Spelling suggestions: "subject:"fieldeffect"" "subject:"fields:effect""
741 |
Electrical Characterisation of Ferroelectric Field Effect Transistors based on Ferroelectric HfO2 Thin FilmsYurchuk, Ekaterina 16 July 2015 (has links) (PDF)
Ferroelectric field effect transistor (FeFET) memories based on a new type of ferroelectric material (silicon doped hafnium oxide) were studied within the scope of the present work. Utilisation of silicon doped hafnium oxide (Si:HfO2) thin films instead of conventional perovskite ferroelectrics as a functional layer in FeFETs provides compatibility to the CMOS process as well as improved device scalability. The influence of different process parameters on the properties of Si:HfO2 thin films was analysed in order to gain better insight into the occurrence of ferroelectricity in this system.
A subsequent examination of the potential of this material as well as its possible limitations with the respect to the application in non-volatile memories followed. The Si:HfO2-based ferroelectric transistors that were fully integrated into the state-of-the-art high-k metal gate CMOS technology were studied in this work for the first time. The memory performance of these devices scaled down to 28 nm gate length was investigated. Special attention was paid to the charge trapping phenomenon shown to significantly affect the device behaviour.
|
742 |
Magnetic field effects in chemical systemsRodgers, Christopher T. January 2007 (has links)
Magnetic fields influence the rate and/or yield of chemical reactions that proceed via spin correlated radical pair intermediates. The field of spin chemistry centres around the study of such magnetic field effects (MFEs). This thesis is particularly concerned with the effects of the weak magnetic fields B₀ ~ 1mT relevant in the ongoing debates on the mechanism by which animals sense the geomagnetic field and on the putative health effects of environmental electromagnetic fields. Relatively few previous studies have dealt with such weak magnetic fields. This thesis presents several new theoretical tools and applies them to interpret experimental measurements. Chapter 1 surveys the development and theory of spin chemistry. Chapter 2 introduces the use of Tikhonov and Maximum Entropy Regularisation methods as a new means of analysing MARY field effect data. These are applied to recover details of the diffusive motion of reacting pyrene and N,N-dimethylaniline radicals. Chapter 3 gives a fresh derivation and appraisal of an approximate, semiclassical approach to MFEs. Monte Carlo calculations allow the elucidation of several "rules of thumb" for interpreting MFE data. Chapter 4 discusses recent optically-detected zero-field EPR measurements, adapting the gamma-COMPUTE algorithm from solid state NMR for their interpretation. Chapter 5 explores the role of RF polarisation in producing MFEs. The breakdown in weak fields of the familiar rotating frame approximation is analysed. Chapter 6 reviews current knowledge and landmark experiments in the area of animal magnetoreception. The origins of the sensitivity of European robins Erithacus rubecula to the Earth’s magnetic field are given particular attention. In Chapter 7, Schulten and Ritz’s hypothesis that avian magnetoreception is founded on a radical pair mechanism (RPM) reaction is appraised through calculations in model systems. Chapter 8 introduces quantitative methods of analysing anisotropic magnetic field effects using spherical harmonics. Chapter 9 considers recent observations that European robins may sometimes be disoriented by minuscule RF fields. These are shown to be consistent with magnetoreception via a radical pair with no (effective) magnetic nuclei in one of the radicals.
|
743 |
Elektrische und morphologische Charakterisierung organischer Feldeffekttransistoren mit aufgedampften, gesprühten sowie aufgeschleuderten organischen HalbleiternLüttich, Franziska 09 January 2015 (has links) (PDF)
In dieser Arbeit werden organische Feldeffekttransistoren (OFETs) aus den verschiedenen Materialien Manganphthalocyanin (MnPc), [6,6]Phenyl-C61-butansäuremethylester (PCBM), 6,13-Bis(triisopropylsilyethinyl)pentacen (TIPS-Pentacen) und N,N’-
Bis(n-octyl)-1,6-Dicyanoperylen-3,4:9,10-Bis(Dicarboximid) (PDI8-CN2) hergestellt. Dabei finden unterschiedliche Abscheidemethoden wie die Molekularstrahlabscheidung, die Ultraschallsprühbeschichtung und die Drehbeschichtung Anwendung. Die Morphologie sowie die Funktionsweise der Transistoren werden in Abhängigkeit von den Herstellungsparametern und bezüglich ihrer Stabilität gegenüber Lufteinfluss und elektrischer Belastung charakterisiert.
Durch Aufdampfen von MnPc konnten so zum ersten Mal ambipolare MnPc-OFETs hergestellt und charakterisiert werden. Die bestimmten Löcher- und Elektronenbeweglichkeiten bestätigen die Eignung von MnPc für die Anwendung in Spintronik-Bauelementen.
Desweiteren wird anhand gesprühter PCBM- und TIPS-Pentacen-OFETs gezeigt, dass die Ultraschallsprühbeschichtung eine geeignete Technik ist, um organische Halbleiter aus Lösung für die Verwendung in OFETs abzuscheiden. Die Abscheidung organischer Filme lässt sich mit einer Vielzahl an Parametern beeinflussen und die Funktionsweise von OFETs optimieren. In Verbindung mit den Untersuchungen aufgeschleuderter PDI8-CN2-OFETs konnte ein erheblicher Einfluss der Oberflächenenergie des verwendeten SiO2-Gateisolators auf die Korngröße im organischen Film festgestellt werden.
|
744 |
Pulsed Laser Ablated Dilute Magnetic Semiconductors and Metalic Spin ValvesGhoshal, Sayak January 2013 (has links) (PDF)
Spintronics (spin based electronics) is a relatively new topic of research which is important both from the fundamental and technological point of view. In conventional electronics charge of the electron is manipulated and controlled to realize electronic devices. Spintronics uses charge as well as the spin degree of freedom of electrons, which is completely ignored in the charge based devices. This new device concept brings in a whole new set of device possibilities with potential advantages like higher speed, greater efficiency, non-volatility, reduced power consumption etc. The first realization of the spintronic device happened in 1989, owing to the discovery of the Giant Magneto-resistive (GMR) structure showing a large resistance change by the application of an external magnetic field. Nobel Prize in Physics is awarded for this discovery in 2007. In less than ten years, such devices moved from the lab to commercial devices, as read head sensors in hard disc drives. This new sensor led to an unprecedented yearly growth in the area l density of bits in a magnetic disc drive. Since 2005, another spintronic device known as Magnetic Tunnel Junction (MTJ) which shows a better performance replaced the existing GMR structures in the read heads. Another device which can potentially replace Si based Dynamic Random Access Memory (DRAM) is Magneto-resistive Random Access Memory (MRAM). Being magnetic it is non-volatile, which means not only it retains its memory with the power turned off but also there is no constant power required for frequent refreshing. This can save a lot of power(~ 10-15 Watts in a DRAM), which is quite significant amount for any portable device which runs under battery. Prototype of a commercial MRAM is also made during 2004-2005 by Infineon and Freescale Semiconductors. Recent development has shown switching of magnetic moment by spin-polarised currents (known as spin transfer torque), electric fields, and photonic fields. Instead of Oersted field switching in the conventional MRAM devices, spin torque effect can also be used to switch a magnetic element more efficiently. Recently Spin-Torque MRAM has gained lot of interest due to it’s less power consumption during the writing process. A continuous research effort is going on in realizing other proposed spintronic devices, such as Spin Torque Oscillator, Spin Field Effect Transistor , Race Track Memory etc. which are yet to get realized or yet to make their entry in the commercial devices.
Spintronics can be divided in to two broad subfields viz.(1) Semiconductor Spintronics and (2) Metallic Spintronics. Most of the devices belong to the second class whereas the former one is rich in fundamental science and not yet cleared its path towards the world of application. Any spintronic device requires ferromagnetic material which is generally the source of spin polarized electrons. For semiconductor spintronic devices, the main obstacle is the non-existence of the ferromagnetic semiconductor above room temperature (RT). So the development in this direction is very much dependent on the material science research and discovery of novel material systems. Almost a decade back, Dilute Magnetic Semiconductors (DMS) are proposed to behaving RT ferromagnetism. As a result an intense theoretical and experimental research is being carried out since then on these materials. Still a general consensus is lacking both in terms of theory as well as experiment.
There are many methodologies and thin film deposition protocols have been followed by different research groups to realize spintronic device concepts. The deposition techniques such as magnetron sputtering, molecular beam epitaxy have been found very efficient for growing metallic spintronic devices. For semiconductor spintronics especially in the area of Dilute Magnetic Semiconductors (DMS) pulsed laser ablation is also considered to be a viable technique. Even though pulsed laser ablation is a very powerful technique to prepare stoichiometric multi-component oxide films, it’s viability for the growth of metallic films and multilayer is considered to be limited. In this regard, we have used pulsed laser ablation to prepare pure and Co doped ZnO films, to examine the magnetic and magneto-transport behavior of these oxides. In addition extensive work has been carried out to optimize and reproducibly prepare metallic multilayer by Pulsed Laser Deposition to realize Spin Valve (SV) effect, which proves the viability of this technique for making metallic multilayer. This thesis deals with the study of Pulsed Laser Deposition(PLD) deposited DMSs and metallic SVs. The thesis is organized into seven chapters as described below:
• Chapter:1
This chapter gives an introduction to Spintronics and the different device structures. It is followed by a brief description of the motivation of the present work. Since magnetism is at the heart of the spintronics, next we attempt to introduce some of the basic concepts in magnetism, which are related to the topics discussed in the following chapters. We discuss about various exchange interactions responsible for the long range ferromagnetic ordering below Curie temperature in different compounds. Other magnetic properties are also discussed. Then another important phenomenon called magnetic anisotropy is brought in. We discuss the origin of different types of anisotropy in materials. These anisotropies are also responsible for magnetic domain formation. Then a description of the different types of domain walls are introduced. Unlike conventional electronics, spintronics deals with spin polarized current. A short description of spin polarization from the band picture and concept of half-metal is introduced.
The next part (Section-I) of this chapter gives an overview of the challenges in semiconductor spintronics. The spin injection efficiency from a ferromagnetic metal to a semiconductor is found to be poor. This problem is attributed to the conductivity mismatch at the interface. DMS materials can be potential candidates in order to solve this problem. Ferromagnetism in these proposed materials cannot be explained in terms of the standard exchange mechanisms. A model was first proposed for the hole doped system based on Zener model. A more apt model for the n-doped high dielectric materials is then proposed based on Bound Magnetic Polarons (BMP). These models for the unusual ferromagnetism are briefly discussed. Although ferromagnetism is observed by different groups, often questions are raised about the intrinsic origin of this behavior and the topic is still under debate. In this study we have tried to correlate the magnetic property with the transport property as the transport properties are generally not affected much by the presence of external impurities and probes the intrinsic property of the material. Transport and the magneto-transport in disordered materials in general are discussed. A specific model proposed for degenerate semiconductors, which is used for fitting our experimental data is explained. As the ferromagnetism in these materials are generally found to be related to the defects, different types of possible defects are described.
Section-II deals with the metallic SV devices. In the history of spintronics, this is one of the most basic and most studied structures, but still having a lot of interest both fundamentally and technologically. A brief history of this discovery and a chronological progress in the device structure is discussed. Our work focuses on the metallic spin valve (SV) structures. Different types of SVs and their properties are explained. In a SV structure one of the ferromagnets (FM) is pinned using an adjuscent antiferromagnetic layer by an effect called exchange bias. A brief description of exchange bias and the effects of different parameters is given. This is followed by a discussion about the theory of GMR which deals with the spin dependent scattering at the bulk and at the interfaces, their relative contributions, effect of the band matching etc. A simple resistor model is used to explain the qualitative behavior of these SVs. The chapter is concluded with a brief summery and applications.
• Chapter:2
This chapter provides a brief description of some of the experimental apparatus that are used to perform various experiments. The chapter is organized according to the general functionality of the techniques. This includes different thin film deposition techniques which are used depending on the requirements and also for comparing the properties of the samples, grown by different techniques. Structural, spectroscopic, magnetic and different microscopy techniques which are extensively used throughout, are discussed and their working principles are explained. This work also involves nano/microstructuring of devices. Mainly two structuring techniques are used viz. e-beam lithography and optical lithography by laser writer. In this section we will be discussing about these two techniques and other associated techniques like lift-off, etching etc. Effect of different parameters on the device structures are highlighted.
• Chapter:3
Chapter-3 deals with the synthesis and characterization of the pure and 5% Co doped ZnO bulk samples. First a brief introduction about the ZnO crystal structure, band structure and other properties are given followed by the synthesis technique followed in our study. Synthesis is done by low temeperature in organic co-precipitation method. This liquid phase synthesis gives better homogeniety. As-grown sample is also sintered at a higher temperature. Structural study confirms the proper synthesis of the intended compound. Spectroscopic as well as magnetic study of the bulk doped sample indicates the presence of Co nano clusters in the low temperature synthesized sample, whereas after sintering indication of Co2+ is observed which reflects in the magnetic property as well. These samples are used as target material for laser ablation.
• Chapter:4
Chapter-4 presents the results of the pure and Co doped ZnO thin film samples. Thin films are grown by PLD method on r-plane Sapphire substrates. Details of the growth technique and the deposition parameters are explained. Our result shows that 5% Co doped ZnO thin film is ferromagnetic in nature as expected in a DMS material, although the film is grown using a paramagnetic target. We also report that pure ZnO grown in an oxygen deficient condition giving ferromagnetic behavior. Not only that, the obtained saturation moment is much higher compared to the Co doped sample. We have demonstrated that the FM can be tuned by tuning the oxygen content and FM disappears when the film is annealed in an oxygen environment .But for the Co doped sample magnetic property could not be tuned much as Co doping stabilizes the surface states. To exclude the possibilities of the extrinsic origin we have done a detailed magneto-transport study for both doped and undoped films. For ZnO, we have shown a one to one correlation of the magnetic and magneto-transport data which further supports the fact that the obtained magnetic behavior is intrinsic. Fitting of the magnetorsistance (MR) data for the pure and Co doped ZnO samples is done using a semi-empirical formula, consisting of both positive and negative MR terms originally proposed for degenerate semiconductors .Excellent agreement of the experimental data is found with the formula. For pure ZnO sample we have extracted the mobility, carrier concentration etc .by Hall measurement. The fabrication steps of Hall bar sample which involves optical lithography and ion beam etching are discussed. 3D e-e interaction induced transport mechanism is found to be dominant in case of oxygen deficient pure ZnO.
• Chapter:5
Chapter-5 demonstrates the tuning of band gap of ZnO by alloying with MgO. By changing the ZnO:MgO ratio in PLD grown films, we could tune the band gap over a wide range. Composition alanalysis is done by Rutherford Back-Scattering. Structural and spectroscopic studies are carried out, which shows tuning of band gap upon alloying with MgO. We could tune ZnO band gap from 3.3eV to 3.92eV by30% MgO alloying, while retaining the Wurtzite crystal structure.
• Chapter:6
Chapter-6 demonstrates the metallic Pseudo Spin Valve (PSV) structures grown by sputtering and by PLD. Main focus of this chapter is to show that, PLD can be aviable technique for making metallic PSV and Spin Valve (SV) structures. This is almost an unexplored technique for growing metallic thin film SVs, as it is evident in the literature. NiFe and Co are used as the soft and hard FM layers respectively, Au and Cu are used as the spacer layer. FeMn is used for pinning the Co layer in case of the SV structures. The first section describes the properties of these materials and then substrate preparation, deposition parameters etc. are explained in details. Properties of sputter deposited PSV structures are also described. Thickness variation of different layers, double PSV structure and angular variation of the MR properties are presented. Generally two measurement geometries are followed for the SV measurements viz.(1) Current In Plane (CIP) and (2) Current Perpendicular to Plane(CPP). We have carried out MR studies in both the measurement geometries. Measurement in CPP geometry is much more involved than CIP and need structuring with multiple lithography steps. CPP measurement geometry scheme and the process steps are discussed. For this measurement a special ac bridge technique is followed which is also discussed.
In the next part we have demonstrated PSV and SV structures, grown, using PLD in an Ultra High Vacuum (UHV) system. Not only that, we have obtained a CIPMR as high as 3.3%. PLD is generally thought to be a technique for oxide deposition and metallic multilayers are not deposited due to particulate formation, high enegy of the adatom species which can lead to inter-mixing at the interface etc. But in this study we have shown that by properly tuning the deposition parameters, it is possible to grow SVs using PLD. We have found the roughness of the PLD grown films are much lower compared to the sputtered films. For top SV structures we have obtained exchange bias even in the absence of applied field during deposition. This effect is observed by performing magnetic and magneto-resistance measurements. Effect of different layer thicknesses, field annealing etc. are discussed. Two different spacer layers are used and their properties are compared. We have found that the interface engineered structures are giving highest MR among the different samples. Then a conclusion of our study is presented followed by a discussion on the difficulties and challenges faced for optimizing the PLD grown SVs.
• Chapter:7
Finally, in Chapter-7, various results are summarized and a broad outlook is given. Perspectives for the continuation of the present work is also given.
|
745 |
Rational Design of Diketopyrrolopyrrole-Based Conjugated Polymers for Ambipolar Charge TransportKanimozhi, K Catherine January 2013 (has links) (PDF)
The present thesis is focused on the rational design of Diketopyrrolopyrrole based π- conjugated polymers for organic electronics. The thesis is organized into six different chapters and a brief description of the individual chapters is provided below.
Chapter 1 briefly describes the physics governing the electronic processes occurring in organic photovoltaics (OPVs) and organic field-effect transistors (OFETs) followed by design rules for the synthesis of conjugated polymers for organic electronics. Diketopyrrolopyrrole (DPP) based π-conjugated materials and their development in OPVs and OFETs have been highlighted.
Chapter 2 discusses the synthesis and characterization of a series of small molecules of DPP derivatives attached with different alkyl chains. Influence of side chains on the photophysical properties of these DPP derivatives have been studied by UV-visible spectroscopy and DFT calculations. Crystal structure studies revealed the effect of alkyl chains on the torsional angle, crystal packing, and intermolecular interactions such as π-π stacking.
Chapter 3 reports the synthesis of novel diketopyrrolopyrrole-diketopyrrolopyrrole (DPPDPP) based conjugated copolymers and their application in high mobility organic field-effect transistors. Effect of insulating alkyl chains on polymer thin film morphology, lamellar packing and π-π stacking interactions have been studied in detail. Investigation of OFET performance of these DPP-DPP copolymers with branched alkyl chains (N-CS2DPP-ODEH) resulted in low charge carrier mobilities as compared to the polymers (N-CS2DPP-ODHE) with linear alkyl chains. Polymer with triethylene glycol side chains (N-CS2DPP-ODTEG) exhibited a high field-effect electron mobility value of ~3 cm2V-1s-1 with a very low threshold voltage of ~2 V.
Chapter 4 investigates the effect of torsional angle on the intermolecular interactions and charge transport properties of diketopyrrolopyrrole (DPP) based polymers (PPDPP-OD-HE and PPDPP-OD-TEG). Grazing incidence x-ray diffraction studies shows the different orientation of the polymer crystallites and lamellar packing involved in polymer thin films. Investigation of OFETs evidenced the effect of torsional angle on the charge transport properties where the polymer with higher torsional angle PPDPP-OD-TEG resulted in high threshold voltage with less charge carrier mobility compared to the polymer with lower torsional angle (N-CS2DPP-OD-TEG).
Chapter 5 investigates the effect of photoactive material morphology on the solar cell device performance, and charge transfer kinetics by adding high boiling point processing additives. DPP based donor-acceptor (D-A) type low band gap polymers (PTDPPQ and PPDPPQ) have been synthesized and employed in bulk-heterojunction (BHJ) solar cells with the acceptor PC71BM. Addition of processing additive 1,8-diiodooctane (DIO) resulted in three order improvements in power conversion efficiency (PCE).
Chapter 6 describes the design and synthesis of two diketopyrrolopyrrole based copolymers (PPDPP-BBT and PTDPP-BBT) for their application in organic devices such as field-effect transistors and bulk-heterojunction solar cells. Investigation of OFET performance of these DPP based copolymers displayed hole mobilities in the order of 10-3 cm2V-1s-1. The semiconductor-dielectric interface has been characterized by capacitance-voltage, and Raman scattering methods.
In summary, the work presented in this thesis describes the synthesis and characterization of diketopyrrolopyrrole based new polymeric semiconductors. Effects of insulating side chains and torsional angle on the charge transport properties of these polymers in OFETs have been investigated. This work also describes the effect of solvent additives on the active layer morphology and BHJ solar cell device performance. The results described here show that these materials have potential application as active components in plastic electronics.
|
746 |
Variability Aware Device Modeling and Circuit Design in 45nm Analog CMOS TechnologyAjayan, K R January 2014 (has links) (PDF)
Process variability is a major challenge for the design of nano scale MOSFETs due to fundamental physical limits as well as process control limitations. As the size of the devices is scales down to improve performance, the circuit becomes more sensitive to the process variations. Thus, it is necessary to have a device model that can predict the variations of device characteristics. Statistical modeling method is a potential solution for this problem. The novelty of the work is that we connect BSIM parameters directly to the underlying process parameters. This is very useful for fabs to optimize and control the specific processes to achieve certain circuit metric. This methodology and framework is extendable to any future technologies, because we used a device independent, but process depended frame work
In the first part of this thesis, presents the design of nominal MOS devices with 28 nm physical gate length. The device is optimized to meet the specification of low standby power technology specification of International Technology Roadmap for Semiconductors ITRS(2012). Design of experiments are conducted and the following parameters gate length, oxide thickness, halo concentration, anneal temperature and title angle of halo doping are identified as the critical process parameters. The device performance factors saturation current, sub threshold current, output impendence and transconductance are examined under process variabilty.
In the subsequent sections of the thesis, BSIM parameter extraction of MOS devices using the software ICCAP is presented. The variability of the spice parameters due to process variation is extracted. Using the extracted data a new BSIM interpolated model for a variability aware circuit design is proposed assume a single process parameter is varying. The model validation is done and error in ICCAP extraction method for process variability is less than 10% for all process variation condition in 3σ range.
In the next section, proposes LUT model and interpolated method for a variability aware circuit design for single parameter variation. The error in LUT method for process variability reports less than 3% for all process variation condition in 3σ range. The error in perdition of drain current and intrinsic gain for LUT model files are very close to the result of device simulation. The focus of the work was to established effective method to interlink process and SPICE parameters under variability. This required generating a large number of BSIM parameter ducks. Since there could be some inaccuracy in large set of BSIM parameters, we used LUT as a golden standard. We used LUT modeling as a benchmark for validation of our BSIM3 model
In the final section of thesis, impact of multi parameter variation of the processes in device performance is modelled using RSM method; the model is verified using ANOVA method. Models are found to be sufficient and stable. The reported error is less than 1% in all cases. Monte Carlo simulation confirms stability and repeatability of the model. The model for random variabilty of process parameters are formulated using BSIM and compared with the LUT model. The model was tested using a benchmark circuit. The maximum error in Monte Carlo simulation is found to be less than 3% for output current and less than 8% for output impedance.
|
747 |
Détection de polluants dans l'eau potable. Développement d'un immunocapteur sur la base d'un transistor organique à effet de champ à grille électrolytique. / Detection of Water Pollutants using Label-free Electrochemical Immunosensors and Electrolyte Gated Organic Field-Effect TransistorsNguyen, Thi Thuy Khue 22 October 2018 (has links)
Aujourd'hui, avec l'augmentation de la population, la consommation de médicaments et de produits phytosanitaires dans l'agriculture a considérablement augmenté. Cela devient inquiétant car une grande partie de ces molécules, rejetée dans l'environnement, ne sont pas bien éliminées par les stations d'épuration (lorsqu'elles existent). En trop grande quantité, ces produits deviennent des poisons pour tous les organismes vivants, y compris l’Homme.Des méthodes analytiques classiques pour la mesure de ces produits chimiques existent déjà (méthodes séparatives classiques telles que la chromatographie en phase gazeuse, la chromatographie liquide à haute performance, éventuellement couplée à la spectrométrie de masse, etc.). Cependant, même si elles sont extrêmement précises et fiables, ces techniques sont difficiles à appliquer pour la surveillance sur site et sont généralement coûteuses. Pour cette raison, ma thèse se concentre sur de nouvelles approches analytiques pour détecter de petites molécules en milieu aqueux, telles que ces polluants. Dans une première partie de mon travail, j’ai développé un immunocapteur basé sur une complexation compétitive originale et sur une transduction électrochimique (ampérométrique), pour la détection du diclofénac, un anti - inflammatoire non stéroïdien généralement utilisé pour réduire l’inflammation et soulager la douleur. L'électrode de travail a été fonctionnalisée par deux sels de diazonium, l'un utilisé comme sonde moléculaire (un dérivé du diclofénac couplé à une arylamine) et l'autre comme sonde redox (une quinone) également couplée à une arylamine, capable de transduire l'association haptène-anticorps par une variation de son électroactivité ; en particulier, la transduction a été conçue pour délivrer une augmentation de courant lors de la détection du diclofénac (soit une détection « signal-on »). J’ai montré une limite de détection d’environ 20 fM dans l'eau du robinet, ce qui rend ce type de capteur très compétitif. Dans la suite de mon travail, j'ai conservé la même approche de transduction originale (immunoreconnaissance compétitive) mais appliquée à un transistor à effet de champ organique à grille électrolytique (EGOFET) dont le semiconducteur est le poly (N-alkyldiketopyrrolo-pyrrole dithiénylthiéno [3,2-b ] thiophène) (DPP-DTT) et dont l'électrode de grille a été fonctionnalisée par électrogreffage d'un sel de diazonium fonctionnel capable de lier un anticorps spécifique de l'acide 2,4-dichlorophénoxyacétique (2,4-D), un herbicide courant. Le design de la sonde moléculaire a été rationalisée par modélisation moléculaire afin d’optimiser la capture de l’anticorps en surface de grille. Dans la dernière partie de mon travail, je propose une approche qui met à profit à la fois le couplage capacitif de l'EGOFET mais aussi sa sensibilité aux charges électrostatiques accumulées en surface de grille. J'ai immobilisé en surface de grille un peptide court (Gly-Gly-His) connu pur avoir une forte affinité envers les ions cuivre Cu2+. Le peptide a été immobilisé par électro-oxydation directe de l'amine primaire du premier fragment glycine. J’ai démontré que les dispositifs EGOFET, modifiés par GGH, peuvent transduire la complexation de Cu2+ par des variations significatives de leurs caractéristiques de sortie et de transfert, en particulier par un décalage de la tension de seuil (VTh). / Today, with the increase of population, the consumption of drugs and of chemicals in agriculture has dramatically increased. It becomes a worrisome issue because a large amount of these molecules, excreted to the environment, are not well eliminated by water-treatment plants (when they exist) and are therefore released without control into the ecosystem. In too large quantities, these drugs are poisons for living organisms, including humans. Classical analytical methods for the measurement of these chemicals already exist (classical separative methods such as gas chromatography, high-performance liquid chromatography, possibly coupled with mass spectrometry, etc). However, even if extremely precise and reliable, these techniques are difficult to apply for on-site monitoring and are usually costly. For this reason, my thesis focuses on novel analytical approaches to detect small organic molecules such as these pollutants. In a first part of my work, I developped an original immunosensor based on a competitive complexation and on an electrochemical (amperometric) transduction, for detection of diclofenac, which is a non – steroidal anti – inflammatory drug generally employed to protect patients from inflammation and relieve pain. The working electrode was electrografted with two functional diazonium salts, one as molecular probe (a diclofenac derivative coupled with an arylamine) and the other as redox probe (a quinone) also coupled with an arylamine, able to transduce the hapten-antibody association into a change in electroactivity. The transduction was designed to deliver a current increase upon detection of diclofenac (“signal-on” detection). The detection limit is ca. 20 fM in tap water, which is competitive compared to other label-free immunosensors. In the following part of my thesis, I kept the same original transduction approach (competitive immunoassay) but applied to an Electrolyte-Gated Organic Field-Effect Transistor (EGOFET) based on poly(N-alkyldiketopyrrolo-pyrrole dithienylthieno[3,2-b]thiophene) as organic semiconductor whose gate electrode was functionalized by electrografting a functional diazonium salt capable to bind an antibody specific to 2,4-dichlorophenoxyacetic acid (2,4-D), an herbicide well-known to be a soil and water pollutant. Molecular docking computations were performed to design the functional diazonium salt to rationalize the antibody capture on the gate surface. In the last part of my work, I propose an approach which takes profit not only of the capacitive coupling of the EGOFET but also on its sensitivity to electrostatic charges accumulated on the gate surface. To illustrate this in the field of sensors, I used a short peptide (Gly-Gly-His), known to selectively bind copper ions Cu2+. The peptide was immobilized by direct electrooxidation of the primary amine of the first glycine moiety. I demonstrated that GGH-modified EGOFETs can transduce Cu2+ complexation through significant changes of their output and transfer characteristics, in particular their threshold voltage (VTh).
|
748 |
Electrical and Morphological Characterisation of Organic Field-Effect TransistorsToader, Iulia Genoveva 30 October 2012 (has links)
In dieser Arbeit wurden unterschiedliche Moleküle aus der Klasse der Phthalocyanine (Pc) und Pentacen-Materialien als aktive Schichten in organischen Feldeffekttransistoren (OFETs) mittels organischer Molekularstrahldeposition (OMBD) unter Hochvakuumbedingungen aufgedampft. Die elektrische Charakterisierung von Top-Kontakt (TC) und Bottom-Kontakt (BC) OFET-Konfigurationen, die Auskunft über die Ladungsträgermobilität, die Schwellspannung und das Ein/Aus-Verhältnis gibt, wurde sowohl unter Hochvakuum- als auch unter Umgebungsbedingungen an Luft durchgeführt. Für beide OFET-Konfigurationen wurde Gold für die Source- und Drain-Elektroden genutzt. Aussagen über die Morphologie der untersuchten organischen Schichten, die auf Siliziumsubstraten mit einem 100 nm dicken Siliziumdioxyd (SiO2) Gate-Dielektrikum abgeschieden wurden, wurden mittels Rasterelektronenmikroskopie (SEM) und Rasterkraftmikroskopie (AFM) erhalten. Im Vergleich mit den TC OFETs wurde im Bereich des aktiven Kanals in den BC OFETs die Bildung einer höheren Anzahl von Körnern und Korngrenzen gefunden, welche zur Degradation dieser Bauelemente speziell bei Atmosphärenexposition beiträgt.
Es wurden die nachfolgenden fünf Moleküle aus der Klasse der Pc untersucht: Kupferphthalocyanin (CuPc), Fluoriertes Kupferphthalocyanin (F16CuPc), Kobaltphthalocyanin (CoPc), Titanylphthalocyanin (TiOPc), und Lutetium-bis-Phthalocyanin (LuPc2). Diese Moleküle wurden mit dem Ziel ausgewählt, die Performance der OFETs unter vergleichbaren Präparationsbedingungen zu testen, wenn das zentrale Metallatom, die Halbleitereigenschaften oder die molekulare Geometrie geändert werden. Durch die Fluorierung (F16CuPc) wurde eine Änderung im Leitungsverhalten von CuPc von p-Typ zum n-Typ erreicht und in der elektrischen Charakteristik der OFETs nachgewiesen. Diese Resultate wurden ebenfalls mittels Kelvin-Sonden-Kraftmikroskopie (KPFM) erhalten. Der Einfluss der Molekülgeometrie auf die Performance der Bauelemente wurde durch die Änderung der Gestalt der Moleküle von planar (CuPc, F16CuPc, CoPc) zu nicht planaren Einfach- (TiOPc) und nicht planaren Doppeldeckermolekülen (LuPc2) untersucht. Eine höhere OFET-Performance wurde erreicht, wenn planare Pc-Materialien für die Bildung der aktiven Schicht verwendet wurden. Das kann teilweise auf die Morphologie der Pc-Schichten zurückgeführt werden. AFM-Aufnahmen zeigen, dass im Vergleich mit nicht planaren Molekülen größere Körner und deshalb eine geringere Anzahl von Korngrenzen gebildet werden, wenn planare Pc-Moleküle verwendet werden. Für den Fall von TC CuPc OFETs wurde gezeigt, dass die Performance der Bauelemente verbessert werden kann, wenn das Gate-Dielektrikum mit einer selbstorganisierten Monoschicht von n-Octadecyltrichlorosilan modifiziert wird oder wenn das Substrat während der Aufdampfung der CuPc-Schicht auf einer höheren Temperatur gehalten wird.
Für die Klasse der Pentacen-Materialien wurde ein Vergleich zwischen der Performance von BC OFETs, die die kürzlich synthetisierten fluorierten n-Typ Pentacenquinon-Moleküle nutzen, und denen, die die p-Typ Pentacen-Moleküle nutzen, präsentiert.
Das große Erfordernis hochreine Materialien zu verwenden, um eine Degradation der OFETs zu vermeiden, wurde durch Durchführung von Mehrfachmessungen an den OFET-Bauelementen bestätigt. Aus diesen Experimenten lassen sich Informationen bzgl. der Störstellen an der Grenzfläche organische Schicht/SiO2 ableiten. Weiterhin wurde für einige der untersuchten Moleküle die Performance von BC OFETs unter dem Einfluss von unterschiedlichen Gasen gezeigt.
|
749 |
Synthesis and Characterization of Metal Complexes for Thin Film Formation via Spin-Coating or Chemical Vapor DepositionPousaneh, Elaheh 29 October 2020 (has links)
The present thesis describes the synthesis and characterization of magnesium, copper, and iron complexes and their application in the MOCVD (Metal-Organic Chemical Vapor Deposition) process, as well as the synthesis and characterization of yttrium and gadolinium complexes and their use as spin-coating precursors for metal oxide thin layer formation. The objective of this scientific work is the development of the family of bis(β-ketoiminato) magnesium(II) complexes and a series of heteroleptic β-ketoiminato copper(II) precursors for the formation of magnesium oxide and copper/copper oxide layers by using the MOCVD process. Modifications of the ketoiminato ligands affect the physical and chemical properties of the respective complexes. Another central theme of this work is the development of β-diketonato iron(III) complexes for the deposition of carbon-free gamma- and alpha-Fe2O3 layers via MOCVD. The thermal behavior and vapor pressure of the precursors could be influenced by the variation of the β-diketonate ligands. In addition, the synthesis and characterization of yttrium and gadolinium β-diketonates and their use as spin-coating precursors are described. Field-effect transistors were successfully fabricated by the deposition of carbon nanotubes on top of the Y2O3 films.
|
750 |
Improvement of carbon nanotube-based field-effect transistors by cleaning and passivationTittmann-Otto, Jana 16 October 2020 (has links)
Ever since their discovery in 1991, carbon nanotubes are of great interest to the scientific community due to their outstanding optical, mechanical and electrical properties. Considering their impressive properties, as for instance the high current carrying capability and the possibility of ballistic charge transport, carbon nanotubes are a desired channel material in field-effect transistors, especially with respect to high frequency communication electronics. Thus, many scientific studies on CNT-based field-effect transistors have been published so far. But despite the successful verification of excellent individual electric key values, corresponding experiments are mostly performed under synthetic conditions (considering e.g. temperature or gas atmosphere), which are not realizable during realistic application scenarios. Furthermore, technologically relevant factors like homogeneity, reproducibility and yield of functioning devices are often subordinated to the achievement of a single electric record value. Hence, this work focuses on the development of a fabrication technology for carbon nanotube field-effect transistors, that takes those factors into account. Thereby, this work expands the state of the art by introduction and statistical assessment of two cleaning processes: a) wet chemical removal of surfactant residues (sodium dodecylsulfate) from CNTs, integrated using the dielectrophoretic approach, by investigation and comparison of four procedures (de-ionized water, HNO3, oDCB, Ethanol); b) the reduction of process-related substrate contaminations by application of an oxygen plasma. Beyond that, the passivation of the final, working devices is developed further, as their typical definition as diffusion barrier is expanded by the reduction of parasitic capacitances in the transistor. In this context, two so far barely considered materials, hydrogen silsesquioxane and Xdi-dcs, a polymer mixture of poly(vinylphenol) and polymethylsilsesquioxane, are investigated and assessed. The novelty of the Xdi-dcs mixture causes the necessity of fundamental considerations on controllable etching procedures and resulting adaptions of the technological fabrication sequence.:Bibliographic description 3
List of abbreviations 10
List of symbols 10
1 Introduction 13
2 Basics of carbon nanotubes 15
2.1 Structural fundamentals 15
2.1.1 Hybridization of carbon 15
2.1.2 Structure of carbon nanotubes 17
2.2 Electronic properties 19
2.2.1 Band structure of graphene 19
2.2.2 Band structure of carbon nanotubes 20
2.2.3 Electronic transport in CNTs 22
2.3 Procedures for CNT integration 23
2.3.1 Growth by chemical vapor deposition 24
2.3.2 Transfer techniques 24
2.3.3 Dispersion-related integration procedures 25
2.4 Interaction of CNT and surfactant 28
3 Basics of CNT field-effect transistors 31
3.1 Principle of operation of conventional FETs 31
3.2 Distinctive features of CNT-based FETs 32
3.2.1 Metal - semiconductor contact 33
3.2.2 Linearity 38
3.3 Performance determining factors 41
3.3.1 Device architecture 41
3.3.2 Contact geometry 46
3.3.3 Other transistor dimensions 48
3.3.4 CNT-related characteristics 49
3.4 Hysteresis in transfer characteristics 51
3.4.1 Definition of hysteresis 51
3.4.2 Origins of hysteresis 52
3.4.3 Appearance of hysteresis 53
3.5 Passivation 56
3.5.1 Requirements 56
3.5.2 Importance of pre-treatments and process conditions 57
3.5.3 Overview of established passivation materials 58
4 Experimental work 63
4.1 Transistor design 63
4.2 Technology flow 66
4.3 Experimental procedures 71
4.3.1 Procedures for dissolution of SDS 71
4.3.2 Plasma treatment against surface contaminations 72
4.3.3 Evaluation of diffusion barriers 72
4.4 Instrumentation and characterization 74
4.4.1 Dielectrophoresis instrumentation 74
4.4.2 Topographical Characterization 74
4.4.3 Chemical characterization 75
4.4.4 Electrical characterization 76
5 Reduction of hysteresis 77
5.1 Removal of surfactant molecules from CNTs 77
5.1.1 Influence on molecule and CNT chemistry 78
5.1.2 Effect on transistor performance 80
5.2 Plasma-assisted removal of substrate contaminations 87
5.2.1 Influence on substrate surface 88
5.2.2 Effect on transistor performance 92
6 Passivation 97
6.1 Protection against environmental effects 97
6.1.1 Alterability of unpassivated CNT-FETs 98
6.1.2 Effects of O2 exclusion by dense passivation 99
6.1.3 Intentional doping using Y2O3 101
6.2 Passivation considering electrostatic aspects 106
6.2.1 Integration of Xdi-dcs as novel passivation 107
6.2.2 Comparison of two spin-coated dielectrics 111
6.3 Potential of double-layer approaches 113
6.3.1 Evaluation of the gas barrier performance 113
6.3.2 Influence on the transistor behavior 116
7 Summary and Outlook 121
Danksagung 127
Appendix 129
Bibliography 137
List of figures 156
List of tables 161
Selbstständigkeitserklärung 163
8 Thesen 165
9 Curriculum vitae 169 / Bereits seit ihrer Entdeckung 1991 sind Kohlenstoffnanoröhren, aufgrund ihrer herausragenden optischen, mechanischen und elektrischen Eigenschaften, für die wissenschaftliche Community von großem Interesse. Ihre Verwendung als Kanalmaterial in Feld-Effekt Transistoren ist in Anbetracht ihrer außergewöhnlichen Eigenschaften, wie z. B. die hohe Stromtragfähigkeit, sowie die Möglichkeit des ballistischen Transports von Ladungsträgern besonders für die hochfrequente Kommunikationselektronik erstrebenswert. Dementsprechend viele wissenschaftliche Arbeiten befassen sich mit der Erforschung von auf Kohlenstoffnanoröhren basierenden Transistoren. Doch trotz des erfolgreichen Nachweises ausgezeichneter Werte für viele individuelle elektrische Kenngrößen, finden entsprechenden Experimente zumeist unter anwendungsfernen Bedingungen bezüglich Temperatur bzw. Gasatmosphäre statt. Darüber hinaus werden dem Erreichen eines elektrischen Rekordwertes oft technologisch relevante Größen wie Homogenität, Reproduzierbarkeit und Ausbeute an funktionsfähigen Bauteilen untergeordnet. Der Fokus dieser Arbeit liegt daher auf der Erarbeitung einer Technologie zur Herstellung Kohlenstoffnanoröhrenbasierter Feld-Effekt Transistoren, unter Berücksichtigung dieser Aspekte. Dabei erweitert diese Arbeit den Stand der Technik durch die Einführung und statistische Beurteilung zweier Reinigungsprozesse: a) der nasschemischen Beseitigung von Tensidresten (Natriumdodecylsulfat) an mittels Dielektrophorese integrierten CNTs, wobei insgesamt vier Prozeduren (de-ionisiertes Wasser, HNO3, oDCB, Ethanol) betrachtet und miteinander verglichen wurden; b) der Beseitigung von prozessbedingten Substratkontaminationen durch ein Sauerstoffplasma. Darüber hinaus wird die Passivierung der funktionsfähigen Bauelemente weiterentwickelt, indem ihre typische Definition als Diffusionsbarriere um den Aspekt der Verringerung parasitärer Kapazitäten im Transistor erweitert wird. In diesem Zusammenhang werden mit Wasserstoff-Silsesquioxane und Xdi-dcs, einem Polymergemisch aus Poly(vinylphenol) und Polymethylsilsesquioxane, zwei bislang wenig beachtete Materialien, untersucht und bewertet. Die Neuheit des Xdi-dcs Gemisches macht dabei fundamentale Untersuchungen zur Strukturierbarkeit und entsprechende technologische Anpassungen im Gesamtablauf nötig.:Bibliographic description 3
List of abbreviations 10
List of symbols 10
1 Introduction 13
2 Basics of carbon nanotubes 15
2.1 Structural fundamentals 15
2.1.1 Hybridization of carbon 15
2.1.2 Structure of carbon nanotubes 17
2.2 Electronic properties 19
2.2.1 Band structure of graphene 19
2.2.2 Band structure of carbon nanotubes 20
2.2.3 Electronic transport in CNTs 22
2.3 Procedures for CNT integration 23
2.3.1 Growth by chemical vapor deposition 24
2.3.2 Transfer techniques 24
2.3.3 Dispersion-related integration procedures 25
2.4 Interaction of CNT and surfactant 28
3 Basics of CNT field-effect transistors 31
3.1 Principle of operation of conventional FETs 31
3.2 Distinctive features of CNT-based FETs 32
3.2.1 Metal - semiconductor contact 33
3.2.2 Linearity 38
3.3 Performance determining factors 41
3.3.1 Device architecture 41
3.3.2 Contact geometry 46
3.3.3 Other transistor dimensions 48
3.3.4 CNT-related characteristics 49
3.4 Hysteresis in transfer characteristics 51
3.4.1 Definition of hysteresis 51
3.4.2 Origins of hysteresis 52
3.4.3 Appearance of hysteresis 53
3.5 Passivation 56
3.5.1 Requirements 56
3.5.2 Importance of pre-treatments and process conditions 57
3.5.3 Overview of established passivation materials 58
4 Experimental work 63
4.1 Transistor design 63
4.2 Technology flow 66
4.3 Experimental procedures 71
4.3.1 Procedures for dissolution of SDS 71
4.3.2 Plasma treatment against surface contaminations 72
4.3.3 Evaluation of diffusion barriers 72
4.4 Instrumentation and characterization 74
4.4.1 Dielectrophoresis instrumentation 74
4.4.2 Topographical Characterization 74
4.4.3 Chemical characterization 75
4.4.4 Electrical characterization 76
5 Reduction of hysteresis 77
5.1 Removal of surfactant molecules from CNTs 77
5.1.1 Influence on molecule and CNT chemistry 78
5.1.2 Effect on transistor performance 80
5.2 Plasma-assisted removal of substrate contaminations 87
5.2.1 Influence on substrate surface 88
5.2.2 Effect on transistor performance 92
6 Passivation 97
6.1 Protection against environmental effects 97
6.1.1 Alterability of unpassivated CNT-FETs 98
6.1.2 Effects of O2 exclusion by dense passivation 99
6.1.3 Intentional doping using Y2O3 101
6.2 Passivation considering electrostatic aspects 106
6.2.1 Integration of Xdi-dcs as novel passivation 107
6.2.2 Comparison of two spin-coated dielectrics 111
6.3 Potential of double-layer approaches 113
6.3.1 Evaluation of the gas barrier performance 113
6.3.2 Influence on the transistor behavior 116
7 Summary and Outlook 121
Danksagung 127
Appendix 129
Bibliography 137
List of figures 156
List of tables 161
Selbstständigkeitserklärung 163
8 Thesen 165
9 Curriculum vitae 169
|
Page generated in 0.0294 seconds