• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 464
  • 94
  • 34
  • 21
  • 17
  • 13
  • 8
  • 7
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 766
  • 766
  • 522
  • 309
  • 293
  • 277
  • 208
  • 160
  • 144
  • 107
  • 102
  • 84
  • 83
  • 62
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
721

Ferroelectric FETs With 20-nm-Thick HfO₂ Layer for Large Memory Window and High Performance

Mulaosmanovic, Halid, Breyer, Evelyn T., Mikolajick, Thomas, Slesazeck, Stefan 26 November 2021 (has links)
Hafnium oxide (HfO₂)-based ferroelectric field-effect transistor (FeFET) is an attractive device for nonvolatile memory. However, when compared to the well-established flash devices, the memory window (MW) of FeFETs reported so far is rather limited, which might be an obstacle to practical applications. In this article, we report on FeFETs fabricated in the 28-nm high-𝑘 metal gate (HKMG) bulk technology with 90 and 80 nm for the channel length and width, respectively, which show a large MW of nearly 3 V. This is achieved by adopting 20-nm-thick HfO₂ films in the gate stack instead of the usually employed 10-nm-thick films. We show that such a thickness increase leads to only a moderate increase of the switching voltages, and to a significantly improved resilience of the memory characteristics upon the parasitic charge trapping. The devices display a good retention at high temperatures and endure more than 10⁵ bipolar cycles, thus supporting this technology for a future generation of FeFET memories.
722

Mimicking biological neurons with a nanoscale ferroelectric transistor

Mulaosmanovic, Halid, Chicca, Elisabetta, Bertele, Martin, Mikolajick, Thomas, Slesazeck, Stefan 12 October 2022 (has links)
Neuron is the basic computing unit in brain-inspired neural networks. Although a multitude of excellent artificial neurons realized with conventional transistors have been proposed, they might not be energy and area efficient in large-scale networks. The recent discovery of ferroelectricity in hafnium oxide (HfO₂) and the related switching phenomena at the nanoscale might provide a solution. This study employs the newly reported accumulative polarization reversal in nanoscale HfO₂-based ferroelectric field-effect transistors (FeFETs) to implement two key neuronal dynamics: the integration of action potentials and the subsequent firing according to the biologically plausible all-or-nothing law. We show that by carefully shaping electrical excitations based on the particular nucleation-limited switching kinetics of the ferroelectric layer further neuronal behaviors can be emulated, such as firing activity tuning, arbitrary refractory period and the leaky effect. Finally, we discuss the advantages of an FeFET-based neuron, highlighting its transferability to advanced scaling technologies and the beneficial impact it may have in reducing the complexity of neuromorphic circuits.
723

Potential Application of Organic Electronics in Electrical Sensing of Insects and Integrated Pest Management towards Developing Ecofriendly Replacements for Chemical Insecticides

Petrauskas, Lautaro N., Haase, Katherina, Schmidt, Georg C., Hübler, Arved C., Mannsfeld, Stefan C. B., Ellinger, Frank, Boroujeni, Bahman K. 06 November 2024 (has links)
Synthetic insecticides are widely used against plant pest insects to protect the crops. However, many insecticides have poor selectivity and are toxic also to beneficial insects, animals, and humans. In addition, insecticide residues can remain on fruits for many days, jeopardizing food safety. For these reasons, a reusable, low-cost electronic trap that can attract, detect, and identify, but attack only the pest while leaving beneficial insects unharmed could provide a sustainable, nature-friendly replacement. Here, for the first time, research results are presented suggesting the great potential and compatibility of organic electronic devices and technologies with pest management. Electrical characterizations confirm that an insect's body has relatively high dielectric permittivity. Adaptive memcapacitor circuits can track the impedance change for insect detection. Other experiments show that printed polymer piezoelectric transducers on a plastic substrate can collect information about the weight and activity of insects for identification. The breakdown voltage of most insects´ integument is measured to be <200 V. Long channel organic transistors easily work at such high voltages while being safe to touch for humans thanks to their inherent low current. This feasibility study paves the way for the future development of organic electronics for physical pest control and biodiversity protection.
724

Определение креатинина с использованием комплексов меди (II) в качестве электрохимических катализаторов и модификаторов расширенного затвора полевого транзистора : магистерская диссертация / Determination of creatinine using copper (II) complexes as electrochemical catalysts and extended-gate field-effect transistor

Чеботарева, Д. В., Chebotareva, D. V. January 2023 (has links)
Настоящая работа состоит из 5 глав и посвящена бесферментному электрокаталитическому определению креатинина в слабокислой среде с использованием различных катализаторов, которые представляют из себя комплексы меди с новыми производными 2,2’-бипиридина. В работе приведены аналитические характеристики исследования всех пяти комплексов, трёх выбранных модификаторов и обоснования выбора наилучших веществ для модифицирования стеклоуглеродного электрода в определении концентрации креатинина. Проведено сравнение аналитических характеристик, полученных от метода циклической вольтамперометрии и метода с использованием полевого транзистора с расширенным затвором, и выбран предпочтительный метод анализа. / This work consists of 5 chapters and is devoted to the non-enzymatic electrocatalytic determination of creatinine in a weakly acidic medium using different catalysts, which are copper complexes with new 2,2'-bipyridine derivatives. Analytical characteristics of all five complexes, three selected modifiers and substantiation of the choice of the best substances for modifying the glass carbon electrode in determining creatinine concentration are given in the work. Comparison of the analytical characteristics obtained from the cyclic voltammetry method and the method using a field-effect transistor with an extended gate was carried out and the preferred method of analysis was selected.
725

Interfacial Phenomena at the Graphene-Liquid-Interface in Nanostructure Devices: Faradaic Effect, Edge-Gating and Van Der Waals Heterostructures

Neubert, Tilmann Joachim 03 February 2022 (has links)
In dieser Arbeit werden verschiedene Aspekte des Designs und der Funktionsweise von in Flüssigkeit betriebenen Graphen-basierten Sensoren untersucht, wodurch neue Einblicke in grundlegende Prozesse an der Graphen-Flüssigkeits-Grenzfläche gewonnen werden. Zunächst wird die Wirkung redoxaktiver Moleküle in der Elektrolytlösung in elektrochemisch gesteuerten Graphen-FETs untersucht. Während des Betriebs kann ein heterogener Elektronentransfer stattfinden, der zu Faradayschen Strömen am Graphenkanal führt. Diese führen zu Verschiebungen der Transferkurve von Graphen, da die Graphen-Flüssigkeits-Grenzfläche eine nur teilweise polarisierbare Elektrode darstellt. Dies wird als „Faradayscher Effekt“ bezeichnet. Er unterscheidet sich grundlegend von typischen Transduktionsmechanismen. Parameter, die den Faradayschen Effekts beeinflussen, werden detailliert untersucht. So sind die Verschiebungen z.B. abhängig von der Graphenkanalfläche. Der zweite Abschnitt konzentriert sich auf die Kante von Graphen, die einen nanoskopischen eindimensionalen Defekt des zweidimensionalen Materials darstellt. In dieser Arbeit wird ein neuer Graphen-FET vorgestellt, der auf der Steuerung von Graphen nur über die elektrochemische Doppelschicht an der Kante basiert. Um dies zu erreichen, wird der basale Teil des Graphens durch eine Passivierung vollständig von der Elektrolytlösung abgeschirmt. Des Weiteren wird gezeigt, dass die Kante des Graphens durch elektrochemische Modifizierung kovalent funktionalisiert werden kann, wodurch die Ladungsdichte an der Graphenkanten-Flüssigkeits-Grenzfläche effektiv verändert wird. Dabei bleiben die vorteilhaften Eigenschaften der Devices erhalten. Schließlich wird ein neuartiger Ansatz zu Untersuchungen an der Graphenkante in Form von mit hexagonalem Bornitrid-verkapseltem Graphen-Elektroden verfolgt. Die elektroanalytische Detektion von Ferrocenmethanol und Dopamin an der Graphenkante mittels zyklischer Voltammetrie wird an diesen Elektroden gezeigt. / Several aspects of the design and function of sensors based on graphene operated in liquid have been investigated in this thesis, providing new insight into fundamental processes at the graphene-liquid-interface. First, the effect of the presence of redox active molecules in the analyte solution of electrochemically gated graphene FETs is explored. During operation, heterogeneous electron transfer may occur at relevant potentials leading to Faradaic currents at the graphene channel. These lead to doping-like shifts of the transfer curve of graphene, as the graphene-liquid-interface represents a partially polarizable electrode. Due to the origin of the shifts, this observation is termed “Faradaic effect”. It is fundamentally different from typically discussed transduction mechanisms. Parameters influencing the direction and magnitude of the Faradaic effect are discussed in detail, e.g. the shifts are the stronger, the larger the area of the graphene channel. The second part focuses on the edge of graphene, which represents a nanoscopic one-dimensional defect of the two-dimensional material. Here, a new type of graphene FET is introduced based on electrochemical gating of graphene exclusively via the electrical double layer at its edge. To achieve edge-gating, the basal part of graphene is passivated by a photoresist and shielded entirely from interaction with the solution. It is demonstrated that the edge of graphene can be functionalized covalently via electrografting. This changes the charge density at the graphene edge-liquid-interface effectively, while maintaining the favorable transfer characteristics of the devices. Finally, a novel approach towards graphene edge devices was pursued in the form of hexagonal boron nitride encapsulated graphene. The electrochemical detection of ferrocene methanol and dopamine was demonstrated in standard and fastscan cyclic voltammetry at the edge of graphene in these devices.
726

Adressing Integration Obstacles for Carbon Nanotube-based Miniaturized Electro-mechanical Transducers

Böttger, Simon 18 February 2025 (has links)
Emerging electronic system architectures follow increasingly 3D integration concepts driven by further miniaturization, increase of performance, decrease of energy consumption, and implementation of further functionality. Following this More than Moore path, trendsetting on-top-of-complementary metal-oxide semiconductor (CMOS) technologies for nanodevices find increasing attention in semiconductor development roadmaps. Nanodevices implemented through nanomaterials such as semiconducting single-walled carbon nanotubes (CNTs) with their proceeded technology readiness level, give additional degree of freedom to upgrade such systems as substrate-independent and post-CMOS compatible technologies are already available. Although, they inherently feature extraordinary properties several technological obstacles are not yet addressed. Pronounced obstacles like inadequate CNT assembly structure, interfering parasitic effects related to CNT/substrate interfaces, as well as insufficient pre-stress state of the CNTs are tackled within this thesis aiming on CNT-based piezoresistive sensors. Following a holistic approach, the activities range from the implementation of chromatography-based length separation of CNTs over wafer-level micro- and nanotechnological process-, module-, and equipment developments towards comprehensive and statistical data analysis. It could be shown, that short CNTs adversely affect integrability and reproducibility, underlined by a 25% decline of the fabrication yield of CNT based field-effect transistors (CNT-FETs) with respect to long CNTs. It furthermore turns out, that performance of CNT-FETs built from long CNTs show significant benefits in terms of subthreshold swing (up to 163%) and hole mobility (up to 300%), which could be explained by suppressed CNT chain formation within the transistor channel. Furthermore, short-channel piezoresistive CNT sensors in FET configuration show a significant drain-induced barrier thinning characterized by a degradation of the subthreshold swing and a threshold voltage roll-off of (−1370± 130) mV · V−1 upon applied drain-source voltage. This device-specific effect enhances the intrinsic strain-sensitivity of the sensor of up to 150% with a maximum measured gauge factor of 800. In this regard, supporting transport simulations underline the importance of the Schottky barrier at the source/CNT junction as the dominating junction for tunneling currents responsible for the gained enhancement. Finally, a technology module was developed, which further reduce parasitic effects such as stick-slip and slack behavior of device-integrated CNTs upon mechanical load by incorporation of layout-determined pre-strain. Utilizing a post-CMOS compatible sacrificial layer approach combined with residual stressed membranes, the integrated CNTs were strained by almost 1% in axial direction. This consequences in an reduced sensor offset determined by a reduction of the detection limit to 30 MPa. In addition this modul was successfully implemented by heterogeneous on-top-of application-specific integrated circuit technologies where CNT-FETs were characterized over an embedded complementary metal-oxide semiconductor multiplexer circuit. Hence, this work displays novelty and provides significant contributions on heterointegrated system-on-chip applications of upcoming nanomaterial-based devices for environmental sensing, condition monitoring, photonic integrated circuits, up to promising architectures for neuromorphic computing and the quantum technology science and application.
727

On Reliability of SiC Power Devices in Power Electronics

Sadik, Diane-Perle January 2017 (has links)
Silicon Carbide (SiC) is a wide-bandgap (WBG) semiconductor materialwhich has several advantages such as higher maximum electric field, lowerON-state resistance, higher switching speeds, and higher maximum allowablejunction operation temperature compared to Silicon (Si). In the 1.2 kV - 1.7kV voltage range, power devices in SiC are foreseen to replace Si Insulatedgatebipolar transistors (IGBTs) for applications targeting high efficiency,high operation temperatures and/or volume reductions. In particular, theSiC Metal-oxide semiconductor field-effect transistor (MOSFET) – which isvoltage controlled and normally-OFF – is the device of choice due to the easeof its implementation in designs using Si IGBTs.In this work the reliability of SiC devices, in particular that of the SiCMOSFET, has been investigated. First, the possibility of paralleling two discreteSiC MOSFETs is investigated and validated through static and dynamictests. Parallel-connection was found to be unproblematic. Secondly, drifts ofthe threshold voltage and forward voltage of the body diode of the SiC MOSFETare investigated through long-term tests. Also these reliability aspectswere found to be unproblematic. Thirdly, the impact of the package on thechip reliability is discussed through a modeling of the parasitic inductancesof a standard module and the impact of those inductances on the gate oxide.The model shows imbalances in stray inductances and parasitic elementsthat are problematic for high-speed switching. A long-term test on the impactof humidity on junction terminations of SiC MOSFETs dies and SiCSchottky dies encapsulated in the same standard package reveals early degradationfor some modules situated outdoors. Then, the short-circuit behaviorof three different types (bipolar junction transistor, junction field-effect transistor,and MOSFET) of 1.2 kV SiC switching devices is investigated throughexperiments and simulations. The necessity to turn OFF the device quicklyduring a fault is supported with a detailed electro-thermal analysis for eachdevice. Design guidelines towards a rugged and fast short-circuit protectionare derived. For each device, a short-circuit protection driver was designed,built and validated experimentally. The possibility of designing diode-lessconverters with SiC MOSFETs is investigated with focus on surge currenttests through the body diode. The discovered fault mechanism is the triggeringof the npn parasitic bipolar transistor. Finally, a life-cycle cost analysis(LCCA) has been performed revealing that the introduction of SiC MOSFETsin already existing IGBT designs is economically interesting. In fact,the initial investment is saved later on due to a higher efficiency. Moreover,the reliability is improved, which is beneficial from a risk-management pointof-view. The total investment over 20 years is approximately 30 % lower fora converter with SiC MOSFETs although the initial converter cost is 30 %higher. / Kiselkarbid (SiC) är ett bredbandgapsmaterial (WBG) som har flera fördelar,såsom högre maximal elektrisk fältstyrka, lägre ON-state resitans, högreswitch-hastighet och högre maximalt tillåten arbetstemperatur jämförtmed kisel (Si). I spänningsområdet 1,2-1,7 kV förutses att effekthalvledarkomponenteri SiC kommer att ersätta Si Insulated-gate bipolar transistorer(IGBT:er) i tillämpningar där hög verkningsgrad, hög arbetstemperatur ellervolymreduktioner eftersträvas. Förstahandsvalet är en SiC Metal-oxidesemiconductor field-effect transistor (MOSFET) som är spänningsstyrd ochnormally-OFF, egenskaper som möjliggör enkel implementering i konstruktionersom använder Si IGBTer.I detta arbete undersöks tillförlitligheten av SiC komponenter, specielltSiC MOSFET:en. Först undersöks möjligheten att parallellkoppla tvådiskretaSiC MOSFET:ar genom statiska och dynamiska prov. Parallellkopplingbefanns vara oproblematisk. Sedan undersöks drift av tröskelspänning ochbody-diodens framspänning genom långtidsprov. Ocksådessa tillförlitlighetsaspekterbefanns vara oproblematiska. Därefter undersöks kapslingens inverkanpåchip:et genom modellering av parasitiska induktanser hos en standardmoduloch inverkan av dessa induktanser pågate-oxiden. Modellen påvisaren obalans mellan de parasitiska induktanserna, något som kan varaproblematiskt för snabb switchning. Ett långtidstest av inverkan från fuktpåkant-termineringar för SiC-MOSFET:ar och SiC-Schottky-dioder i sammastandardmodul avslöjar tidiga tecken pådegradering för vissa moduler somvarit utomhus. Därefter undersöks kortslutningsbeteende för tre typer (bipolärtransistor,junction-field-effect transistor och MOSFET) av 1.2 kV effekthalvledarswitchargenom experiment och simuleringar. Behovet att stänga avkomponenten snabbt stöds av detaljerade elektrotermiska simuleringar för allatre komponenter. Konstruktionsriktlinjer för ett robust och snabbt kortslutningsskyddtas fram. För var och en av komponenterna byggs en drivkrets medkortslutningsskydd som valideras experimentellt. Möjligheten att konstrueradiodlösa omvandlare med SiC MOSFET:ar undersöks med fokus påstötströmmargenom body-dioden. Den upptäckta felmekanismen är ett oönskat tillslagav den parasitiska npn-transistorn. Slutligen utförs en livscykelanalys(LCCA) som avslöjar att introduktionen av SiC MOSFET:ar i existerandeIGBT-konstruktioner är ekonomiskt intressant. Den initiala investeringensparas in senare pågrund av en högre verkningsgrad. Dessutom förbättrastillförlitligheten, vilket är fördelaktigt ur ett riskhanteringsperspektiv. Dentotala investeringen över 20 år är ungefär 30 % lägre för en omvandlare medSiC MOSFET:ar även om initialkostnaden är 30 % högre. / <p>QC 20170524</p>
728

Conception d'un circuit intégré en SiC appliqué aux convertisseur de moyenne puissance / Design of an integrated circuit in SiC applied to medium power converter

Mogniotte, Jean-François 07 January 2014 (has links)
L’émergence d’interrupteurs de puissance en SiC permet d’envisager des convertisseurs de puissance capables de fonctionner au sein des environnements sévères tels que la haute tension (> 10 kV ) et la haute température (> 300 °C). Aucune solution de commande spécifique à ces environnements n’existe pour le moment. Le développement de fonctions élémentaires en SiC (comparateur, oscillateur) est une étape préliminaire à la réalisation d’un premier démonstrateur. Plusieurs laboratoires ont développé des fonctions basées sur des transistors bipolaires, MOSFETs ou JFETs. Cependant les recherches ont principalement portées sur la conception de fonctions logiques et non sur l’intégration de drivers de puissance. Le laboratoire AMPERE (INSA de Lyon) et le Centre National de Microélectronique de Barcelone (Espagne) ont conçu un MESFET latéral double grille en SiC. Ce composant élémentaire sera à la base des différentes fonctions intégrées envisagées. L’objectif de ces recherches est la réalisation d’un convertisseur élévateur de tension "boost" monolithique et de sa commande en SiC. La démarche scientifique a consisté à définir dans un premier temps un modèle de simulation SPICE du MESFET SiC à partir de caractérisations électriques statique et dynamique. En se basant sur ce modèle, des circuits analogiques tels que des amplificateurs, oscillateurs, paires différentielles, trigger de Schmitt ont été conçus pour élaborer le circuit de commande (driver). La conception de ces fonctions s’avère complexe puisqu’il n’existe pas de MESFETs de type P et une polarisation négative de -15 V est nécessaire au blocage des MESFETs SiC. Une structure constituée d’un pont redresseur, d’un boost régulé avec sa commande basée sur ces différentes fonctions a été réalisée et simulée sous SPICE. L’ensemble de cette structure a été fabriqué au CNM de Barcelone sur un même substrat SiC semi-isolant. L’intégration des éléments passifs n’a pas été envisagée de façon monolithique (mais pourrait être considérée pour les inductances et capacités dans la mesure où les valeurs des composants intégrés sont compatibles avec les processus de réalisation). Le convertisseur a été dimensionné pour délivrer une de puissance de 2.2 W pour une surface de 0.27 cm2, soit 8.14 W/cm2. Les caractérisations électriques des différents composants latéraux (résistances, diodes, transistors) valident la conception, le dimensionnement et le procédé de fabrication de ces structures élémentaires, mais aussi de la majorité des fonctions analogiques. Les résultats obtenus permettent d’envisager la réalisation d’un driver monolithique de composants Grand Gap. La perspective des travaux porte désormais sur la réalisation complète du démonstrateur et sur l’étude de son comportement en environnement sévère notamment en haute température (> 300 °C). Des analyses des mécanismes de dégradation et de fiabilité des convertisseurs intégrés devront alors être envisagées. / The new SiC power switches is able to consider power converters, which could operate in harsh environments as in High Voltage (> 10kV) and High Temperature (> 300 °C). Currently, they are no specific solutions for controlling these devices in harsh environments. The development of elementary functions in SiC is a preliminary step toward the realization of a first demonstrator for these fields of applications. AMPERE laboratory (France) and the National Center of Microelectronic of Barcelona (Spain) have elaborated an elementary electrical compound, which is a lateral dual gate MESFET in Silicon Carbide (SiC). The purpose of this research is to conceive a monolithic power converter and its driver in SiC. The scientific approach has consisted of defining in a first time a SPICE model of the elementary MESFET from electric characterizations (fitting). Analog functions as : comparator, ring oscillator, Schmitt’s trigger . . . have been designed thanks to this SPICE’s model. A device based on a bridge rectifier, a regulated "boost" and its driver has been established and simulated with the SPICE Simulator. The converter has been sized for supplying 2.2 W for an area of 0.27 cm2. This device has been fabricated at CNM of Barcelona on semi-insulating SiC substrate. The electrical characterizations of the lateral compounds (resistors, diodes, MESFETs) checked the design, the "sizing" and the manufacturing process of these elementary devices and analog functions. The experimental results is able to considerer a monolithic driver in Wide Band Gap. The prospects of this research is now to realize a fully integrated power converter in SiC and study its behavior in harsh environments (especially in high temperature > 300 °C). Analysis of degradation mechanisms and reliability of the power converters would be so considerer in the future.
729

In situ Raman-Spektroskopie an Metallphthalocyaninen: Von ultradünnen Schichten zum organischen Feldeffekttransistor

Ludemann, Michael 06 July 2016 (has links) (PDF)
Im ersten Teil der Arbeit werden Signalverstärkungsmechanismen für Raman-Spektroskopie erschlossen und evaluiert. Die als geeignet bewerteten Methoden finden im zweiten Teil ihre Anwendung zur Untersuchung der vibronischen Eigenschaften von dünnen Manganphthalocyaninschichten, die anschließend mit Kalium interkaliert werden. Hierbei sind verschiedene Phasen identifizierbar, die ein ganzzahliges Verhältnis von Kaliumatomen zu Manganphthalocyaninmolekülen besitzen. Im dritten Teil werden die elektrischen Eigenschaften durch die Verwendung dieses Materialsystems als aktives Medium eines Feldeffekttransistors untersucht.
730

Contribution à la conception de driver en technologie CMOS SOI pour la commande de transistors JFET SiC pour un environnement de haute température / High temperature CMOS SOI driver for JFET SiC transistors

Falahi, Khalil El 25 July 2012 (has links)
Dans le domaine aéronautique, les systèmes électriques remplacement progressivement les systèmes de contrôle mécaniques ou hydrauliques. Les bénéfices immédiats sont la réduction de la masse embarquée et des performances accrues à condition que l’électronique supporte l’absence de système de refroidissement. Si la haute température de fonctionnement n’empêche pas d’atteindre une fiabilité suffisante, il y aura réduction des coûts opérationnels. Des étapes clefs ont été franchies en introduisant des systèmes à commande électriques dans les aéronefs en lieu et place de systèmes conventionnels : freins électriques, inverseur de poussée, vérins électriques de commandes de vol… Toutes ces avancées se sont accélérées ces dernières années grâce entre autre à l’utilisation de nouveaux matériaux semiconducteurs, dit à grand gap (SiC, GaN…), opérant à haute température et palliant ainsi une faiblesse des dispositifs classiques en silicium (Si). Des composants de puissance haute température, diode Schottky ou transistor JFET SiC, sont ainsi disponibles commercialement et peuvent supporter des ambiantes de plus de 220°C. Des modules de puissances (onduleur) à base de transistor JFET SiC ont été réalisés et validés à haute température. Finalement la partie « commande » de ces modules de puissance reste à concevoir pour les environnements sévères pour permettre leur introduction dans le module de puissance. C’est dans ce contexte de faiblesse concernant l’étage de commande rapprochée qu’a été construit le projet FNRAE COTECH, et où s’inscrivent les travaux de cette thèse, Dans un premier temps, un état de l’art sur les drivers et leurs technologies nous a permis de souligner le lien complexe entre électronique et température ainsi que le potentiel de la technologie CMOS sur Silicium sur Isolant (SOI) pour des applications hautes températures. La caractérisation en température de drivers SOI disponibles dans le commerce nous a fourni des données d’entrée sur le comportement de tels dispositifs. Ces caractérisations sont essentielles pour visualiser et interpréter l’effet de la température sur les caractéristiques du dispositif. Ces mesures mettent aussi en avant les limites pratiques des technologies employées. La partie principale de cette thèse concerne la conception et la caractérisation de blocs ou IPs pour le cœur d’un driver haute température de JFET SiC. Elle est articulée autour de deux runs SOI (TFSmart1). Les blocs développés incluent entre autres des étages de sortie et leurs buffers associés et des fonctions de protection. Les drivers ainsi constitués ont été testés sur un intervalle de température allant de -50°C à plus de 250°C sans défaillance constatée. Une fonction originale de protection des JFETs contre les courts-circuits a été démontrée. Cette fonction permet de surmonter la principale limitation de ces transistors normalement passant (Normaly-ON). Finalement, un module de bras d’onduleur a été conçu pour tester ces driver in-situ. / In aeronautics, electrical systems progressively replace mechanical and hydraulic control systems. If the electronics can stand the absence of cooling, the immediate advantages will be the reduction of mass, increased performances, admissible reliability and thus reduction of costs. In aircraft, some important steps have already been performed successfully when substituting standard systems by electrical control system such as electrical brakes, thrust reverser, electrical actuators for flight control… Large band gap semiconductors (SiC, GaN…) have eased the operation in high temperature over the last decade and let overcome a weakness of conventional silicon systems (Si). High temperature power components such as Schottky diodes or JFET transistors, are already commercially available for a use up to 220°C, limited by package. Moreover inverters based on SiC JFET transistors have been realized and characterized at high temperature. Finally the control part of these power systems needs to be designed for harsh environment. It is in this context of lack of integrated control part that the FNRAE COTECH project and my doctoral research have been built. Based on a state of the art about drivers, the complex link between electronic and temperature and the potentialities of CMOS Silicon-On-Insulator technology (SOI) for high temperature applications have been underlined. The characterization of commercial SOI drivers gives essential data on these systems and their behavior at high temperature. These measurements also highlight the practical limitations of SOI technologies. The main part of this manuscript concerns the design and characterization of functions or IPs for high temperature JFET SiC driver. Two SOI runs in TFSmart1 have been realized. The developed functions include the driver output stage, associated buffers and protection functions. The drivers have been tested from -50°C up to 250°C without failure under short time-range. Moreover, an original protection function has been demonstrated against the short-circuit of an inverter leg. This function allows overcoming the main limitation of the normally on JFET transistor. Finally, an inverter module has been built for in-situ test of these new drivers.

Page generated in 0.0315 seconds