Spelling suggestions: "subject:"fugacity"" "subject:"fugacities""
1 |
Etude de la variabilité de la fugacité du CO2 dans l'Atlantique tropical: de l'échelle diurne à saisonnière.Parard, Gaëlle 14 December 2011 (has links) (PDF)
Ce travail de thèse s'inscrit dans le cadre des études sur le cycle du carbone, notamment, le rôle de l'océan face à l'augmentation continue du dioxyde de carbone (CO2) atmosphérique. L'océan absorbe 25% du CO2 atmosphérique et comporte des régions d'absorption du CO2 (puits) et de dégazage de CO2 (sources). L'Atlantique tropical est une source de CO2 encore mal connue. Afin de mieux documenter cette région, un réseau d'observations a été mis en place. En particulier, un capteur CO2 CARIOCA a été installé sur une bouée instrumentée à 6ﰂS, 10ﰂW depuis juin 2006 pour mesurer la fugacité du CO2 (fCO2) en surface. L'objectif de cette thèse est de comprendre les mécanismes physiques et biogéochimiques responsables de la variabilité de fCO2 observée à la bouée de 2006 à 2009. De juin à septembre la fCO2 est affectée par le déclenchement des upwellings équatorial et côtiers qui forment une langue d'eau froide qui se propage jusqu'à la bouée. La série temporelle de fCO2 présente une variabilité diurne, sur une large période de l'année, ainsi qu'une variabilité saisonnière liée à la dynamique des upwellings. La variabilité diurne s'explique par des processus thermodynamiques ou biologiques que j'ai étudiés à l'aide d'un modèle unidimensionnel. Les périodes dominées par les processus thermodynamiques sont observées principalement en dehors de la saison d'upwelling et sont caractérisées par un réchauffement important de la couche de mélange et des courants faibles. Les périodes biologiques sont caractérisées par un réchauffement moindre de la couche de mélange et un cycle diurne sur le carbone inorganique dissous (DIC). Les simulations montrent la nécessité d'un apport de nitrates en surface pour que l'activité biologique domine la variabilité de fCO2. L'étude de la série temporelle des paramètres physiques suggère une influence probable des ondes internes. Le mélange créé par ces ondes serait à l'origine de la source de nutritifs. La production communautaire nette (NCP) à ce site varie entre 0,17 et 0,77 μmol.kgﰁ1.jﰁ1, en accord avec les quelques mesures disponibles pour cette la région. La variabilité diurne a pu être étudiée avec un modèle unidimensionnel lors de périodes où l'advection est négligeable. A l'échelle saisonnière, l'advection horizontale affecte la distribution de fCO2 et des paramètres physiques. A l'aide de sorties d'un modèle tridimensionnel (DRAKKAR), l'origine de l'eau advectée à la bouée a été déterminée à partir de sa signature en salinité. Le modèle suggère que les eaux dessa- lées observées à la bouée proviennent essentiellement du nord-est du golfe de Guinée.
|
2 |
Comportement de l'or dans les magmas calco-alcalins – Approche expérimentale et géochimique sur le magmatisme adakitique de Nord-Luzon (Philippines).Jégo, Sébastien 27 September 2007 (has links) (PDF)
Les gisements minéraux à Au-Cu-Mo constituent des ressources métalliques majeures connues pour être associées spatio-temporellement au magmatisme intrusif d'arc, et en particulier au magmatisme adakitique dont la pétrogenèse est singulière. Bien que la plus grande partie des métaux semble trouver son origine dans les magmas, il n'y a pas encore de consensus quant aux processus responsables de leur concentration. Le fait que les minéraux primaires contenant le minerai soient de façon prépondérante des sulfures a conduit à la suggestion que le soufre joue un rôle important dans l'enrichissement métallique au stade magmatique. Les études expérimentales précédentes ont montré que les sulfures peuvent largement fractionner Au à partir du liquide magmatique, concluant que les magmas oxydés sont potentiellement plus riches en or. Ici, nous avons effectué des expériences haute température-haute pression sur cinq roches naturelles des Philippines, sur une gamme de fO2 allant de conditions réductrices à très oxydantes. Les expériences ont été menées dans des capsules d'or pur en présence de quantités variables d'eau, et avec ou sans ajout de soufre. Nos données montrent que la solubilité d'or des charges sans soufre est basse mais augmente globalement avec la fO2. Dans les charges soufrées, elle apparaît beaucoup plus forte quand l'environnement est réducteur ou moyennement oxydant. Cette étude montre que le transport et la concentration de Au dans les liquides silicatés peut être augmentée de façon spectaculaire par la présence de soufre. L'enrichissement en or dans les gisements minéraux peut ainsi être directement lié à l'incorporation et à l'abondance de soufre dans les magmas.
|
3 |
Redox - pressure - temperature conditions in the continental upper mantle in relation to C-O-H fluid speciation / Conditions redox – pression – température dans le manteau supérieur en domaine continental en relation avec la nature des fluides C-O-HGoncharov, Aleksey 08 March 2012 (has links)
La thèse est basée sur une étude pétrologique et géochimique de xénolites mantelliques provenant du centre du craton sibérien et de l’Asie centrale entre le lac Baïkal et la Mongolie. Le but est d’établir l'état redox du manteau lithosphérique continental dans ces deux domaines géodynamiques distincts (ancien craton, ceinture mobile phanérozoïque) et mettre la fugacité d’oxygène en relation avec le régime thermique et la spéciation des fluides C-O-H. Les fugacités d’oxygène sont calculées sur la base des rapports Fe2+/Fe3+ dans les minéraux (spinelles et grenats) de péridotites, obtenus par spectrométrie Mössbauer. En détail, l’étude porte sur : (i) les microstructures et la composition minéralogique et chimique des xénolites ; (ii) les rapports Fe2+/Fe3+ dans les minéraux par spectrométrie Mössbauer; (iii) les températures et pressions d’équilibration des xénolites; (iv) la fugacité d’oxygène à partir des compositions des minéraux; (v) la spéciation des fluides C-O-H coexistant avec les roches mantelliques. Les résultats supportent les trois conclusions majeures. (1) La fugacité d’oxygène dans le manteau Iithosphérique au centre du craton sibérien décroît de +1 à -4 ΔlogʄO2 (FMQ) entre 70 et 220 km, accompagnée de variations latérales significatives. (2) L’état redox du manteau lithosphérique en Asie centrale est très hétérogène avec une décroissance importante lors de la transition spinelle-grenat de +0 à -3 ΔlogʄO2 (FMQ) à 50-90 km. (3) La spéciation des fluides C-O-H évolue avec la profondeur depuis H2O-CO2 en haut du manteau vers H2O-CH4 à la limite lithosphère-asthénosphère, indépendamment du profil thermique et de l’épaisseur de la lithosphère / The thesis is based on a petrologic and geochemical study of mantle xenoliths from the central Siberian craton and the Baikal-Mongolia region of central Asia. Its goal is to establish the redox regime of the lithospheric mantle in these two domains with distinct tectonic settings and age and relate it to thermal regime and the speciation of C-0-H fluids. Oxygen fugacity is calculated based on Fe2+/Fe3+ ratios in spinel and garnet of mantle peridotites obtained by Mössbauer spectroscopy. The study deals with the following topics: (i) microstructures, chemical and mineralogical composition of the xenoliths; (ii) Fe2+/Fe3+ ratios in minerals by Mössbauer spectroscopy; (iii) equilibration temperatures and pressures using mineral thermo-barometry; (iv) oxygen fugacity from mineral compositions using oxybarometry; (v) proportions of molecular components in C-0-H fluids coexisting with the studied rocks. The three main conclusions of this study are: (1) Oxygen fugacity in the lithospheric mantle in the central Siberian craton decreases from +1 to -4 ΔlogʄO2 (FMQ) at depths from 70 to 220 km and shows significant lateral variations. (2) The lithospheric mantle beneath the Baikal-Mongolia region shows important redox heterogeneities, with a sharp decrease in oxygen fugacity (from +0 to -3 AlogfO2 (FMQ)) during the transition from the spine! to garnet facies peridotites at 50 to 90 km. (3) The speciation of C-O-H fluids changes with depth from essentially H2O-CO2 in the shallow lithospheric mantle to H2O-CH4 at the lithosphere-asthenosphere boundary regardless of the thermal state and the thickness of the lithosphere
|
4 |
Métamorphisme d'une chondrite à enstatite nommée Indarch : implication sur les phénomènes de différenciation planétaire. Application à la TerreBerthet, Sophie 09 July 2009 (has links) (PDF)
Les chondrites à enstatite partagent un réservoir commun de l'isotope de l'oxygène avec la Terre et la Lune. Cette caractéristique soulève la question d'une possible participation de ce type de météorites à la construction de la Terre. Egalement, l'étude des chondrites à enstatite permet d'apporter de nouvelles contraintes pour comprendre plus en détail l'histoire de la différenciation de petits corps planétaires soumis à des conditions réductrices. La première étude expérimentale systématique à haute pression et haute température d'une chondrite à enstatite a ainsi été mise en oeuvre, entre 1 et 25 GPa, et entre 1200°C et 2500°C, couvrant ainsi les conditions de pression et de température du manteau supérieur terrestre. La météorite qui a été choisie pour cette étude s'appelle Indarch. Il s'agit d'une chondrite à enstatite de type EH4. A 1 GPa, l'effet de la fO2 sur les relations de phases de la météorite, ainsi que sur les coefficients de partage entre métal et silicate liquide des éléments S, Si, Cr, Mn, Ni, et Mo est étudié spécifiquement. Les phases silicatées et métalliques subissent de grands changements lorsque la fO2 varie de IW-1.5 à IW-4.5. Des monosulfures contenant les éléments (Fe, Mg, Mn, Ca, Cr) sont présents aux fO2 les plus réduites. La phase métallique de nos échantillons est toujours liquide et comprend deux phases immiscibles riches en fer : l'une pauvre en S et riche en C, et l'autre riche en S et pauvre en C. La phase riche en C est également riche en Si aux fO2 les plus réduites. Les relations de phases d'Indarch ont été déterminées entre 3 et 25 GPa, et entre 1500°C et 2500°C, nous permettant de proposer le premier diagramme de phases en pression et température pour une chondrite à enstatite. La phase métallique est toujours liquide et il s'agit d'un alliage Fe-Ni-S à ces plus hautes pressions. La formation d'un noyau planétaire à basse pression (0 à 5 GPa) sous des conditions très réductrices ne peut expliquer les appauvrissements observés de S dans les manteaux silicatés alors que plusieurs wt% de Si pourront être piégés dans le noyau. En revanche, à plus haute pression, l'incorporation de S dans le noyau sera facilitée sous des conditions plus oxydantes. Finalement, notre étude permet de proposer un modèle d'évolution d'un matériau chondritique en cours d'accrétion sous des conditions rédox variables
|
5 |
Sulfur behavior and redox conditions in Etnean hydrous basalts inferred from melt inclusions and experimental glasses / Le comportement du soufre et les conditions d'oxydoréduction dans les basaltes hydratés de l'Etna inférés par des inclusions vitreuses et des verres expérimentauxGennaro, Mimma Emanuela 22 February 2017 (has links)
Le soufre est un composant volatil important des magmas qui présente différents états d'oxydation en fonction des conditions d’oxydoréduction et de la phase dans laquelle il se trouve : dans le liquide silicaté, il est typiquement dissous comme S⁶⁺ et/ou S²⁻ , dans la phase gazeuse il se trouve principalement comme SO₂ (S⁴⁺ ) et H₂S (S²⁻). L’Etna, pour lequel les conditions d’oxydoréduction sont faiblement contraintes, est utilisée comme cas d’étude pour examiner le comportement du soufre dans les magmas basaltiques hydratés pendant la différenciation et le dégazage. Cette recherche combine l'étude des inclusions vitreuses avec une étude expérimentale en conditions magmatiques sur la solubilité du S dans les basaltes alcalins hydratés.Les résultats expérimentaux suggèrent l’important contrôle de la ƒO₂ sur la teneur en S dans les magmas hydratés de l’Etna, et le partage du S entre les phases fluid and liquid. Les inclusions vitreuses ont été piégées à différentes profondeurs à l'intérieur du système magmatique. Elles décrivent une tendance continue de différenciation, marquée par une cristallisation fractionnée, à partir de la composition picritique (FS) vers le basalte plus récent dégazé (2013). Le contenu en S dans le liquide de l'Etna est extrêmement variable et atteint 4150 ppm dans les inclusions vitreuses les plus primitives. Les spectres XANES Fe³⁺/ΣFe des certaines inclusions vitreuses donnent des rapports Fe³⁺/ΣFe généralement décroissants à partir du liquide le plus primitif (FS) jusqu’au plus évolué (2013). Les simulations effectué par le logiciel MELTS confirme que la diminution du rapport Fe³⁺/ΣFe est principalement due au processus de différenciation magmatique, renforcé par le dégazage du S à ƒO₂ < NNO + 1. Cette réduction du magma provoque à son tour la diminution de la solubilité du S dans les basaltes hydratés de l’Etna, et peut constituer un éventuel activateur de l’exsolution du S, à l’origine de l’important dégazage du S observé au cours des dernières décennies à l’Etna. / Sulfur is an important volatile component of magmas that presents different oxidation states, depending on the redox conditions and on the phase of occurrence: in silicate melts it is typically dissolved as S⁶⁺ and/or S²⁻ , in the gas phase it occurs principally as SO₂ (S⁴⁺ ) and H₂S (S²⁻). Mount Etna, in which magmatic redox conditions are poorly constrained, is used as a case study to investigate sulfur behavior in hydrous basaltic magmas during magma differentiation and degassing. This research integrates the study of natural olivine-hosted melt inclusions with an experimental study on S solubility in hydrous alkali basalts at magmatic conditions.Experimental results suggest the important control of ƒO₂ on the S abundance in Etnean hydrous magma and its partitioning between fluid and melt phases. Melt inclusions were entrapped at different depths inside the magmatic system (up to ~ 18 km, below crater level). They delineate a continuous differentiation trend, marked by fractional crystallization, from the picritic basalt (FS) toward the most evolved and degassed (2013) basalt. S content in Etnean melt is extremely variable and reaches 4150 ppm in the primitive melt inclusions. XANES Fe³⁺/ΣFe spectra in some glass inclusions, resulted in the generally decreasing of Fe³⁺/ΣFe ratios from the most primitive (FS) to the most evolved (2013) melts. MELTS software confirms that the Fe³⁺/ΣFe decrease is due principally to the melt differentiation process, enhanced to the S degassing at ƒO₂ < NNO+1. Magma reduction, in turn, induces the decrease of the sulfur solubility in the hydrous Etnean basalt, as well as of the sulfide saturation, and may constitute a possible enhancer of S exsolution, triggering the important S degassing observed in the last decades in Mt. Etna.
|
6 |
Métamorphisme d'une chondrite à enstatite nommée Indarch : implication sur les phénomènes de différenciation planétaire. Application à la Terre / Metamorphism of an enstatite chondrite named Indarch : implications of planetary differentiation processes. Application to the EarthBerthet, Sophie 09 July 2009 (has links)
Les chondrites à enstatite partagent un réservoir commun de l’isotope de l’oxygène avec la Terre et la Lune. Cette caractéristique soulève la question d’une possible participation de ce type de météorites à la construction de la Terre. Egalement, l’étude des chondrites à enstatite permet d’apporter de nouvelles contraintes pour comprendre plus en détail l’histoire de la différenciation de petits corps planétaires soumis à des conditions réductrices. La première étude expérimentale systématique à haute pression et haute température d’une chondrite à enstatite a ainsi été mise en oeuvre, entre 1 et 25 GPa, et entre 1200°C et 2500°C, couvrant ainsi les conditions de pression et de température du manteau supérieur terrestre. La météorite qui a été choisie pour cette étude s’appelle Indarch. Il s’agit d’une chondrite à enstatite de type EH4. A 1 GPa, l’effet de la fO2 sur les relations de phases de la météorite, ainsi que sur les coefficients de partage entre métal et silicate liquide des éléments S, Si, Cr, Mn, Ni, et Mo est étudié spécifiquement. Les phases silicatées et métalliques subissent de grands changements lorsque la fO2 varie de IW-1.5 à IW-4.5. Des monosulfures contenant les éléments (Fe, Mg, Mn, Ca, Cr) sont présents aux fO2 les plus réduites. La phase métallique de nos échantillons est toujours liquide et comprend deux phases immiscibles riches en fer : l’une pauvre en S et riche en C, et l’autre riche en S et pauvre en C. La phase riche en C est également riche en Si aux fO2 les plus réduites. Les relations de phases d’Indarch ont été déterminées entre 3 et 25 GPa, et entre 1500°C et 2500°C, nous permettant de proposer le premier diagramme de phases en pression et température pour une chondrite à enstatite. La phase métallique est toujours liquide et il s’agit d’un alliage Fe-Ni-S à ces plus hautes pressions. La formation d’un noyau planétaire à basse pression (0 à 5 GPa) sous des conditions très réductrices ne peut expliquer les appauvrissements observés de S dans les manteaux silicatés alors que plusieurs wt% de Si pourront être piégés dans le noyau. En revanche, à plus haute pression, l’incorporation de S dans le noyau sera facilitée sous des conditions plus oxydantes. Finalement, notre étude permet de proposer un modèle d’évolution d’un matériau chondritique en cours d’accrétion sous des conditions rédox variables / Enstatite chondrites share a common oxygen reservoir with Earth and Moon. This suggests that these meteorites may have participated to the building of the planet Earth. Studying enstatite chondrites will bring constraints for a better understanding of the differentiation history of planetesimals under reducing conditions. Thus, this is the first systematic study at HP-HT of an enstatite chondrite between 1 and 25 GPa, and between 1200°C et 2500°C, covering the pressure and temperature conditions of the terrestrial upper mantle. The meteorite, which was chosen for this study, is named Indarch. It is an enstatite chondrite, type EH4. At 1 GPa, the effect of the fO2 on the phase relations of the meteorite, as well as on the partitioning behavior between liquid metal and liquid of S, Si, Cr, Mn, Ni, et Mo is studied. Silicate and metallic phases undergo significant changes while the fO2 varies from IW-1.5 to IW-4.5. (Fe, Mg, Mn, Ca, Cr)-bearing monosulfides are observed at the lowest fO2’s. The me-tallic phase in our samples is always liquid and comprises of two immiscible Fe-rich phases : one S-poor and C-rich, and the other S-rich and C-poor. The C-rich phase is also rich in Si at the most reduced fO2’s. Between 3 and 25 GPa, 1500°C and 2500°C, the phase relations of Indarch have been inquired and allow us to present the first P-T phase diagram for an enstatite chondrite. The metallic phase is always liquid, and at these high pressures, it is a Fe-Ni-S alloy. The observed depletions of S in silicate mantles cannot be explained by a core formation at low pressure (0 à 5 GPa) under reducing conditions, however several wt% of Si could be trapped in the core. At higher pressure, more oxidized conditions will facilitate S incorporation in the core. Final-ly, our study proposes a model of evolution of an accreting chondritic material under variable redox conditions
|
7 |
Experimental determination of F partitioning between fluid and hydrous minerals in subduction zones / Détermination expérimentale du coefficient de partage F entre une phase fluide et des minéraux hydratés en zone de subductionWu, Jia 30 April 2013 (has links)
Résumé en français indisponible. / Mechanisms of volatile transfer from subducting slab to the melting region beneath arc volcanoes are probably the least understood process of arc magma genesis. Fluorine, which suffers minimum degassing in arc primitive melt inclusions, retains the information about the role of volatiles during magma genesis at depth. Experimentally determined solubility of F in aqueous fluid, and partition coefficients of F between fluid and minerals provide first order geochemical constraints about the volatile-transporting agent.My thesis experimentally determined F solubility in fluid and its partition coefficients among several phases. The systems are in equilibrium with hornblende and a humite group mineral (some contain melt or pyroxene) at 1 – 2 GPa, from 770 to 1047 °C, or equilibrium with hydrogrossular, pyroxene and norbergite or chondrodite at 2.5 – 3 GPa and 877 °C. The experiments were conducted with piston cylinder and cold sealing technique. The oxygen fugacity conditions were controlled by NNO buffer, while some were unbuffered. The fluids were extracted into volumetric flasks, and their compositions were determined by mass balance calculations. Moreover, the consistency was verified by HPLC for fluorine ion, and ICP-MS or ICP-AES for major cations of the quenched fluids.In 1 GPa experiments, the quench phases are so rare that the majority of the fluid compositions from direct analyses are consistent with mass balance results in their uncertainties. Moreover, my mass balance procedure takes into account all the measurements errors, which leads to large uncertainties on fluid compositions. The consistency demonstrates that most of fluorine aflter annealing in the capsule is present as fluorine ion. Futhermore, increases of the masses of starting materials, fluid proportions and analytical precisions will improve the uncertainties performances. ������������ can be represented by a single value 0.135 ± 0.036, which is independent of temperature, bulk composition and buffer conditions at 1 GPa. Df between fluid and humite group minerals is much less. Xf of hornblende and norbergite decrease from 1 to 2 GPa, while F partitionig between them doesn't change much. It indicates that F partitioning between fluid and minerals increases. Moreover, F concentrations in norbergite between NNO buffered and unbuffered experiments are significantly different. Meanwhile, Fe concentration variations of norbergite indicate that unbeffered experiments have higher oxygen fugacity than the NNO buffered ones. According to high temperature improves the free radical exchange reactions, H2O + 0.5O2 ⇄ 2OH. It indicates that both water fugacity and oxygen fugacity contribute to OH fugacity in fluid. I developed a simple model in which XF in humite group minerals are correlated to the ratio between F and OH. It is sucessfully applied to estimate the F concentration in the fluid, which co-exists with clinohumite, using Xf value.With the knowledge of my study, a new constraint can be framed on slab flux. The average F concentration in the fluid is 2700 ppm for F-rich experiments and it constrains the maximum amount of F carried by fluid in the presence of amphibole. Using partition coefficient of F to estimate F abundance in subducting slab, one can conclude that the increase of F concentration in the subarc mantle by fluid, in equilibrium with hornblende, to be less tan 5 ppm. Significant F enrichments found in arc lavas cannot be derived from aqueous fluid of subductiong slab in the presence of amphibole. Therefore, this result highlights the role either 1) slab melt, 2) fluid in equilibrium with eclogite, or perhaps 3) supercritical fluid for the element transfer from slab to mantle wedge.
|
8 |
Etude des équilibres chimiques dans le contexte d'accrétion et de différenciation des planètes telluriques / Chemical equilibria during the accretion and differentiation of the terrestrial planetsFontaine, Asmaa 23 May 2014 (has links)
Les abondances en éléments sidérophiles du manteau terrestre indiquent une ségrégation du noyau dans un océan magmatique profond. Il est néanmoins difficile de contraindre les conditions d’oxydation prévalant lors de l’accrétion planétaire, en se basant sur les traceurs géochimiques, en raison du nombre important de paramètres qui affectent leurs partages entre métal et silicate. D’autre part, l’état d’oxydation des planètes peut évoluer au cours de l’accrétion. Par conséquent, la nature des matériaux accrétés lors de la formation des planètes reste incertaine. Afin d’apporter de nouveaux éléments de réponses à cette problématique, nous avons modélisé les équilibres chimiques ayant lieu dans la Terre primitive. Ces équilibres peuvent évoluer (i) en augmentant les conditions de pression et de température de la ségrégation du noyau lors de la croissance de la planète, (ii) en raison de la cristallisation de l’océan magmatique et (iii) à travers l’accrétion de matériaux hétérogènes de compositions et états redox différents. Nous avons exploré le rôle potentiel de l’érosion collisionnelle dans le contexte de l’accrétion de la Terre à partir de chondrites à enstatite. Pour cela, nous avons déterminé expérimentalement les compositions chimiques des liquides pseudo-eutectiques en fonction de la pression jusqu’à 25 GPa. Nous avons montré que ces premiers liquides sont très enrichis en SiO2 (jusqu’à 75 wt% SiO2) et en éléments alcalins (Na et K). Par conséquent, l’érosion collisionnelle de proto-croutes de planétésimaux formés de chondrites EH peut de manière efficace augmenter le rapport final Mg/Si du manteau terrestre et réduire ses concentrations en éléments alcalins volatils. Ce mécanisme peut donc concilier les différences compositionnelles entre la Terre et les chondrites à enstatite. Nous avons également déterminé expérimentalement le partage du soufre entre métal riche en fer et silicate. La concentration en soufre du manteau terrestre peut être expliquée par un équilibre entre manteau et noyau dans un océan magmatique profond. L’hypothèse de l’ajout de soufre dans un vernis tardif (Rose-Weston et al., 2009) n’est pas à exclure, mais il n’est pas indispensable pour atteindre la concentration en soufre du manteau. Ces résultats sont en accord avec les compositions isotopiques non chondritiques du soufre dans le manteau (Labidi et al., 2013). Le partage des éléments légers (S, Si, O) entre manteau et noyau a été modélisé à hautes pressions et températures en prenant compte de leurs interactions chimiques mutuelles et celles avec le carbone. En considérant 2 wt% S et jusqu’à 1.2 wt% C (comme il est suggéré par les études cosmochimiques), nous trouvons une solubilité de l’O comprise entre 1 et 2.4 wt%. Cette insertion de l’O dans le noyau n’est pas suffisante pour permettre à la Terre d’être à la fois accrétée de matériaux météoritiques oxydés et de posséder un noyau métallique d’une masse équivalente au tiers de la planète ainsi que 8 wt% FeO dans le manteau. Des conditions relativement réduites lors de la ségrégation du noyau sont également requises pour augmenter le taux de Si dans le noyau et expliquer le rapport Mg/Si super-chondritique de la Terre silicatée (Allègre et al., 1995; O’Neill et al. 1998). Ainsi, la Terre s’est plus probablement accrétée à partir de matériaux réduits comme les chondrites à enstatites, conduisant à un noyau constitué de 2 wt% S, 0 à 1.2 wt% C, 1 wt% O et 5.5 à 7 wt% Si. Nous avons également exploré le comportement du Fe lors de la cristallisation de la pérovskite magnésienne (le minéral le plus abondant du manteau terrestre) et son rôle sur l’état redox du manteau terrestre lors du refroidissement de l’océan magmatique. Nous avons montré que sa cristallisation induit une diminution du FeO dans le manteau solide, lors d’un équilibre avec un alliage de fer liquide à une fO2 de IW-2 en raison du caractère incompatible du Fe dans la pérovskite. (...) / Abundances of siderophile elements in the mantle indicate that the Earth’s core segregated in a deep magma ocean. Yet, it is unfortunately difficult to constrain the oxidation conditions prevailing during planetary accretion based on geochemical tracers due to the number of parameters playing a role in metalsilicate partitioning. In addition, the oxidation state of terrestrial planets can evolve during accretion. The nature of the accreted material during the formation of the terrestrial planets remains then still uncertain. Our strategy to improve our knowledge in this domain is to model the chemical equilibria taking place in the primitive Earth. The equilibria can evolve (i) as P-T conditions of core-mantle segregation increase with the size of the planet, (ii) due to crystallization of the magma ocean and (iii) with accretion of heterogeneous material of different composition and oxidation state. We explored the potential role of collisional erosion in the context of Earth’s accretion from Enstatite Chondrites. For this, we refined experimentally the chemical composition of pseudo-eutectic melts as a function of pressure up to 25 GPa. We show that the first melts are highly enriched in SiO2 (up to 75 wt% SiO2) and alkali elements (Na and K). Therefore, collisional erosion of proto-crusts on EH-planetesimals can efficiently increase their final Mg/Si ratio and decrease their alkali elements budget. It can help to reconcile compositional differences between bulk silicate Earth and Enstatite Chondrites. We performed new experiments on metal-silicate partitioning of sulphur. We show that the present-day sulphur concentration of the Earth’s mantle can be explained by core-mantle equilibration in a deep magma ocean. S-addition in a late veneer (Rose-Weston et al., 2009) cannot be excluded; however, it is not required in order to reach the S-mantel abundance. Our results are consistent with the non-chondritic S-isotopic nature of the mantle (Labidi et al., 2013). We modeled the core-mantle partitioning of the light elements (S, Si, O) at high pressures and temperatures, by taking into account of their mutual chemical interactions and that with C. With 2 wt% S in the core and a C concentration ranging 0 to 1.2 wt% (as evidenced with cosmochemical studies), we found the O solubility from 1 to 2.4 wt%. This O incorporation to the core is insufficient to both allow an Earth accretion from an oxidized meteoritic material and result in a planet composed of a core with a mass equivalent to the third of its mass and a mantle with 8 wt% FeO content. Reduced conditions during coremantle segregation are also required to enhance the Si content in the core, possibly up to 5 wt% Si, to explain the super chondritic Mg/Si of the bulk silicated Earth (Allègre et al., 1995; O’Neill et al. 1998). Altogether, we find that the Earth was most likely accreted from a reduced material, such as enstatite chondrites, leading to a core composed of 2 wt% S, 0 to 1.1 wt% C, 1 wt% O and 5.5 to 7 wt% Si. We investigated the role of Mg-perovskite (the most abundant mineral of the mantle) crystallization on the oxidation state of Earth’s mantle during cooling of the magma ocean. We show that its crystallization induces a decrease of FeO content of the solid mantle as Fe is incompatible in perovskite, when it is in equilibrium with a liquid Fe-alloy at an fO2 of IW-2. At these conditions, the Fe3+ insertion is also low and constant (Fe3+/ Fetot of 21 ±4 %). Hence, the Mg-Pv crystallization cannot be responsible for a substantial increase of the Earth’s mantle oxygen fugacity during core segregation. (...)
|
9 |
Formation de la Terre et de Mars : étude expérimentale et numérique / Formation of the Earth and Mars : an experimental and numerical studyClesi, Vincent 18 November 2016 (has links)
La formation des noyaux planétaires métalliques est un évènement majeur pour l’évolution des propriétés physico-chimiques des planètes telluriques telles que nous les connaissons aujourd’hui. En effet, l’abondance des éléments sidérophiles (i.e. qui ont des affinités chimiques avec les phases métalliques) dans les manteaux planétaires s’explique par les conditions dans lesquelles se sont séparées les phases métalliques et silicatées. Au premier rang de ces conditions se trouvent la pression, la température et la fugacité d’oxygène. La distribution des éléments dans le noyau et le manteau ne peut en effet s’expliquer que pour un équilibre obtenu dans un océan magmatique profond, donc à haute pression et haute température ; et dans des conditions d’oxydo-réduction variables, dont l’évolution la plus probable est de passer d’un état réduit à un état oxydé. Un autre paramètre important est la présence ou non d’eau dans l’océan magmatique primitif. En effet, nous disposons de plus en plus d’arguments permettant d’expliquer l’arrivée des éléments volatils, notamment l’eau, pendant l’accrétion, à partir de briques élémentaires qui contiennent ces éléments. Si l’eau est présente tout au long de l’accrétion, et donc pendant la ségrégation du noyau, elle peut donc avoir un effet sur ce dernier phénomène. Dans cette hypothèse, nous avons mené des expériences de haute pression et haute température permettant de modéliser expérimentalement la formation du noyau en condition hydratée. Ces expériences nous ont permis de montrer que la présence d’eau a un effet sur l’évolution de l’état d’oxydation des manteaux planétaires. Cette évolution oxydo-réductive nous a permis de contraindre des modèles d’accrétion basés sur un mélange de chondrites EH et CI, qui confirment des modèles construits à partir de données isotopiques. Ces modèles nous ont permis de contraindre les concentrations primitives maximum en eau probables sur Terre (1,2-1,8 % pds.) et sur Mars (2,5-3,5 % pds.). D’autre part, nos avons mis en évidence le caractère lithophile (i.e. qui a des affinités chimiques avec les phases silicatées) de l’hydrogène à haute pression, a contrario de plusieurs études précédentes. De ce fait, la différence entre les concentrations initiales élevées en eau que nous obtenons dans nos modèles d’accrétion et les concentrations en eau estimées sur Terre et sur Mars actuellement (2000 ppm et 200 ppm, respectivement) ne peut pas être expliquée par un réservoir d’hydrogène dans le noyau. Enfin, pour améliorer les modèles de formation du noyau, nous avons mis en évidence, par des modèles numériques, l’effet important de la viscosité de l’océan magmatique sur le taux d’équilibre entre noyaux et manteaux des planètes telluriques. Cela nous mène à ré-évaluer les modèles de formation des planètes telluriques basés sur des résultats expérimentaux à l’équilibre, notamment l’extension maximale de l’océan magmatique. L’évolution de la viscosité de l’océan magmatique a donc un impact important sur la composition finale des noyaux planétaires (par exemple les teneurs en soufre, oxygène ou silicium des noyaux terrestres et martiens). / The formation of the metallic planetary cores is a major event regarding to the evolution of physical and chemical properties of the telluric planets as we know it today. Indeed, the siderophile elements (i.e. which has affinities with metallic phases) abundances in planetary mantles is explained by the conditions of core-mantle segregation. Among these conditions, pressure, temperature and oxygen fugacity are the main ones controlling distribution of the elements between mantle and core. This distribution can only be explained by an equilibrium between metal and silicate obtained in a deep magma ocean, which implies high pressure and high temperature of equilibrium. Moreover, the oxygen fugacity must have varied during core-mantle segregation, in a reduced-to-oxidized path most probably. Another important parameter is whether or not water is present in the primordial magma ocean. Indeed, we now have more and more lines of evidences showing that the volatile elements, especially water, arrived during accretion and therefore during the core-mantle segregation, which means that water can have an effect on the latter phenomenon. Considering this hypothesis, we performed several high pressure-high temperature experiments which allowed us to model the formation of the core under hydrous conditions. These experiments demonstrated that water has a significant effect on the redox state evolution of planetary mantles. We use this redox evolution to constrain models of planetary accretions, based on a mix of EH and CI chondrites, showing a good agreement with models based on isotopic data. The output of these models is the maximum initial concentration in water on the Earth (1.2 -1.8 %wt) and on Mars (2.5-3.5 %wt). Furthermore, these experiments showed a lithophile behavior (i.e. which has affinities with silicated phases) of hydrogen at high pressures, contrary to previous studies. Therefore, the difference between high initial concentrations in water yielded by our accretion models and the estimated actual concentrations on the Earth and Mars (2000 ppm and 200 ppm, respectively) cannot be explained by a hydrogen reservoir in the core. Finally, to improve the models of core-mantle segregation, we showed by numerical simulations the important effect of the magma ocean viscosity on the equilibrium between planetary mantles and cores. it lead us to reevaluate the models of accretion based on experimental data, especially the maximum extent of magma oceans. The evolution of the magma ocean viscosity has therefore significant implications on the final composition of planetary cores (for instance on the sulfur, oxygen and silicon content of the Earth’s and Mars’ core).
|
10 |
Figures d'enfance : la représentation de l'enfant dans la littérature française des XVIIe et XVIIIe siècles / Figures of childhood : the representation of child characters in 17th and 18th century French literatureMehrbrey, Sophia 17 May 2019 (has links)
Avec son ouvrage L’Enfant et la vie familiale sous l’Ancien Régime, Philippe Ariès a découvert l’enfant comme objet de recherche interdisciplinaire. Cependant, une étude systématique sur le thème dans la littérature française des XVIIe et XVIIIe siècles n’a pas encore été entreprise. C’est pourtant à cette époque que le regard sur l’enfant change considérablement. La littérature de ces deux siècles ne témoigne pas seulement de cette évolution, mais joue un rôle décisif dans l’élaboration d’une nouvelle conception de l’enfance qui préfigure en bien des points le renouveau rousseauiste. S’appuyant sur un appareil critique interdisciplinaire, qui invite à envisager l’enfant comme une construction de la réalité adulte dont les critères définitoires sont souples, cette thèse se propose d’étudier la représentation des personnages enfants dans un corpus de textes en prose, leur fonction dans l’économie du récit et leur implication dans les débats sociaux et philosophiques de l’époque. Une première partie est consacrée à l’enfant comme objet de la réalité adulte. Suivant la logique de la sociologie de la connaissance, nous avons défini l’enfant comme objet de la réalité sociale et soumis au discours adulte. L’objectif de cette première partie est de montrer dans quelle mesure l’enfant apparaît dans les textes de notre corpus comme objet de représentation, modelé selon le discours adulte. Cependant, l’enfant de la littérature classique ne se laisse pas réduire au seul statut d’objet. Dans tous les textes dans lesquels un personnage enfant occupe plus qu’un instant, les auteurs s’intéressent à sa formation, personnelle, mais surtout sociale. Ainsi, une deuxième partie est consacrée à l’enfant dans son dynamisme car il fascine les auteurs de l’âge classique précisément pour son caractère éphémère. Enfin, la troisième partie rend compte de l’enfant comme sujet, au sens sociologique du terme, c’est-à-dire comme individu doté d’une certaine subjectivité – dans la mesure où l’on peut appliquer ces notions anachroniques aux siècles classiques. Dès le XVIIe siècle, mais surtout à partir du début du XVIIIe siècle, certains auteurs commencent aussi à réfléchir davantage sur les origines de l’être humain, sur sa faculté de raisonnement et sur ce qui le distingue des autres espèces – sujets qui paraissent impossibles sans le détour par l’enfant. / Philippe Ariès’ work, L’Enfant et la vie familiale sous l’Ancien Régime, founded the child as an object of interdisciplinary interest. However, a systematic study of the theme in 17th and 18th century French literature has not up until now been realised, although it appears to be during this period that the perception of the child evolves to a considerable extent. The literature of these two centuries not only shows this evolution, it also plays a major role within the elaboration of a new conception of the idea of childhood, which prefigures in many points the rousseauist renewal. Basing our study on an interdisciplinary corpus of critical works, we endeavour to study the representation of childcharacters within a prose corpus, their function of within the narration and their implication in the social and philosophical debates of the times. Our first chapter focuses on the child as an object of the adult reality. Adopting a sociology of knowledge perspective, we have defined “the child” as an object of social reality and subject to the adult discourse. The objective of this first chapter is to analyse the way the child appears in the writings of our corpus as an object of representation, sculptured according to adult discourse. However, the child as a character in classical French literature cannot be reduced to this status of objectivation. In all the texts in which a childcharacter occupies more than a passing role, the author shows his interest in the child’s personal, and most of all, social, development. For that reason, the second chapter analyses the child’s dynamism, because in 17th and 18th century, the child is considered fascinating due to his fleeting identity. Finally, the third and last chapter focusses on the child as a subject in a sociological meaning, as an individual provided with a certain degree of subjectivity. From the 17th century onwards, but mainly within the first part of the 18th century, some authors also start to think about the origins of the human species, man’s intellectual faculties and the points that enable us to differentiate between human beings and other species – questions that can’t be answered, or even asked, without taking the child as a central question.
|
Page generated in 0.0535 seconds