• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 13
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 46
  • 12
  • 11
  • 11
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Variedades de Gelfand-Tsetlin / Gelfand-Tsetlin varieties

Monsalve, German Alonso Benitez 21 November 2016 (has links)
Serge Ovsienko provou que a variedade de Gelfand-Tsetlin para gl(n) é equidimensional (i.e., todas suas componentes irredutíveis têm a mesma dimensão) com dimensão n(n-1)/2. Este resultado é conhecido como \"Teorema de Ovsienko\" e tem importantes consequências na Teoria de Representacões de Álgebras. Neste trabalho, provamos uma versão fraca do Teorema de Ovsienko para gl(n) e estendemos tal versão fraca a uma estrutura que tem como caso particular gl(3), esse é o caso do grupo quântico Yangian Yp(gl(3)) de nível p. Além disso, o Teorema de Ovsienko também tem consequências na Geometria Simplética, especificamente na equidimensionalidade das fibras em uma projeção da aplicação de Kostant-Wallach. Neste trabalho apresentamos a generalização deste resultado. / Serge Ovsienko proved that the Gelfand-Tsetlin variety for gl(n) is equidimensional (i.e., all its irreducible components have the same dimension) with dimension n(n-1)/2. This result is known as \"Ovsienko\'s Theorem\" and it has important consequences in Representation Theory of Algebras. In this work, we prove a weak version of Ovsienko\'s Theorem for gl(n) and we extend that weak version to a structure which has as particular case gl(3), this case is the quantum group level p Yangian Yp(gl(3)). Moreover, the theorem of Ovsienko also has consequences in Symplectic Geometry, more concretely in the equidimensionality of the fibers in a projection of the Kostant-Wallach map. In this work we will present the generalization of that result.
22

Variedades de Gelfand-Tsetlin / Gelfand-Tsetlin varieties

German Alonso Benitez Monsalve 21 November 2016 (has links)
Serge Ovsienko provou que a variedade de Gelfand-Tsetlin para gl(n) é equidimensional (i.e., todas suas componentes irredutíveis têm a mesma dimensão) com dimensão n(n-1)/2. Este resultado é conhecido como \"Teorema de Ovsienko\" e tem importantes consequências na Teoria de Representacões de Álgebras. Neste trabalho, provamos uma versão fraca do Teorema de Ovsienko para gl(n) e estendemos tal versão fraca a uma estrutura que tem como caso particular gl(3), esse é o caso do grupo quântico Yangian Yp(gl(3)) de nível p. Além disso, o Teorema de Ovsienko também tem consequências na Geometria Simplética, especificamente na equidimensionalidade das fibras em uma projeção da aplicação de Kostant-Wallach. Neste trabalho apresentamos a generalização deste resultado. / Serge Ovsienko proved that the Gelfand-Tsetlin variety for gl(n) is equidimensional (i.e., all its irreducible components have the same dimension) with dimension n(n-1)/2. This result is known as \"Ovsienko\'s Theorem\" and it has important consequences in Representation Theory of Algebras. In this work, we prove a weak version of Ovsienko\'s Theorem for gl(n) and we extend that weak version to a structure which has as particular case gl(3), this case is the quantum group level p Yangian Yp(gl(3)). Moreover, the theorem of Ovsienko also has consequences in Symplectic Geometry, more concretely in the equidimensionality of the fibers in a projection of the Kostant-Wallach map. In this work we will present the generalization of that result.
23

Dimensão de Gelfand-Kirillov em álgebras relativamente livres / Gelfand-Kirillov dimension in relatively free algebras

Machado, Gustavo Grings, 1987- 25 August 2018 (has links)
Orientador: Plamen Emilov Kochloukov / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T04:30:00Z (GMT). No. of bitstreams: 1 Machado_GustavoGrings_D.pdf: 808427 bytes, checksum: 4482c43f5d1998040317e1873220ce8c (MD5) Previous issue date: 2014 / Resumo: Neste trabalho estudamos o invariante denominado dimensão de Gelfand-Kirillov para álgebras com identidades polinomiais, sobretudo para álgebras não-associativas, com o objetivo de melhor compreender a estrutura das identidades polinomiais. Ultimamente este invariante tem ganhado importância, uma vez que ele é relativamente fácil de calcular e, de certa forma, é capaz de diferenciar o crescimento de duas álgebras. Para álgebras associativas a GK-dimensão mostrou-se muito útil ao detectar que álgebras que por um lado são PI-equivalentes sobre corpos de característica zero pelo Teorema do Produto Tensorial de Kemer, por outro lado não são PI-equivalentes quando a característica do corpo infinito é positiva. Isto aponta para o surgimento de novos ????-ideais, conjuntos de identidades satisfeitas por uma álgebra, que são ???? -primos para corpos infinitos de característica positiva. Ainda é um problema em aberto a classificação e a compreensão destes ????-ideais em característica positiva, embora seja bem compreendida para PI-Álgebras associativas em característica zero, segundo a teoria de Kemer. Entretanto a situação é ainda menos clara para variedades de álgebras não-associativas como Álgebras de Jordan ou Álgebras de Lie. Sabe-se muito pouco sobre resultados que apontem para uma classificação de ????-ideais fora do caso associativo, até mesmo sobre corpos de característica zero. Inclusive se conhece pouco sobre o comportamento dos ????-ideais, mesmo de álgebras simples. Aqui damos um passo, calculando algumas GK-dimensões para álgebras relativamente livres de posto finito a partir da expressão da série de Hilbert. Destacamos em especial que calculamos a dimensão de Gelfand-Kirillov da álgebra relativamente livre de qualquer posto finito da álgebra de Lie das matrizes 2 × 2 de traço zero sobre um corpo infinito de característica diferente de 2. Acreditamos que estes resultados permitirão ajudar a compreender melhor o comportamento dos ????-ideais em álgebras não-associativas / Abstract: In this thesis we study the invariant called Gelfand-Kirillov Dimension for algebras with polynomial identities, mainly for non-associative algebras, aiming at better understanding the structure of the polynomial identities. This invariant has gained importance lately since in many cases it is relatively easy to calculate and, surprisingly, it is capable of distinguishing the growth of two algebras. For associative algebras GK-dimension was found to be very useful to detect that algebras which on one hand are PI-equivalent over fields of characteristic zero, according to Tensor Product Theorem of Kemer, on the other hand are not PI-equivalent when the characteristic of the infinite base field is positive. This points towards the rise of new ????-ideals, sets of identities satisfied by an algebra, which are ????-prime for infinite fields of positive characteristic. The classification and the understanding of such ????-ideals in positive characteristic are still open problems, although it is well understood for associative PI-Algebras in characteristic zero, using Kemer¿s theory. The situation is much less clear for varieties of non-associative algebras like Jordan Algebras or Lie Algebras. Very little is known about results towards a classification of ????-ideals outside the associative case, even over fields of characteristic zero. Accordingly little is known concerning the behavior of ????-ideals, even for simple algebras. Here we make a step towards this goal by computing some GK-dimensions of some relatively free algebras of finite rank by using the expression of the Hilbert series. In particular we compute the Gelfand-Kirillov dimension of the relatively free algebra of any finite rank generated by the Lie Algebra of the 2 × 2 traceless matrices over an infinite field of characteristic different from 2. We hope that results in this direction will contribute to a better understanding of the behavior of ????-ideals in non-associative algebras / Doutorado / Matematica / Doutor em Matemática
24

Invariantes de anéis de operadores diferenciais: racionalidade de Gellfand-Kirillov, categorias de módulos, aplicações / Invariants of rings of differential operators: Gelfand-Kirillov rationality, categories of modules, aplications

Schwarz, João Fernando 13 November 2018 (has links)
Esta tese aborda, como a despeito da rigidez da álgebra de Weyl An(k), suas subálgebras de invariantes possuem uma rica teoria de invariantes: do ponto de vista de estrutura, se fizermos um estudo de equivalência birracional dentro da filosofia de Gelfand-Kirillov, temos o Problema de Noether Não-Comutativo, sobre o qual obtemos vários novos resultados (Capítulo 4). Do ponto de vista de representações, obtemos que suas subálgebras de invariantes, em vários casos, herdam de maneira natural a estrutura de módulos de Gelfand-Tsetlin da álgebra de Weyl (Capítulo 5), assim como uma noção natural de módulos holonômicos (Capítulo 6). Analisaremos resultados similares para outras álgebras semelhantes a Álgebra de Weyl, como anéis de operadores diferenciais no toro e álgebras de Weyl generalizadas (Capítulos 2, 4 e 5). Como aplicações, temos uma Conjectura de Gelfand-Kirillov para subálgebras esféricas de Cherednik (Capítulo 4); para a Conjectura de Gelfand-Kirillov para várias álgebras de Galois (Capítulos 5 e 7); e o problema de realizar U(L), em que L é uma algebra de Lie simples de tipo B,C,D, como uma ordem de Galois generalizando o caso de gln (Capítulo 5). Um Capítulo sobre o Problema de Noether Quântico e um resumo do artigo de Futorny e Schwarz, \"Quantum Linear Galois Algebras\", encerram a tese. / This thesis discussess how, given the rigidity results on the Weyl Algebra An(k), its invariant subrings can nonetheless have an interesting invariant theory: from the structural point of view, a birrational equivalence study under the Gelfand-Kirillov philosophy gives us the Noncommutative Noether Problem, of which we obtain many new results (Chapter 4). From the point of view of representations, we obtain that their invariant rings, in many cases, have a natural theory of Gelfand-Tsetlin modules just like the Weyl Algebra (Chapter 5), and a natural notion of holonomic modules (Chapter 6). We discuss analogues results for algebras which are similar to the Weyl Algebra, such as the ring of differential operators on the torus and the generalized Weyl algebras (Chapters 2,4,5). As applications, we have a Gelfand-Kirillov Conjecture for spherical subalgebras of Cherednik (Chapter 4); for the Gelfand-Kirillov Conjecture of many Galois algebras (Chapter 5 and 7); and the problem to give a Galois structure to the algebra U(L), where L is a simple Lie algebra of type B,C,D -generalizing the case A (Chapter 5). A chapter about the Quantum Noether Problem and a resume of the article Quantum Linear Galois Algebras\" ends the thesis.
25

Géométrie des variétés de Deligne-Lusztig, décompositions, cohomologie modulo \ell et représentations modulaires

Dudas, Olivier 09 June 2010 (has links) (PDF)
Cette thèse porte sur la construction et l'étude des représentations modulaires des groupes réductifs finis. Comme dans le cas ordinaire, l'accent est mis sur les constructions de nature géométrique, obtenues à partir de la cohomologie des variétés de Deligne-Lusztig. On commence par introduire des méthodes de décomposition du type Deodhar, permettant de déterminer en toute généralité la présence d'une classe particulière de représentations, les modules de Gelfand-Graev, ainsi que certaines de leurs versions généralisées. Des résultats plus précis sont ensuite démontrés pour des variétés associées à certains éléments réguliers de petite longueur. Le cas des éléments de Coxeter tient une place importante dans ce mémoire : pour ces éléments, on détermine un représentant explicite du complexe de cohomologie, aboutissant à une preuve de la version géométrique de la conjecture de Broué pour certains nombres premiers. On en déduit aussi la forme de l'arbre de Brauer du bloc principal dans ce cas, ce qui résout une conjecture de Hiss, Lübeck et Malle. Ces deux résultats sont conditionnés par une hypothèse assurant l'absence de torsion dans la cohomologie, dont on montre qu'elle est satisfaite pour de nombreux groupes classiques et exceptionnels.
26

Invariantes de anéis de operadores diferenciais: racionalidade de Gellfand-Kirillov, categorias de módulos, aplicações / Invariants of rings of differential operators: Gelfand-Kirillov rationality, categories of modules, aplications

João Fernando Schwarz 13 November 2018 (has links)
Esta tese aborda, como a despeito da rigidez da álgebra de Weyl An(k), suas subálgebras de invariantes possuem uma rica teoria de invariantes: do ponto de vista de estrutura, se fizermos um estudo de equivalência birracional dentro da filosofia de Gelfand-Kirillov, temos o Problema de Noether Não-Comutativo, sobre o qual obtemos vários novos resultados (Capítulo 4). Do ponto de vista de representações, obtemos que suas subálgebras de invariantes, em vários casos, herdam de maneira natural a estrutura de módulos de Gelfand-Tsetlin da álgebra de Weyl (Capítulo 5), assim como uma noção natural de módulos holonômicos (Capítulo 6). Analisaremos resultados similares para outras álgebras semelhantes a Álgebra de Weyl, como anéis de operadores diferenciais no toro e álgebras de Weyl generalizadas (Capítulos 2, 4 e 5). Como aplicações, temos uma Conjectura de Gelfand-Kirillov para subálgebras esféricas de Cherednik (Capítulo 4); para a Conjectura de Gelfand-Kirillov para várias álgebras de Galois (Capítulos 5 e 7); e o problema de realizar U(L), em que L é uma algebra de Lie simples de tipo B,C,D, como uma ordem de Galois generalizando o caso de gln (Capítulo 5). Um Capítulo sobre o Problema de Noether Quântico e um resumo do artigo de Futorny e Schwarz, \"Quantum Linear Galois Algebras\", encerram a tese. / This thesis discussess how, given the rigidity results on the Weyl Algebra An(k), its invariant subrings can nonetheless have an interesting invariant theory: from the structural point of view, a birrational equivalence study under the Gelfand-Kirillov philosophy gives us the Noncommutative Noether Problem, of which we obtain many new results (Chapter 4). From the point of view of representations, we obtain that their invariant rings, in many cases, have a natural theory of Gelfand-Tsetlin modules just like the Weyl Algebra (Chapter 5), and a natural notion of holonomic modules (Chapter 6). We discuss analogues results for algebras which are similar to the Weyl Algebra, such as the ring of differential operators on the torus and the generalized Weyl algebras (Chapters 2,4,5). As applications, we have a Gelfand-Kirillov Conjecture for spherical subalgebras of Cherednik (Chapter 4); for the Gelfand-Kirillov Conjecture of many Galois algebras (Chapter 5 and 7); and the problem to give a Galois structure to the algebra U(L), where L is a simple Lie algebra of type B,C,D -generalizing the case A (Chapter 5). A chapter about the Quantum Noether Problem and a resume of the article Quantum Linear Galois Algebras\" ends the thesis.
27

Corps enveloppants des algèbres de Lie en dimension infinie et en caractéristique positive

Bois, Jean-Marie 03 December 2004 (has links) (PDF)
Soient g une k-algèbre de Lie, U(g) son algèbre enveloppante, K(g) le corps des fractions de U(g). L'objet de cette thèse est d'étudier des propriétés algébriques du corps gauche K(g) dans les deux cas suivants : d'une part si k est de caractéristique 0 et g est de dimension infinie ; d'autre part si k est de caractéristique positive et g est de dimension finie.<br /><br />On suppose k de caractéristique nulle. On définit d'abord la notion de "degré de transcendance de niveau q" pour les algèbres de Poisson. Cette notion est introduite à partir de la notion de dimension de niveau q définie par V. Pétrogradsky pour les algèbres associatives et les algèbres de Lie. On démontre, sous des hypothèses peu restrictives sur g, que le degré de transcendance de niveau q+1 de K(g) est égal à la dimension de niveau q de g.<br /><br />On s'attache ensuite à l'étude de la famille des algèbres de type Witt définies par R. Yu. On construit ainsi des familles infinies de corps gauches deux à deux non isomorphes mais de même degré de transcendance de niveau 3 donné. On étudie aussi la question des centralisateurs dans les corps enveloppants des parties positives des algèbres de type Witt. On établit en particulier le résultat suivant : il existe des algèbres de Lie non commutatives de dimension infinie g telles que le premier corps de Weyl ne se plonge pas dans K(g).<br /><br />Supposons maintenant k de caractéristique p>0. On étudie le cas particuliers des algèbres de Lie suivantes : les algèbres gl(n) ; les algèbres sl(n) lorsque p ne divise pas n ; l'algèbre de Witt modulaire W(1) et une sous-algèbre P de l'algèbre de Witt W(2) (s'identifiant à un produit tensoriel de l'algèbre de Lie W(1) avec une algèbre associative de polynômes tronqués). Dans tous les cas, on démontre que le corps enveloppant est isomorphe à un corps de Weyl. Pour les algèbres W(1) et P, on démontre en outre que le centre de l'algèbre enveloppante est un anneau factoriel, en accord avec une conjecture récente de A. Braun et C. Hajarnavis.
28

Représentations linéaires des tresses infinitésimales

MARIN, Ivan 30 March 2001 (has links) (PDF)
L'objet de ce travail est l'étude générale des représentations linéaires dugroupe de tresses $B_n$ qui proviennent de l'intégration de systèmes de Knizhnik-Zamolodchikov (KZ), vus comme représentations de l'algèbre des tressesinfinitésimales. Nous utilisons la technique des bases de Gelfand-Tsetlin pour étudier certaines représentations de cette algèbre, et montrons comment construire explicitement les représentations du groupe d'Artin correspondantes. Nous classifions complètement les systèmes KZ qui sont irréductibles pour l'action du groupesymétrique et construisons les nouvelles représentations de $B_n$ qui apparaissent àcette occasion. Nous obtenons d'autre part des critères d'irréductibilité sur les représentations de $B_n$ obtenues par construction tensorielle. Nous obtenons enfin d'autres résultats utiles dans ce cadre, notamment une décomposition partielle de l'algèbre de Lie engendrée par les transpositions dansl'algèbre de groupe du groupe symétrique. Cette décomposition partielle est en rapport avec les composantes irréductibles de la représentation de Jones.
29

Groebner-Shirshov bases in some noncommutative algebras

Zhao, Xiangui 23 September 2014 (has links)
Groebner-Shirshov bases, introduced independently by Shirshov in 1962 and Buchberger in 1965, are powerful computational tools in mathematics, science, engineering, and computer science. This thesis focuses on the theories, algorithms, and applications of Groebner-Shirshov bases for two classes of noncommutative algebras: differential difference algebras and skew solvable polynomial rings. This thesis consists of three manuscripts (Chapters 2--4), an introductory chapter (Chapter 1) and a concluding chapter (Chapter 5). In Chapter 1, we introduce the background and the goals of the thesis. In Chapter 2, we investigate the Gelfand-Kirillov dimension of differential difference algebras. We find lower and upper bounds of the Gelfand-Kirillov dimension of a differential difference algebra under some conditions. We also give examples to demonstrate that our bounds are sharp. In Chapter 3, we generalize the Groebner-Shirshov basis theory to differential difference algebras with respect to any left admissible ordering and develop the Groebner-Shirshov basis theory of finitely generated free modules over differential difference algebras. By using the theory we develop, we present an algorithm to compute the Gelfand-Kirillov dimensions of finitely generated modules over differential difference algebras. In Chapter 4, we first define skew solvable polynomial rings, which are generalizations of solvable polynomial algebras and (skew) PBW extensions. Then we present a signature-based algorithm for computing Groebner-Shirshov bases in skew solvable polynomial rings over fields. Our algorithm can detect redundant reductions and therefore it is more efficient than the traditional Buchberger algorithm. Finally, in Chapter 5, we summarize our results and propose possible future work.
30

Braided Hopf algebras of triangular type

Ufer, Stefan. Unknown Date (has links) (PDF)
University, Diss., 2004--München.

Page generated in 0.0433 seconds