• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 58
  • 14
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 156
  • 81
  • 42
  • 37
  • 36
  • 31
  • 27
  • 26
  • 25
  • 22
  • 21
  • 21
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

En analys av Eurokod 1990 : - användarråd, jämförelser samt en intervjuundersökning

Wennström, Lina January 2008 (has links)
The EN Eurocodes are a new series of standards for construction design in Europe. The development of these codes started originally in 1975 and in present time the progressing work is at the national calibration stage. The goal is to create a common standard for the design of buildings and other civil engineering works throughout Europe and beyond. The purpose is to increase the free circulation of construction products and engineering services. Since the transition to the new standards is getting closer, the constructing engineers and companies will soon stand before great changes. This is why Kadesjös Ingenjörsbyrå AB asked me to do an analysis of the first part of the new standard, i.e. Eurocode 1990, and look at the differences among the existing standards in Sweden and the Eurocodes. The result of this is summarized not only in the report but also in a “User’s manual” which is presented in appendix 1 attached to the report. A limited study of the environmental effects of the transition to Eurocode EN 1990 has also been done. By comparing design calculations of a normal beam in three different materials, steel, concrete and glued laminated timber, one can, for instance, get a general view of how the differences of the two standards affect the required quantity of material. To get an insight of the different opinions that might exist concerning the new standard, a survey based on interviews of a few constructional engineers has been done. There was also discussed if any, and in that case what kind of preparations constructors and design companies are performing to be well prepared when the transition comes.
82

En jämförelse mellan handberäkningar och FEM-analys vid lastnedräkningar / A comparison between hand calculations and FEM-Analysis on load calculations

Kapetanovic, Dzenan, Isa, Azad January 2017 (has links)
Detta examensarbete har utförts av två studenter som läser byggingenjörsprogrammet på Örebro universitet. Arbetet har titeln ”En jämförelse mellan handberäkningar och FEM-analys vid lastnedräkning” och handlar om de skillnader i lastfördelning man erhåller när man räknar på hur laster i en byggnad fördelar sig mellan de olika bärande elementen med de olika metoderna. FEM-analysen utfördes i datorprogrammet FEM-Design (StruSoft). Eftersom en lastnedräkning är ett grundläggande (men viktigt) steg i en konstruktörs design/dimensionerings-arbete så ville vi undersöka hur dessa görs och vilka verktyg ingenjörer har som kan hjälpa dem. Olika metoder att utföra detta kan komma att ge olika resultat. Vi jämförde de metoder som är vanligast, handberäkningar samt en FEM-analys med ett av de vanligare förekommande programmen som används av konstruktörer.Detta arbete har utförts i samarbete med företaget Integra Engineering AB, örebrokontoret. Integra har bidragit med 2D-ritningar till ett av deras projekt som denna grupp sedan gjorde en handberäknad lastnedräkning på samt modellering och FEM-analys med FEM-Design. Resultaten av de båda metoderna samanställdes sedan och analyserades för att få svar på de frågeställningar som ställdes.Som resultat förväntades skillnader, men för just detta projekt blev skillnaderna större än vad som väntades. Skillnaderna mellan totallasterna är acceptabla, men själva fördelningen mellan elementen blev större än förväntat. / This bachelors thesis has been carried out by two civil engineering students and has the title “A comparison between standard hand calculations and FEM-Analysis at load distribution analysis” and deals with the differences in load distribution that you can get between the different load-bearing elements (e.g walls and pillars). The FEM-analysis was performed in the program FEM-Design (by StruSoft). Since a load distribution analysis is a fundamental (yet important) step in an engineer’s design/dimensioning work. We wanted to research how the different methods work and what tools engineers have to aid them in these calculations. Different methods can yield different results. We chose to work with the two most common methods of analysis, a calculation done by hand (according to Eurocode) and a FEM-analysis that is used by structural engineers and is one of the most commonly used FEM-programs.This thesis has been carried out in cooperation with Integra Engineering AB, Örebro office. For this work, Integra has contributed with 2D-drawings of one of their projects as this group then performed a hand-calculated load distribution analysis aswell as modeling and FEM analysis of the FEM-Design software. The results of the two methods were then compiled and analyzed to answer the questions posed.As a result, differences were expected, but for this particular project the differences were larger than expected. The differences between the total loads are acceptable, but the actual distribution between all the elements became larger, when comparing the two results.
83

En jämförelse mellan standardbrandkurvan och den teoretiska temperaturutvecklingen vid lägenhetsbränder

Uddmyr, Jesper January 2020 (has links)
När byggnadsdelars brandmotstånd provas och klassificeras används nästan enbart standardbrandkurvan som definierad temperaturexponering över tid. Brandexponeringen beskrivs i den europeiska standarden EN 1363-1 samt den internationella standarden ISO 834. Standardbrandkurvan definierades för över 100 år sedan i en tid när kunskapen om branddimensionering var bristfällig. Dagens standardbrandkurva är till viss del modifierad men ser i stort sett ut på samma sätt som för 100 år sedan. Ett annat sätt att dimensionera byggnadsdelar på är teoretiskt med hjälp av de parametriska brandkurvorna och materialmodellerna i Eurokoderna. I EN 1991-1-2 bilaga A presenteras en beräkningsmetod, Eurokodmodellen, som resulterar i temperatur-tidkurvor. Denna metod tar hänsyn till hur den slutgiltiga rumsgeometrin och brandlasten ser ut och till skillnad från standardbrandkurvan innehåller den dessutom en avsvalningsfas. Därav anses de parametriska brandkurvorna beskriva verkliga bränder bättre än vad standardbrandkurvan gör. I detta arbete har temperaturutvecklingen i lägenhets- och rumsbränder, baserade på riktiga lägenhetsgeometrier, beräknats med Eurokodmodellen i syfte att jämföra temperatur-tidkurvorna med standardbrandkurvans temperaturexponering. Arbetet påbörjades med en litteraturstudie för att ge en djupare förståelse inom ämnet. Därefter samlades ritningar in från riktiga lägenheter som låg till grund för ett ritningsunderlag. Ritningsunderlaget användes sedan som input till beräkningsmetoden i EN 1991-1-2 bilaga A. För att underlätta beräkningarna skapades ett beräkningsdokument i Excel enligt Eurokodmodellen, där alla beräkningarna genomfördes. Fyra olika scenarier skapades som innefattar två olika termiska trögheter samt två olika öppningsfaktorer för varje termisk tröghet. Anledningen till det var att det ansågs intressant att beakta i vilken utsträckning dessa två parametrar påverkar brandförlopp. Det resulterade i att scenario 3 med lägre termisk tröghet och högre öppningsfaktor var det scenario med kraftigast brandförlopp avseende tillväxthastighet och temperatur. I förhållande till standardbrandkurvan hade majoriteten av temperatur-tidkurvorna för scenario 3 en snabbare upphettningsfas med högre temperaturer fram till påbörjad avsvalningsfas. Scenario 2 med högre termisk tröghet och lägre öppningsfaktor resulterade i det motsatta, det vill säga ett längre brandförlopp med lägre temperaturer. Vid en jämförelse visar det sig att för majoriteten av kurvorna enligt scenario 2, så var temperaturen lägre än standardbrandkurvans under hela brandförloppet. Öppningsfaktorn styr vilken mängd syre som kommer in i brandrummet, en högre öppningsfaktor betyder mer syre och intensivare brandförlopp. Termiska trögheten reglerar hur långsamt brandrummet värms upp, en låg termisk tröghet innebär att brandrummet värms upp snabbare och resulterar därmed i högre temperaturer då mindre energi absorberas av väggarna. De beräknade lägenhets- och rumsbrändernas temperatur-tidkurvor stämde överlag bättre överens med standardbrandkurvan än förväntat. Givet att golv och tak är betong och väggar gips samt att brandlasten som definierats av Boverket är korrekt, är slutsatsen att standardbranden fungerarar bra i de flesta fallen. Dock är tillväxthastigheten i standardbranden lägre i vissa av scenarierna men har i många fall en temperatur vid 60 minuter som överstiger scenariernas. Det finns dock utrymme för utveckling av brandmotståndstester då en mängd av de beräknade lägenhets- och rumsbränderna översteg standardbrandkurvan under tidsperioder på över 30 minuter, något som hade kunnat äventyra de brandskyddstekniska kraven. Men eftersom majoriteten av de beräknade bränderna understeg standardbrandkurvan kan kraven och standardbrandkurvan oftast anses överdimensionerade utifrån genomfört arbete. / When construction parts are tested in order to try and classify the fire resistance, the standard fire curve is almost only used. The standard fire curve defines exposure from temperature over time. The fire exposure is described in the European standard EN 1363-1 and in the international standard ISO 834. The standard fire curve was defined for over 100 years ago, in a time when the knowledge in fire design was inadequate. Now days the standard fire curve is a bit modified, but it almost remains the same as the fire curve defined for 100 years ago. Another way to design construction parts is theoretical by using parametric fire curves and the material models in the Eurocodes. In EN 1991-1-2 appendix A, a method to calculate parametric fire curves is presented, the method results in temperature-time curves and is known as the Eurocode model. This method considers the final room geometry and fire load, it also contains a cooling phase unlike the standard fire curve. Therefore, the Eurocode model is considered to be better at describing real fires. Compartment and room fires based on geometries from real apartments, will be calculated with the Eurocode method in order to compare the temperature-time curves against the exposure of the standard fire curve. The project started with a study of former literature to give a deeper understanding in the current subject. After that, real apartment drawings were collected to represent real apartments. The drawings were then used as input for the calculation method in EN 1991-1-2 appendix A. To calculate in a more effective way an Excel spread sheet was created for the calculation method according to the Eurcode model, which later has been used for all calculations. Four different scenarios were created, including two different thermal inertia and two different opening factors for each thermal inertia. The reason why was that it seemed to be interesting to examine in what extent these parameters affect a fire. It resulted in that scenario 3, the scenario with a lower thermal inertia and a higher opening factor, were the scenario with the fastest growing fire and with the highest temperatures. In comparison with the standard fire curve, scenario 3 had a majority of fires that exceeded the standard fire curve’s temperatures until the cooling phase begun. Scenario 2 which had a higher thermal inertia and a lower opening factor resulted in the opposite, that is a fire burning during a longer time with overall lower temperatures. In comparison with the standard fire curve scenario 2 had a majority of fires with lower exposure of temperature than the standard fire curve, during the entire time of fire. The opening factor controls which amount of oxygen that flows in to the fire compartment, an increase of the amount of oxygen leads to a more intensive fire. The thermal inertia controls how slowly something gets warmed up, a lower thermal inertia means that the fire compartment warms up faster and resulting in higher temperatures as less energy is absorbed by the walls. The calculated compartment and room fires temperature-time curves was in a better agreement with the standard fire curve than expected. Given that the floor and roof is concrete, the walls is gypsum and together with the assumption that the fire load defined by Boverket is correct, is the conclusion that the standard fire works well in most cases. However, the fire growth rate is lower for the standard fire than for some calculated cases but have a temperature at 60 minutes that exceeds most of the calculated cases at the same time. The fire resistance tests can still develop since a big amount of the calculated temperature-time curves exceeded the standard fire curve in periods of time over 30 minutes, something that could affect the fire protection requirements. But the majority of the calculated fires had an exposure of temperature under the standard fire curve. Therefore, the standard fire and the requirements can sometimes be considered oversized based on the work that been done.
84

Analysis of partial safety factor method based on reliability analysis and probabilistic methods

Salehi, Hamidreza 22 January 2020 (has links)
The partial safety factor method is the main safety concept applied across structural design standards. This method is also presented in EN-1990 as the basis of structural design in Europe. In the review of this code for the new generation of Eurocodes, analysis of the partial safety factor method seems necessary. The origin of the partial safety factor method is related to probabilistic methods and reliability analysis. Therefore, the latter is selected as tools for the evaluation of the partial safety factor method in the EN-1990 framework. Consequently this research begins with an explanation of the background of partial safety factor methods and reliability analysis. Different aspects of this safety concept are investigated through this study. The analysis strategy is based on the study of partial safety factor method according to the different part of EN-1990. The research is divided into two main parts, according to the basic components of limit state functions: load and resistance. Aspects related to loading are investigated first. The available load combinations and the recommended partial factors are investigated based on their reliability levels. The load combinations are compared with each other according to the sustainability of their design. An increased factor for the application of snow load is proposed to overcome safety problems related to snow load on structures. Consequently, a proposal for simplifying these load combinations is offered and verified according to reliability analysis. In the final step, regarding the load’s partial factors, a method of calibration is proposed, based on Monte Carlo reliability analysis. Afterwards, the aspects related to the resistance are analyzed. Resistances depend mostly on experimental data. Therefore, the relationship between the partial safety factor of resistance and test numbers is investigated. A probabilistic analysis based on Annex D of EN-1990 is then applied to calculate the model uncertainty partial factor and the resistance partial factor for a database from masonry shear walls. A comparison is made to show the influence of different way of partial safety factor utilization in a limit state function.:1 Introduction 2 Partial safety factor method and EN-1990 3 Reliability analysis 4 Load combinations and partial safety factors 5 Resistance partial safety factor 6 Summary and outlook
85

Evaluation of Failure Modes for Concrete Dams / Utvärdering av Brottmoder för Betongdammar

Broberg, Lisa, Thorwid, Malin January 2015 (has links)
The safety of a concrete dam is ensured by designing according to failure criteria, for all combinations of loads using safety factors. Today in Sweden, RIDAS, the Swedish power companies’ guidelines for dam safety, is used for the design of dams and is based on BKR, the National Board of Housing, Building and Planning. Swedish dams are designed to resist two global failure modes; sliding and overturning. Combination of failure modes, that should be considered in the design of concrete dams, is however fairly unknown. Since 2009 the Eurocodes was adopted and came into force 2011. The Eurocodes have replaced BKR in the design of most structures in Sweden where the partial factor method is used to ensure safety in the design. The objective of this report was to examine if the design criteria for concrete dams in today’s condition are enough to describe real failure modes. The other objective was to analyse if Eurocode is comparable to RIDAS in dam design. The stated questions were answered by performing a literature study of known dam failures and analytical calculations for different types of concrete gravity dams, with varying geometry and loading conditions. The programs CADAM and BRIGADE were also used as calculation tools to further analyse if failure occurred as expected. The results from the analytical calculations together with the performed FE analysis indicate that limit turning does occur and often generate lower safety factors compared to overturning. Limit turning is similar to overturning failure although it accounts for material failure in the rock. This design criterion is therefore, highly dependent on the quality of the rock and requires investigations of the foundation to be a good estimation of the real behaviour of the dam body. From the compilation of reported failures the conclusion was that the current design criteria are adequate. However, the real challenge lies in ensuring that the construction of dams is correctly performed to fulfil the stated criteria. A transition to Eurocode appears to be reasonable for the stability criterion. A modification of the partial factors is nevertheless necessary to obtain result corresponding to RIDAS, especially for the overturning criteria. / För att uppnå säkra dammkonstruktioner, för alla lastkombinationer, dimensioneras dammar enligt bestämda brottvillkor som ska uppfylla en viss säkerhetsfaktor. Idag används RIDAS, för dimensionering av dammar i Sverige. RIDAS Kraftföretagens riktlinjer för dammsäkerhet, är baserat på BKR, Boverkets konstruktionsregler. I Sverige dimensioneras dammar för att motstå de två globala brottmoderna glidning och stjälpning. Frågan som behöver besvaras är om det finns eller kan finnas några kombinationer av brottmoder som borde beaktas vid dimensionering av dammar. 2009 antogs Eurokoderna och trädde i kraft 2011. Eurokoderna har ersatt BKR vid dimensionering av de flesta konstruktioner i Sverige. I Eurokod används partialkoefficienter för att garantera säkra konstruktioner. Syftet med denna rapport var att undersöka om dagens brottkriterium är tillräckliga för att beskriva hur dammar går till brott. Rapporten behandlar även möjligheten att övergå från att dimensionera dammar enligt RIDAS till att dimensionera enligt Eurokod. För att besvara detta genomfördes en litteraturstudie av rapporterade dammbrott. Dessutom genomfördes analytiska beräkningar för flera olika typer av dammar med varierande geometri och lastfall. Programmen CADAM och BRIGADE användes som ytterligare verktyg för att analysera brottmoderna. Enligt resultat från de analytiska beräkningarna tillsammans med FE-beräkningarna ansågs limit turning inträffa och genererade i högre grad en lägre säkerhetsfaktorer i jämförelse med stjälpning. Limit turning kan förklars som delvis stjälpande och inkluderar brott av bergmassan. Brottmodet är dock beroende av kvalitéten hos berget och det krävs undersökningar av grunden för att kunna göra en god uppskattning av dammens verkliga beteende. Sammanställningen av tidigare brott visade att nu gällande brottkriterier är lämpliga och troligtvis tillräckliga. Utmaningen är istället att säkerställa att konstruktionerna är korrekt utförda och därmed uppfyller dessa brottkriterier. En övergång till Eurokod tycks vara möjlig för de globala brottmoderna, dock är det väsentligt att partialkoefficienterna justeras för att uppnå resultat som överensstämmer med RIDAS, särskilt för stjälpning.
86

Wind Loads on Bridges : Analysis of a three span bridge based on theoretical methods and Eurocode 1

Mohammadi, M. Sajad, Mukherjee, Rishiraj January 2013 (has links)
The limitations lying behind the applications of EN-1991-1-4, Eurocode1, actions on structures-general actions-wind load-part 1-4, lead the structural designers to a great confusion. This may be due to the fact that EC1 only provides the guidance for bridges whose fundamental modes of vibration have a constant sign (e.g. simply supported structures) or a simple linear sign (e.g. cantilever structures) and these modes are the governing modes of vibration of the structure. EC1 analyzes only the along-wind response of the structure and does not deal with the cross wind response. The simplified methods that are recommended in this code can be used to analyze structures with simple geometrical configurations. In this report, the analytical methods which are used to describe the fluctuating wind behavior and predict the relative static and dynamic response of the structure are studied and presented. The criteria used to judge the acceptability of the wind load and the corresponding structural responses along with the serviceability considerations are also presented. Then based on the given methods the wind forces acting on a continuous bridge whose main span is larger than the 50 meters (i.e. > 50 meter requires dynamic assessment) is studied and compared with the results which could be obtained from the simplified methods recommended in the EC1.
87

Beräkningsmall för vindlast enligt Eurokoder samt jämförelsestudie av  vindlastberäkningsmetoder / Calculation model for wind load according to Eurocodes and a comparative study of calculation methods for wind load

Wesslund, Lovisa January 2012 (has links)
Detta examensarbete har genomförts i samarbete med byggteknikavdelning på Ramböll Sverige AB, i Norrköping/Linköping. På företaget finns ett behov av att förenkla arbetet med vindlastberäkningar för hallbyggnader enligt Eurokoden. Idag använder företaget en förenklad metod som överdimensionerar. För att kunna göra en mer exakt beräkning helt enligt Eurokoden och effektivisera arbetet har det i detta examensarbete skapats en beräkningsmall för detta ändamål. Beräkningsmallen har tagits fram i programmet Microsoft Excel. För att också kunna se konsekvenserna av att jobba med en förenklad metod, har det utförts en jämförelsestudie mellan två befintliga projekt på företaget. Resultatet av jämförelsestudien visar på vad som är anledningen till skillnaden mellan det förenklade sättet, metod 1 och det mer exakta, metod 2. Rapporten innehåller en studie kring de faktorer som används vid beräkning av vindlast. Detta har gjorts för att kunna se vilken av faktorerna som bidrar till störst skillnad i resultat mellan de båda metoderna. Som grund till allt detta, innehåller rapporten också en teoretiskt bakgrund till hur vindlast ska dimensioneras enligt Eurokoden. Detta utgör första delen av rapporten. / This study has been performed in a collaboration with the company Ramböll Sweden AB in Norrköping/Linköping. At the company there is a need to simplify calculations concerning the wind load on industrial buildings according to the Eurocode. Today the company uses a simplify method which result in an over-dimension. To make a more exact method in accordance to the Eurocode and increase the efficiency at the work, it has in this study created a calculation model for this purpose. The calculation model has been created in the program Microsoft Excel. To be able to see the consequences to work with a simplified method, it has been done a comparison study between two current project at the company. The results of the comparison study show the reason to the difference between the simplified method, method 1 and the more exact method, method 2. The report containing  a study of the factors that uses in the calculations. This has been done to see which of the factors that contributes to the largest difference in result between the both methods. As the basis for all this, the report also contains a theoretical background about how the wind load should be dimensioned according to the Eurocode. This is the first part of this report.
88

Brandteknisk dimensionering av KL-trä – Jämförelse av nuvarande Eurokod 5 och kommande version / Fire safety design of CLT – Comparison of present Eurocode 5 and upcoming edition

Karlsson, Emil, Hama Jan, Gelan January 2023 (has links)
Bygg- och fastighetssektorn är en bidragande faktor till växande koldioxidutsläpp och det krävs därför klimatbaserade innovationer för att arbeta mot ett hållbart och långsiktigt samhälle. På senare år har råvaran trä använts i form av KL-trä som konstruktionsmaterial i allt fler och större byggnader. Parallellt med utvecklingen av KL-trä har även en strävan att behålla materialet oskyddat och synligt växt fram. För att möta kraven på brandsäkerhet i konstruktioner av KL-trä, arbetas nya dimensioneringsregler fram. I detta arbete studeras hur bärförmågan vid brand i nuvarande Eurokod 5 EN 1995-1-2:2004 och kommande version prEN 1995-1-2:2025 dimensioneras hos konstruktioner av KL-trä med synliga ytor. Syftet med arbetet är att ta fram skillnader och likheter mellan respektive version, samt vilken inverkan de kan få. Målet med arbetet är klargöra hur branddimensionering kommer påverkas och på så sätt kunna vara ett underlag för vidare studier och användning inom området. Dimensionering görs på vägg- och bjälklagselement med uppbyggnad av 5 st 40 mm lameller respektive 7 st 20 mm lameller för båda elementen. Dimensionerande brandexponeringstid som beaktas är 60 minuter, men även 90 minuter för väggelementen som krävs för att byggnader med mer än åtta våningar. Beräkningar och jämförelser görs på element av olika uppbyggnader för att tydliggöra relationen mellan typen av lim och bärförmågan. KL-träelement med icke brandtåligt lim uppvisar lägre bärförmågor än element med brandtåligt lim. Detta stämmer särskilt vid element med uppbyggnader av tunnare lameller. Orsaken till detta är att icke brandtåligt lim ger upphov till delaminering som minskar det effektiva tvärsnittet på grund av en ökad förkolningshastighet. Delamineringen ger även upphov till värmeökning då det sker en ny övertändning. Beräkningar visar att det är fördelaktigt med en tjockare yttre lamell för att minska risken för delaminering under brandexponeringstid 60 minuter och 90 minuter. Resultaten jämförs också med resultat från avancerade beräkningsmetoder i de fall där korrekta underlag fanns tillgängligt. Vid framtagning av det icke lastupptagande skiktet enligt kommande version påvisas markant skillnad jämfört med den nuvarande versionen. Enligt kommande version tas det hänsyn till aspekter som tvärsnittshöjd, lamelltjocklek, lamellriktning, om ytan är initialt skyddat eller ej, om den brandexponerade sidan utsätts för tryck- eller dragspänningar m. m. Utöver det tillkommer vissa eventuella avdrag på det resterande tvärsnittet beroende på vart det icke lastupptagande skiktet befinner sig. Nuvarande version anger alltid det icke lastupptagande skiktet som 7 mm. Framtagning av bärförmågan i den kommande versionen bygger likt den nuvarande versionen på den effektiva tvärsnittsmetoden. Det som däremot skiljer versionerna åt är förkolningsdjupet, samt införandet av ny metod för framtagning av det icke lastupptagande skiktet, som nämnt ovan. I kommande version har beräkningsgången för dessa delar uppdaterats och därmed beaktas även fler parametrar som icke brandtåligt lim. Förkolningsdjupet för kommande version beräknas enligt den europeiska förkolningsmodellen som beror på limtyp. Då endast brandtåligt lim beaktas i EN 1995-1-2:2004 bör en direkt tillämpning på KL-trä göras med försiktighet. Arbetet lyfter även fram generella konsekvenser för synligt KL-trä vid brandexponering. / The construction and property sector is a contributing factor to growing emissions of carbon dioxide and climate-based innovations are therefore required to work towards a sustainable and long-term society. In recent years, the raw material wood has been used in form of CLT (Cross Laminated Timber) as a construction material in an increasing number of buildings. Along the development of CLT, the desire to keep the material unprotected and visible has also grown. To meet the requirements for fire safety in CLT-buildings, new design standards are under development. In this study, the firedesign method and results of load-bearing elements of CLT with visible surfaces are compared between the current Eurocode 5 EN 1995-1-2:2004 and the upcoming version prEN 1995-1-2:2025. The purpose of the work is to highlight the differences and similarities between the two versions, and in that way provide basis for future studies and usages. Firedesign is calculated on wall and floor elements with a structure of 5 and 7 laminates respectively for both elements. The fire exposure time considered is 60 minutes, but also 90 minutes for the wall elements which is to clarify the relationship between the type of adhesive and the load-bearing capacity. The fire exposure time considered is 60 minutes, but also 90 minutes for the wall elements which is required for buildings with more than four stories, according to the Swedish building code BBR and to clarify the relationship between the type of adhesive and the load-bearing capacity. CLT elements with non-fire-resistant adhesive have lower load-bearing capacities than elements with fire-resistant adhesive. Calculations according to the upcoming version contains more parameters like non-fire-resistant adhesive and a more complex non-load-capacity layer, which are deficient in the current Eurocode. Since non-fire-resistant adhesive are not included in EN 1995-1-2:2004, a direct application on CLT should be done with caution. The study also highlights general consequences when using visible CLT in buildings.
89

Vattentäta betongkonstruktioner utsatta för tvångskrafter : Finit elementanalys av tvångsfördelning för vanliga typfall / Waterproof concrete structures exposed to restraint forces : Finite element analysis of restraint distribution for common cases

De Barros Cruz, Julio Cesar, Paunovic, Marijana January 2019 (has links)
Betong är ett av de mest använda byggnadsmaterialen i dagens samhälle. Några av anledningarna till detta är att den har lång livslängd, är naturligt material som är 100 % återvinningsbart samt ej lättantändligt material. Även om betong har många fördelar så är den inte helt idealisk eftersom den har en låg draghållfasthet. En betongkonstruktion kan spricka på grund av förhindrade rörelser som skapar dragspänningar. Förhindrade rörelser kallas för tvång och kan beskrivas i form av en tvångsfaktor. I detta examensarbete definieras tvångsfaktor som en spänningskvot mellan påtvingade spänningar och påtvingade spänningar vid fullständigt tvång. Fastlåsningsgrad, rörelsemöjlighet och styvhetsrelation mellan det nygjutna elementet och motgjutningen är avgörande parametrar vid beräkning av tvång och ett typiskt fall kan exempelvis vara en vägg gjuten mot grund. En helt förhindrad konstruktion kan ha en tvångsfaktor som är lika med 1 medan en konstruktion som kan röra sig fritt kan ha en tvångsfaktor som är lika med 0. En relativ lägre tvångsfaktor fås däremot om krypningseffekten beaktas eftersom den har gynnsam inverkan på tvånget. Betongen kan spricka på grund av tvånget och om sprickan inte är förväntad eller är större än den förväntade för den dimensionerade lasten då betraktas den som skada. Att förhindra vattengenomträngning eller läckage innebär dessutom att genomgående sprickor i vattentäta betongkonstruktioner bör undvikas. Det är således viktigt att beakta tvånget vid sprickriskanalyser av vattentäta betongkonstruktioner. Syftet med det här examensarbetet var att undersöka tvånget utifrån flera aspekter vilket gjorde att arbetet uppdelades i 3 analyser. Analys 1 syftade på att bekräfta de typiska fallen som anges i eurokoden SS-EN 1992–3 samt att utvärdera angivna tvångsfaktorer vid beräkning av tvångsdeformationer. Följaktligen användes finita elementprogram för modellering av de fallen från eurokoden och samtidigt gjordes handberäkningar för att komplettera analysen. I analys 2 studerades hur tvånget påverkas mellan konstruktionsdelar med ändring av bärverksdimensioner. Bärverket som studerades var vägg gjuten mot bottenplatta. Föränderliga parametrar var plattans bredd och tjocklek samt väggens höjd och tjocklek. Samtidigt togs ändring av konstruktionens längd som en påverkande faktor. Slutligen gjordes sprickviddsberäkningar avseende böjande moment och krympning i analys 3 för att få fram armeringsmängderna som skulle klara sprickviddskravet för vattentäta betongkonstruktioner. Detta åstadkoms enligt två olika beräkningsmetoder: Eurokodens och Engströms (2014). Dessa beräkningar visade även en jämförelse i armeringsmängd vid användning av tvångsfaktorer hämtad från eurokoden och tvångsfaktorer framräknad enligt FE-analyserna. Resultaten från analys 1 visade att variationen av beräknade tvångsfaktorer inte motsvarade helt den variationen som anges i SS-EN 1992–3 men avvek inte alldeles för mycket. Det fanns dock några enstaka fall där avvikelser var märkbara och därmed erfordras en noggrannare undersökning. Analys 2 visade att ökning av väggens volym minskar tvånget mot plattan men att en motsatt effekt fås för ökning av plattans volym. Det visade sig dessutom att en längre konstruktion orsakar större tvång mellan själva konstruktionsdelar. Slutsatsen från analys 3 var att skillnaden i genererad armeringsmängd var nästan proportionell i procentsats mot skillnaden i tvångsfaktor. Olika beräkningsmetoder resulterade dock i armeringsmängder som inte var jämförbara. Jämförelsen mellan de två beräkningsmetoderna var inte heller syftet med detta examensarbete utan endast ett försök att få en insyn i hur de olika metoderna är uppbyggda. / Concrete is one of the most widely used building materials in society today. Some of the reasons for this are that it has a long life, is a natural material that is 100% recyclable and non-flammable material. It has many advantages, but it is not entirely ideal due to its low tensile strength. A concrete structure may crack due to restrained movements which creates tensile stresses. Restrained movements are called restraint which can be described in the form of restraint factor. In this thesis, restraint factor is defined as a ratio between the actual imposed stress and the imposed stress at full restraint. The degree of fixity, movement possibility and stiffness relation between the newly casted element and the adjacent old structure are crucial parameters in the calculation of restraint and a typical case is, for example, a wall-on-slab cast. A completely restrained construction has a restraint factor equal to 1, while a structure that can move freely has a restraint factor equal to 0. However, a relative lower restraint factor is obtained if the creep effect is considered, since it has a positive influence on the restraint. The concrete may crack due to the restraint and if the crack is not expected or is larger than the expected for the dimensioned load then it is considered as damage. Preventing water penetration or leakage also means that through cracks in waterproof concrete structures should be avoided. Therefore, it is important to consider the restraint on fracture risk analyzes of waterproof concrete structures. The purpose of this thesis was to investigate the restraint based on several aspects, which meant that the work was divided into 3 analyses. Analysis 1 had as purpose to confirm typical cases specified in Eurocode SS-EN 1992–3 and to evaluate the stated restraint factors that the Eurocode proposes should be used in calculations of restraint deformations. For that matter, finite element program was used for modeling the cases from the Eurocode and at the same time hand calculations were made to supplement the analysis. Analysis 2 consisted of examining how the restraint between structural parts is affected by changing dimensions of the structure. The construction being studied was wall-on-slab cast. Variable parameters were the width and thickness of the slab, as well as the height and thickness of the wall. At the same time, changing the length of the construction was taken as an affecting factor. Lastly, crack width calculations for bending moments and shrinkage were made in analysis 3 to obtain the amount of reinforcement that meet the crack width requirement for waterproof concrete structures. This was done according to two different calculation methods: Eurocodes and Engström’s (2014). These calculations also showed a comparison in the amount of reinforcement when using restraint factors derived from Eurocode and restraint factors calculated according to the FE analyses. The results from analysis 1 showed that the variation of restraint factors calculated did not completely correspond to the variation stated in SS-EN 1992–3 but did not deviate too much. However, there were a few cases where deviations were noticeable and therefore a more detailed examination is required. Analysis 2 showed that increasing the volume of the wall reduces the restraint against the slab, but an opposite effect was obtained by increasing the volume of the slab. At the same time, it was found that a longer construction causes greater restraint between the actual components. The conclusion from analysis 3 was that the difference in generated amount of reinforcement was almost proportional in percentage to the difference in restraint factor. However, using different calculation methods resulted in amounts of reinforcement that were not comparable. Comparison between the two calculation methods was not the purpose of this thesis, but merely an attempt to gain an insight into how the different methods are structured.
90

Load Effect Modelling in Fatigue Design of Composite Bridges : An assessment of Fatigue Load Models 3, 4 and 5 according to SS-EN-1991-2 Actions on Structures – Part 2: Traffic loads on Bridges

Dahlvik, Mathias, Eriksson, Johan January 2014 (has links)
At the turn of 2010/2011, Sweden went from designing structures according to nationaldesign codes to the new European standards Eurocode. For bridge engineers, this implieda change from a combination of BRO 2004 and BSK 07 to the Eurocode as the maindocuments, complemented by national documents such as TRVK Bro 11. The normtransition did not only change the calculation methods, but also turned a phenomenonthat never was of great importance for road bridges before into something that could limitthe carrying capacity of the structure. This phenomenon is called fatigue, i.e. repeatedload cycles, where each load is much lower than the ultimate limit state capacity, thatfinally results in collapse. This master thesis investigates why fatigue is significant in the design today. This is donethrough a comparison of how the new and old regulations assesses fatigue. A bridge builtin 2011, designed by ELU Konsult AB according to the old regulations, was modelledin the finite element program LUSAS. Several lorry crossings from different fatigue loadmodels were then simulated. The output from LUSAS was then used to calculate theutilization ratios for three critical points along the bridge. The result indicates that both regulations give rise to similar stress ranges, i.e. thedifference between the maximum and minimum stress obtained during a crossing. Thedifferences between the regulations are instead within the fatigue calculations, where themajor difference is the number of lorries crossing the bridge during its lifetime. Theutilization ratio according to the old regulations for the worst exposed point is 27.0 %,corresponding to 9.13 daily crossings by heavy lorries, which is the maximum numberof daily crossings provided by BRO 2004. The lowest utilization ratio according tothe Eurocode is 70.0 %, calculated for 137 daily crossings which is the lowest amountof crossings allowed. An interpretation of the Eurocode, which allows usage of fatigue loadmodel 5 even for smaller bridges, results in a utilization ratio of 56.0% which correspondsto 90.0 daily crossings, i.e. lower than the other fatigue load models provided by theEurocode but clearly above the old regulations. The conclusion is that an alternative way of deciding the number of crossings shouldbe provided by the Eurocode. Today, the classification consists of four steps, which arevery rough. Instead, a proposal is given in this thesis which advocates usage of a linearfunction for deciding the number of design crossings based on the number of daily crossingsby lorries. The proposed alternative design method is between the two regulations withrespect to daily crossings and utilization ratio. / Vid årsskiftet 2010/2011 övergick Sverige från att dimensionera byggnadsverk enligt nationellastandarder till den nya europastandarden Eurokod. För brokonstruktörer innebar dettaen övergång från en kombination av BRO 2004 och BSK 07, till att Eurokod blev dethuvudsakligt styrande dokumentet, med bland annat TRVK Bro 11 som ett dokumentmed tillhörande nationella val. Övergången medförde inte bara att verksamma konstruktörertvingades lära sig förändrade beräkningsmetoder, utan också att ett fenomen som tidigaresällan var dimensionerande för vägbroar nu kunde vara det som ställde högst krav påbärförmågan. Detta fenomen kallas utmattning, dvs. upprepade av- och pålastningar, varoch en betydligt lägre än brons maximala bärförmåga, som i slutändan resulterar i brott. I detta examensarbete utreds det varför utmattning numera är en betydande del avdimensioneringen. Detta sker genom en jämförelse av hur de gamla och nya normernautvärderar utmattning. Som modell har en befintlig bro invigd 2011, dimensioneradav ELU Konsult AB enligt de gamla normerna, använts. Denna bro har modellerats ifinita element programmet LUSAS, varpå en mängd olika lastbilsöverfarter simulerats ochutmattningsutnyttjandet för tre utvalda kritska punkter beräknats. Resultatet indikerar att båda normerna har liknande storlekar på spänningsvidderna,dvs. skillnaden på största och minsta spänningen som uppstår vid en överfart. Däremotråder det skillnader vid utmattningsberäkningarna, där den stora skillnaden är antalettunga fordon som passerar bron under dess livslängd. Enligt de gamla normerna ärutnyttjandegraden för den värst utsatta studerade punkten 27.0 %, vilket är beräknatpå det högsta antalet dagliga passager från tunga fordon som BRO 2004 tillåter, d.v.s.9.13 dagliga passager. Enligt Eurokod uppgår den lägsta utnyttjandegraden till 70.0 %,vilket motsvarar 137 dagliga överfarter vilket är det lägsta Eurokod tillåter. Vid ettalternativt sätt att tolka Eurokod, som tillåter användandet av utmattningslastmodell5 även för mindre broar, fås en utnyttjandegrad på 56.0% vilket motsvarar 90.0 dagligaöverfarter. Detta är något lägre än de andra utmattningslastmodellerna enligt Eurokodmen fortfarande högre än det gamla regelverket. Slutsatsen av uppsatsen är att ett alternativt sätt att bestämma antalet överfarter bordeerbjudas i Eurokod, då indelningen idag består av fyra stora trappsteg vilket ger en väldigtsnäv indelning. I detta examensarbete presenteras ett förslag som innebär att antaletdimensionerande överfarter istället bör bestämmas som en rätlinjig funktion av antaletdagliga överfarter från tung trafik. Det föreslagna sättet ligger mellan de båda normernamed hänsyn till passager och utnyttjandegrad.

Page generated in 0.2937 seconds