many of the models in use are obtained by executing black-box machine learning tools and then manually optimized by human experts via trial-and-error towards the requirements of the underlying use case. Due to the lack of standardized Evaluation methodologies and access to experimental data, these results are not easily comparable. In this thesis, we address the topic of systematic benchmarks for renewable Energy supply forecasts. These usually include two stages, requiring a weather- and an energy forecast model. The latter can be selected amongst the classes of physical, statistical, and hybrid models. The selection of an appropriate model is one of the major tasks included in the forecasting process. We conducted an empirical analysis to assess the most popular forecasting methods. In contrast to the classical time- and resource intensive, mostly manual evaluation procedure, we developed a more efficient decision-support solution. With the inclusion of contextual information, our heuristic approach HMR is able to identify suitable examples in a case base and generates a recommendation out of the results from already existing solutions. The usage of time series representations reduces the dimensions of the original data thus allowing for an efficient search in large data sets. A context-aware evaluation methodology is introduced to assess a forecast’s quality based on its monetary return in the corresponding market environment. Results otherwise usually evaluated using statistical accuracy criteria become more interpretable by estimating real-world impacts. Finally, we introduced the ECAST framework as an open and easy to-use online platform that supports the benchmarking of energy time series forecasting methods. It aides inexperienced practitioners by supporting the execution of automated tasks, thus making complex benchmarks much more efficient and easy to handle. The integration of modules like the Ensembler, the Recommender, and the Evaluator provide additional value for forecasters. Reliable benchmarks can be conducted on this basis, while analytical functions for output explanation provide transparency for the user.:1 INTRODUCTION 11 2 ENERGY DATA MANAGEMENT CHALLENGES 17 2.1 Market Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 EDMS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Core Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 Typical Energy Data Management Processes . . . . . . . . . . . 23 2.2.3 System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.1 Smart Metering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.2 Energy Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.3 Energy Saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.4 Mobile Consumption Devices . . . . . . . . . . . . . . . . . . . . . 30 2.3.5 Smart Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 ENERGY SUPPLY FORECASTING CONCEPTS 35 3.1 Energy Supply Forecasting Approaches . . . . . . . . . . . . . . . . . . . 36 3.1.1 Weather Forecast Models . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.2 Energy Forecast Models . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 Energy Forecasting Process . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.1 Iterative Standard Process Model . . . . . . . . . . . . . . . . . . . 43 3.2.2 Context-Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 Model Selection - A Benchmark Case Study . . . . . . . . . . . . . . . . 48 3.3.1 Use Case Description . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3.3 Result Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 RELEVANCE OF RENEWABLE ENERGY FORECASTING METHODS 55 4.1 Scientific Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.1.2 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.3 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 Practical Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.2 Feedback from Software Providers . . . . . . . . . . . . . . . . . . 61 4.2.3 Feedback from Software Users . . . . . . . . . . . . . . . . . . . . . 62 4.3 Forecasting Competitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5 HEURISTIC MODEL RECOMMENDATION 67 5.1 Property-based Similarity Determination . . . . . . . . . . . . . . . . . . 67 5.1.1 Time Series Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.1.2 Reducing Dimensionality with Property Extraction . . . . . . . . . 69 5.1.3 Correlation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2.1 Feature Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2.2 Feature Pre-Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2.3 Property-based Least Angle Regression . . . . . . . . . . . . . . . 85 5.3 HMR Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3.1 Formalized Foundations . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3.2 Procedure Description . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3.3 Quality Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.4.1 Case Base Composition . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.4.2 Classifier Performance on univariate Models . . . . . . . . . . . . 95 5.4.3 HMR performance on multivariate models . . . . . . . . . . . . . 99 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6 VALUE-BASED RESULT EVALUATION METHODOLOGY 105 6.1 Accuracy evaluation in energy forecasting . . . . . . . . . . . . . . . . 106 6.2 Energy market models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.3 Value-based forecasting performance . . . . . . . . . . . . . . . . . . . 110 6.3.1 Forecast Benefit Determination . . . . . . . . . . . . . . . . . . . . 110 6.3.2 Multi-dimensional Ranking Scores . . . . . . . . . . . . . . . . . . . 113 6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.4.1 Use Case Description . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.4.3 Result Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7 ECAST BENCHMARK FRAMEWORK 129 7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.1.1 Objective Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.1.2 Fundamental Design Principles . . . . . . . . . . . . . . . . . . . . 131 7.2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.2.1 Task Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.2.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.3 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.3.1 Step 1: Create a new Benchmark . . . . . . . . . . . . . . . . . . 137 7.3.2 Step 2: Build Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.3.3 Step 3: Evaluate the Output . . . . . . . . . . . . . . . . . . . . . . 141 7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8 CONCLUSIONS 145 BIBLIOGRAPHY 149 LIST OF FIGURES 167 LIST OF TABLES 169 A LIST OF REVIEWED JOURNAL ARTICLES 171 B QUESTIONNAIRES 175 C STANDARD ERRORS FOR RANKING SCORES 179 D ERROR DISTRIBUTION FOR BENCHMARKED PREDICTORS 183
19

The potential of electricity generation from the major agricultural wastes in the Mekong Delta of Vietnam

Nguyen, Vo Chau Ngan, Nguyen, Thi Thuy, Nguyen, Le Phuong 22 February 2019 (has links)
Agricultural activities produce a large quantity of waste each year in the Mekong Delta. For example, appropriately 26.86 million tons of rice straw, 5.37 million tons of rice husks, 1.33 million tons of bagasse and 0.59 million tons of corn straw were produced in 2016. Despite such a huge quantity of agricultural waste, the waste has been rarely used effectively. Around 54.1 - 98.0% of rice straw is normally burnt on the field; only 20 - 50% of rice husk is used for pellet or energy purposes; a few sugar-cane factories apply bagasse feeding to steam cookers, and a small quantity of corn straw is used as livestock feeding. If this biomass source is used for electricity generation, in theory, for the period of 2006 - 2020, it is estimated that this source can potentially generate 1203 million MWh/year from rice straw, 236 million MWh/year from rice husk, 45 million MWh/year from bagasse, and 40 million MWh/year from corn straw. Electricity generation of biomass source will not only solve the problem of environmental pollution caused by agricultural waste but also meet increasing energy demands for socio-economic development in this region. / Hàng năm lượng chất thải phát sinh từ một số loại hình canh tác nông nghiệp chính ở ĐBSCL rất lớn. Chỉ tính riêng năm 2016 ghi nhận thải ra khoảng 26,86 triệu tấn rơm rạ; 5,37 triệu tấn vỏ trấu; 1,33 triệu tấn bã mía và 0,59 triệu tấn thân cây bắp. Lượng chất thải phát sinh lớn nhưng các biện pháp sử dụng những nguồn sinh khối này chưa đa dạng, rơm rạ phần lớn được người dân đốt trực tiếp ngay trên đồng ruộng chiếm 54,1 - 98,0% lượng rơm rạ thải ra; chỉ có khoảng 20 - 50% lượng vỏ trấu được sử dụng; bã mía chỉ được một số nhà máy sử dụng để đốt cho lò hơi; một lượng nhỏ thân cây bắp được người dân sử dụng cho chăn nuôi. Nếu có thể tận dụng các nguồn sinh khối này để sản xuất điện thì tiềm năng lý thuyết ước tính từ năm 2005 đến 2020 của rơm rạ là 1203 triệu MWh/năm; vỏ trấu là 236 triệu MWh/năm; bã mía là 45 triệu MWh/năm; và thân cây bắp là 40 triệu MWh/năm. Sản xuất điện từ các nguồn sinh khối này không chỉ giải quyết lượng phế phẩm nông nghiệp phát sinh, giảm thiểu ô nhiễm môi trường mà còn có thể tạo ra nguồn điện cung cấp cho nhu cầu phát triển của vùng.
20

Upgrading Biogas to Biomethane Using Absorption / Aufbereitung von Biogas zu Biomethan mittels Absorption

Dixit, Onkar 08 December 2015 (has links) (PDF)
Questions that were answered in the dissertation: Which process is suitable to desulphurize biogas knowing that chemical absorption will be used to separate CO2? Which absorption solvent is suitable to separate CO2 from concentrated gases such as biogas at atmospheric pressure? What properties of the selected solvent, namely aqueous diglycolamine (DGA), are already known? How to determine solvent properties such as equilibrium CO2 solubility under absorption and desorption conditions using simple, but robust apparatuses? What values do solvent properties such as density, viscosity and surface tension take at various DGA contents and CO2 loadings? How do primary alkanolamine content and CO2 loading influence solvent properties? What is the optimal DGA content in the solvent? What is the optimal desorption temperature at atmospheric pressure? How can equilibrium CO2 solubility in aqueous DGA solvents be simulated? What is the uncertainty in the results? How to debottleneck an absorber and increase its gas-treating capacity? How to determine the optimal lean loading of the absorption solvent? What are the characteristics of the absorption process that uses aqueous DGA as the solvent to separate CO2 from biogas and is more energy efficient and safer than the state-of-the-art processes? How to quantitatively compare the hazards of absorption solvents? What is the disposition of the German population towards hazards from biogas plants? What are the favourable and adverse environmental impacts of biomethane? / Fragen, die in der Dissertation beantwortet wurden: Welches Verfahren ist zur Entschwefelung von Biogas geeignet, wenn die chemische Absorption zur CO2-Abtrennung genutzt wird? Welches Absorptionsmittel ist geeignet, um CO2 aus konzentrierten Gasen, wie Biogas, bei atmosphärischem Druck abzutrennen? Welche Eigenschaften des ausgewählten Absorptionsmittels, wässriges Diglykolamin (DGA), sind bereits bekannt? Wie wird die CO2-Gleichgewichtsbeladung unter Absorptions- und Desorptionsbedingungen mit einfachen und robusten Laborapparaten bestimmt? Welche Werte nehmen die Absorptionsmitteleigenschaften wie Dichte, Viskosität und Oberflächenspannung bei verschiedenen DGA-Gehalten und CO2-Beladungen? Wie werden die Absorptionsmitteleigenschaften durch den Primäramin-Gehalt und die CO2-Beladung beeinflusst? Was ist der optimale DGA-Gehalt im Absorptionsmittel? Was ist die optimale Desorptionstemperatur bei atmosphärischem Druck? Wie wird die CO2-Gleichgewichtsbeladung im wässrigen DGA simuliert? Welche Ungenauigkeit ist zu erwarten? Wie wird eine Absorptionskolonne umgerüstet, um die Kapazität zu erweitern? Wie wird die optimale CO2-Beladung des Absorptionsmittels am Absorbereintritt (im unbeladenen Absorptionsmittel) bestimmt? Was sind die Prozesseigenschaften eines Absorptionsverfahrens, das wässriges DGA als Absorptionsmittel nutzt sowie energieeffizienter und sicherer als Verfahren auf dem Stand der Technik ist? Wie kann das Gefahrenpotenzial von Absorptionsmittel quantitativ verglichen werden? Wie werden Gefahren aus einer Biogasanlage durch die deutsche Bevölkerung wahrgenommen? Welche positive und negative Umweltauswirkung hat Biomethan?

Page generated in 0.1117 seconds