• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 27
  • 8
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 89
  • 89
  • 23
  • 21
  • 17
  • 15
  • 15
  • 14
  • 13
  • 12
  • 11
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Mutações inativadoras no gene MKRN3 são causa de puberdade precoce central familial / Inactivating mutations in the MKRN3 gene are cause of familial central precocious puberty

Francisca Delanie Bulcão de Macêdo 26 April 2016 (has links)
A maioria dos casos de puberdade precoce central (PPC) em meninas permanece idiopática. A hipótese de uma causa genética vem se fortalecendo após a descoberta de alguns genes associados a este fenótipo, sobretudo aqueles implicados com o sistema kisspeptina (KISS1 e KISS1R). Entretanto, apenas casos isolados de PPC foram relacionados à mutação na kisspeptina ou em seu receptor. Até recentemente, a maioria dos estudos genéticos em PPC buscava genes candidatos selecionados com base em modelos animais, análise genética de pacientes com hipogonadismo hipogonadotrófico, ou ainda, nos estudos de associação ampla do genoma. Neste trabalho, foi utilizado o sequenciamento exômico global, uma metodologia mais moderna de sequenciamento, para identificar variantes associadas ao fenótipo de PPC. Trinta e seis indivíduos com a forma de PPC familial (19 famílias) e 213 casos aparentemente esporádicos foram inicialmente selecionados. A forma familial foi definida pela presença de mais de um membro afetado na família. DNA genômico foi extraído dos leucócitos do sangue periférico de todos os pacientes. O estudo de sequenciamento exômico global realizado pela técnica ILLUMINA, em 40 membros de 15 famílias com PPC, identificou mutações inativadoras em um único gene, MKRN3, em cinco dessas famílias. Pesquisa de mutação no MKRN3 realizada por sequenciamento direto em duas famílias adicionais (quatro pacientes) identificou duas novas variantes nesse gene. O MKRN3 é um gene de um único éxon, localizado no cromossomo 15 em uma região crítica para a síndrome de Prader Willi. O gene MKRN3 sofre imprinting materno, sendo expresso apenas pelo alelo paterno. A descoberta de mutações em pacientes com PPC familial despertou o interesse para a pesquisa de mutações nesse gene em 213 pacientes com PPC aparentemente esporádica por meio de reação em cadeia de polimerase seguida de purificação enzimática e sequenciamento automático direto (Sanger). Três novas mutações e duas já anteriormente identificadas, incluindo quatro frameshifts e uma variante missense, foram encontradas, em heterozigose, em seis meninas não relacionadas. Todas as novas variantes identificadas estavam ausentes nos bancos de dados (1000 Genomes e Exome Variant Server). O estudo de segregação familial em três dessas meninas com PPC aparentemente esporádica e mutação no MKRN3 confirmou o padrão de herança autossômica dominante com penetrância completa e transmissão exclusiva pelo alelo paterno, demonstrando que esses casos eram, na verdade, também familiares. A maioria das mutações encontradas no MKRN3 era do tipo frameshift ou nonsense, levando a stop códons prematuros e proteínas truncadas e, portanto, confirmando a associação com o fenótipo. As duas mutações missenses (p.Arg365Ser e p.Phe417Ile) identificadas estavam localizadas em regiões de dedo ou anel de zinco, importantes para a função da proteína. Além disso, os estudos in silico dessas duas variantes demonstraram patogenicidade. Todos os pacientes com mutação no MKRN3 apresentavam características clínicas e hormonais típicas de ativação prematura do eixo reprodutivo. A mediana de idade de início da puberdade foi de 6 anos nas meninas (variando de 3 a 6,5) e 8 anos nos meninos (variando de 5,9 a 8,5). Tendo em vista o fenômeno de imprinting, análise de metilação foi também realizada em um subgrupo de 52 pacientes com PPC pela técnica de MS-MLPA, mas não foram encontradas alterações no padrão de metilação. Em conclusão, este trabalho identificou um novo gene associado ao fenótipo de PPC. Atualmente, mutações inativadoras no MKRN3 representam a causa genética mais comum de PPC familial (33%). O MKRN3 é o primeiro gene imprintado associado a distúrbios puberais em humanos. O mecanismo preciso de ação desse gene na regulação da secreção de GnRH necessita de estudos adicionais / Most cases of central precocious puberty (CPP) in girls remain idiopathic. The hypothesis of a genetic cause has been strengthened after the discovery of some genes associated with this phenotype, particularly those involved with the kisspeptin system (KISS1 and KISS1R). However, genetic defects in KISS1 and its receptor are rare and have been identified in only a few patients with CPP.over the past years. To date, most genetic studies in CPP was based mainly on a candidate gene approach, including genes selected in animal studies, human models of patients with hypogonadotropic hypogonadism or in genome wide association studies. In the present study, we used whole exome sequencing, a more advanced method of sequencing, to identify variants associated with CPP. Thirty-six patients with the familial form of CPP (19 families) and 213 apparently sporadic cases were initially selected. The familial form was defined by the presence of more than one member affected in the family. Genomic DNA was extracted from peripheral blood leukocytes in all patients. Whole exome sequencing performed by ILLUMINA technique in 40 members of 15 families with CPP, identified inactivating mutations in a single gene, MKRN3, in five out of these families. Analysis of MKRN3 mutations performed by automatic sequencing in two additional families (four patients) identified two novel mutations. MKRN3 is an introless gene located on chromosome 15, in the Prader Willi syndrome critical region, and it is expressed only by the paternal allele due to the maternal imprinting. Following the initial findings, we searched for MKRN3 mutations in 213 patients with apparently sporadic CPP using polymerase chain reaction followed by direct enzymatic purification and automated sequencing (Sanger). Three new mutations and two previously reported, including four frameshifts and one missense variant was identified in six unrelated girls with CPP. All variants were not described in the two databases (1000 Genomes and Exome Variant Server). The familial segregation analysis performed in three out of these girls with apparently sporadic CPP and MKRN3 mutations confirmed the autosomal dominant inheritance with complete penetrance and exclusive transmission through the paternal allele, revealing familial inheritance in apparently sporadic cases. Most of these MKRN3 mutations were frameshifts or nonsense, leading to premature stop codons and truncated proteins, thus demonstrating positive genotype- phenotype correlation. The two missense mutations (p.Arg365Ser and p.Phe417Ile) identified were located within zinc finger motifs, regions predicted to be essential for the protein function. Besides that, all missense mutations were predicted to be pathogenic by in silico analysis. All patients carrying MKRN3 mutations exhibited typical clinical and hormonal features of premature activation of the reproductive axis. The median age of puberty onset was 6.0 years in girls (ranging from 3.0 to 6.5) and 8.0 years in boys (ranging from 5.9 to 8.5). In view of the imprinting phenomenon, methylation analysis was also performed in a subgroup of 52 patients with CPP by MSMLPA technique, but no methylation abnormalities were detected. In conclusion, our work has identified a new gene associated with CPP. Currently, inactivating mutations in MKRN3 represent the most common genetic cause of familial CPP (33%). MKRN3 is the first imprinted gene associated with pubertal disorders in humans. However, its precise mechanism of action in the regulation of GnRH secretion needs further studies
82

Análise de metilação global em pacientes com puberdade precoce central familial / Global methylation analysis of patients with familial central precocious puberty

Danielle de Souza Bessa 17 August 2018 (has links)
A idade normal para início da puberdade em meninas varia bastante, de 8 a 13 anos, e os genes envolvidos nesse controle são parcialmente conhecidos. Fatores ambientais, como alimentação e exposição a disruptores endócrinos, contribuem para essa variabilidade, de modo que genes modulados epigeneticamente podem justificar parte da complexidade desse processo. O termo epigenética se refere às modificações na expressão gênica que não são causadas por alterações na sequência do DNA. A metilação do DNA é o mecanismo epigenético mais bem estudado. Na última década surgiram evidências demonstrando a relação entre metilação do DNA e desenvolvimento puberal. Em fêmeas de roedores, a hipermetilação do DNA levou à puberdade precoce. Em humanos, a puberdade precoce central (PPC) familial causada por mutações nos genes MKRN3 e DLK1 é considerada um defeito do imprinting, fenômeno epigenético no qual apenas um dos alelos parentais é expresso, estando o outro metilado e inativo. Além disso, um conceito atual propõe que o início da puberdade requer a repressão epigenética de fatores inibidores do eixo gonadotrófico. Recentemente, genes zinc finger (ZNF) foram relacionados ao processo puberal, e muitos deles codificam repressores transcricionais. Neste trabalho, estudamos a metilação do DNA do sangue periférico de 10 pacientes do sexo feminino com PPC familial (casos índices) e 33 meninas com desenvolvimento puberal normal (15 pré-púberes e 18 púberes), usando a plataforma Human Methylation 450 BeadChip. Duas pacientes tinham PPC de causa genética (uma com mutação no MKRN3 e outra com deleção no DLK1) e oito tinham PPC idiopática, sem mutações identificadas pelo sequenciamento exômico global. Cento e vinte regiões diferencialmente metiladas foram identificadas entre as meninas saudáveis pré-púberes e púberes, estando 74% delas no cromossomo X. Apenas uma região mostrou-se hipometilada no grupo púbere e, de maneira importante, contém a região promotora do ZFP57, fator necessário para manutenção do imprinting. Uma vez que a hipermetilação nas regiões promotoras dos genes é relacionada à inibição transcricional, o achado de hipermetilação global do DNA na puberdade sugere que haja inibição de fatores inibidores do eixo gonadotrófico, o que resultaria no início do processo puberal. O receptor estrogênico destacou-se como um fator transcricional que se liga a sete genes diferencialmente metilados entre os controles pré-púberes e púberes. As pacientes com PPC apresentaram mais sítios CpG hipermetilados tanto na comparação com as meninas pré-púberes (81%) quanto púberes (89%). Há doze genes ZNF contendo sítios CpG hipermetilados na PPC. Não foram encontradas anormalidades de metilação nos genes MKRN3 e DLK1 nem em suas regiões regulatórias. Em conclusão, este estudo evidenciou hipermetilação global do DNA em meninas com puberdade normal e precoce, sugerindo que esse padrão é uma marca epigenética da puberdade. Pela primeira vez, mudanças no metiloma de pacientes com PPC foram descritas. Modificações na metilação de vários genes ZNF parecem compor a complexa rede de mecanismos que leva ao início da puberdade humana / Normal puberty initiation varies greatly among girls, from 8 to 13 years, and the genetic basis for its control is partially known. Environmental factors, such as nutrition and exposure to endocrine disruptors, contribute to this variance, and epigenetically modulated genes may justify some of the complexity observed in this process. Epigenetics refers to alterations in gene expression that are not caused by changes in DNA sequence itself. DNA methylation is the best studied epigenetic mechanism. In the last decade, evidence has emerged showing the relationship between DNA methylation and pubertal development. In female mice, DNA hypermethylation led to precocious puberty. In humans, familial central precocious puberty (CPP) caused by mutations in the MKRN3 and DLK1 genes is considered a disorder of imprinting, an epigenetic phenomenon in which only one parental allele is expressed, and the other allele is methylated and inactive. In addition, animal studies indicated that pubertal timing requires epigenetic repression of inhibitory factors of the gonadotrophic axis. Recently, zinc finger genes (ZNF) were related to pubertal development, many of which encode transcriptional repressors. In the present study, we analyzed the DNA methylation of peripheral blood samples from 10 female patients with familial CPP (index cases) and 33 girls with normal pubertal development (15 pre-pubertal and 18 pubertal), using the Human Methylation 450 BeadChip assay. Genetic CPP was diagnosed in two patients (one with a MKRN3 mutation and the other with a DLK1 deletion). The remaining eight cases with idiopathic CPP were previously evaluated by whole exome sequencing and no causative mutations were identified so far. We evidenced 120 differentially methylated regions between pre-pubertal and pubertal healthy girls, and 74% of them were located at the X chromosome. Only one genomic region was hypomethylated in the pubertal group. Of note, it contains the promoter region of ZFP57, an important factor for imprinting maintenance. As DNA hypermethylation in gene promoters is related to gene silencing, the finding of global DNA hypermethylation in puberty suggests inhibition of inhibitory factors of the hypothalamic-pituitary-gonadal axis that results in puberty onset. Importantly, the estrogen receptor was identified as a transcriptional factor that binds to seven differentially methylated genes associated with pubertal process. Patients with CPP exhibited more hypermethylated CpG sites compared to both pre-pubertal (81%) and pubertal (89%) controls. Twelve ZNF genes were recognized as having hypermethylated CpG sites in CPP. The methylation analyses of MKRN3 and DLK1 genes showed no abnormalities. In conclusion, this study revealed a widespread DNA hypermethylation in girls with normal and precocious puberty, suggesting that this pattern can be an epigenetic signature of puberty. For the first time, changes in the methylome of patients with CPP were described. We highlight that alterations in methylation levels of several ZNF genes may impact the onset of human puberty
83

Estudo das Regiões Controladoras de Imprinting 1 e 2 em Oócitos, Embriões e Placentas de Primeiro Trimestre / Imprinting Control Regions 1 and 2 in Oocytes, Embryos and Early Placenta

Cristiana Libardi Miranda Furtado 10 April 2012 (has links)
O imprinting genômico é um processo epigenético essencial para o desenvolvimento normal de mamíferos com placenta e refere-se à expressão gênica alelo-específica, de acordo com a origem parental. A expressão dos genes marcados por imprinting é controlada por regiões diferencialmente metiladas (DMRs), situadas em regiões controladoras de imprinting (ICRs). O cromossomo 29 de Bos taurus possui dois domínios cromossômicos semelhantes à região 11p15.5 de humanos, que são denominados KvDMR1 (na ICR2) e H19DMR (na ICR1). Essas ICRs controlam um cluster de genes importantes para o crescimento e desenvolvimento, sendo a KvDMR1 metilada no alelo materno e a e H19DMR metilada no alelo paterno. No presente trabalho, foi verificado o padrão de metilação da KvDMR1 e da H19DMR em oócitos não maturados (Vg) e maturados in vitro (MII) e nos blastocistos inicial (Bi) e expandido (Bx) bovinos e em placentas bovinas e humanas de primeiro trimestre. Foram coletados oócitos e embriões pré-implantação no estágio de blastocisto produzidos pela técnica de Fertilização in vitro. Também foram coletados o tecido placentário e de um feto bovino de 49 dias e de uma placenta humana, com idade gestacional de 12 semanas. O DNA genômico foi extraído e modificado com bissulfito de sódio. O padrão de metilação das regiões KvDMR1 e H19DMR foi verificado por meio de clonagem e seqüenciamento do DNA modificado com bissulfito de sódio. Para as análises de expressão gênica nos oócitos e blastocistos, foi realizada a extração do RNA e em seguida o cDNA foi produzido para a quantificação relativa da expressão gênica por meio da técnica de PCR em tempo real. Os resultados de metilação para a amostra controle de espermatozóide apresentaram um perfil hipometilado para a KvDMR1 e hipermetilado para a H19DMR. Os oócitos Vg e MII mostraram um perfil hipermetilado para a KvDMR1 e nos Bi e Bx foi observado um perfil hipermetilado e hipometilado, respectivamente. Para a H19DMR, foi observado um perfil hipermetilado para as amostras Vg e MII, sendo que para os Bi foi observado um perfil hipometilado e, para os Bx, um perfil monoalélico de expressão. A expressão dos genes LIT1 e IGF2 foi relativamente baixa nas amostras analisadas, sendo que o gene LIT1 foi expresso nos mesmos níveis para todas as amostras e o IGF2 não foi expresso nos Bi e Bx. Os oócitos MII apresentaram altos níveis de expressão do IGF2 quando comparados com os oócitos Vg. Nas placentas precoces de bovinos, a porcentagem de metilação para a KvDMR1 variou entre os cotilédones de 39,6%. e 88,9%. A porcentagem de metilação para a H19DMR nos cotilédones variou entre 35,0% e 57,0% , sendo que apenas uma amostra apresentava-se completamente demetilada para esta ICR. Nas análises das vilosidades humanas, foi observado um perfil hipermetilado em todas as amostras analisadas, em que as porcentagens de metilação para a KvDMR1 e H19DMR variaram entre 84,4% e 97,9%. Os resultados mostram um perfil alterado de metilação nos oóctios MII para as duas regiões analisadas, e uma alteração nas amostras de oócitos Vg para a H19DMR. Para os blastocistos, o esperado seria um perfil monoalélico para as duas regiões, no entanto, esse resultado só foi encontrado para os Bx na H19DMR. Em bovinos, as DMRs apresentaram um funcionamento antagônico, enquanto a KvDMR1 tende a uma hipermetilação a H19DMR tende a uma hipometilação. O resultado das análises comparativas das placentas bovina e humana não sugerem uma relação do padrão de metilação dessas regiões entre essas duas espécies, no entanto, servem de base para o conhecimento do imprinting na placenta. Os estudos nos oócitos e blastocistos realizados representam um passo inicial na investigação da influencia das tecnologias de reprodução assistida no desenvolvimento embrionário, sendo o primeiro relato do funcionamento dessas DMRs nas amostras de oócitos e embriões pré-implantação bovinos. / Genomic imprinting is an epigenetic process that plays an essential role in the development of placental mammals with a parent-of-origin-specific manner of gene expression, in which only one allele is expressed. The imprinted gene expression is controlled by differentially methylated regions (DMRs), located in imprinting control regions (ICRs). In Bos Taurus, chromosome 29 presents two imprinted domains similar to human 11p15.5 region which are named KDMR1 (in the ICR2) and H19DMR (in the ICR1). Several genes that play an essential role in growth and development are under the control of the ICRs, in which the KvDMR1 is methylated on the maternal allele and the H19DMR is methylated on the paternal allele. In this study, the DNA methylation status of the KvDMR1 and H19DMR was verified in bovine non-matured germinative vesicle (GV) in vitro matured (MII) oocytes, as well in early (EA) and expanded (EX) blastocysts, and in bovine and human early placenta. The oocytes and blastocysts were collected after in vitro fertilization (IVF) techniques. Tissues from bovine placenta and fetus with 49 days of gestational age and human placenta with 12 weeks of gestational age were also collected. The DNA was extracted and modified by sodium bisulfite. The methylation pattern of KvDMR1 e H19DMR was verified by cloning and bisulfite sequencing. RNA extraction and cDNA synthesis for the relative quantification of gene expression by real time PCR were performed for oocytes and blastocysts. The methylation profile for the control sample of sperm was hypomethylated for KvDMR1 and hypermethylated for H19DMR. The GV and MII oocytes showed a hypermethylated pattern for KvDMR1 and in the EA and EX was hypermethylated and hypomethylated, respectively. The H19DMR displayed a hypermethylated pattern for GV and MII oocytes. For EA was observed a hypomethylated profile and EX presented a monoallelic expression. The LIT1 and IGF2 gene expression were low for all samples, however the LIT1 had the same level of expression in all samples while the IGF2 was not expressed in EA and EX. The MII oocytes showed high levels of IGF2 gene expression when compared with GV oocytes. The methylation levels for KvDMR1 in bovine early placenta varied between the cotyledons (39,6% and 88,9%). The percentage of methylation for H19DMR in cotyledons varied between 57.0% to 35.0%. Only one sample was not methylated for this ICR1. In human villous, a hypermethylated profile was observed for all samples, and the percentage of methylation for KvDMR1 and H19DMR varied between 84.4% e 97.9%. The results show an altered methylation profile in MII oocytes for two analysed regions and an alteration of H19DMR in GV oocytes. The expected for blastocysts was a monoallelic profile for KvDMR1 and H19DMR, however these results were observed only in EX for H19DMR. In bovine, the methylation levels of KvDMR1 and H19DMR seems to work antagonistically. While the KvDMR1 tended to hypermethylation, the ICR1 tended to a hypomethylation. The comparative analysis of bovine and human early placentas does not suggest a relationship between the methylation patterns of these regions in these two species. However, these studies provide the basis for the understanding of imprinting in the placenta. The study in oocytes and blastocysts represent an initial investigation in understanding how the assisted reproductive technologies affect the embryo growth and development, and this is the first report on the methylation patterns of KvDMR1 and H19DMR in bovine oocytes and blastocysts.
84

Dissomia uniparental e mosaicismo somático como mecanismos de alterações epigenéticas do imprinting genômico / Uniparental disomy and somatic mosaicism: mechanisms for epigenetic deregulation of genomic imprinting

Filipe Brum Machado 16 August 2012 (has links)
O imprinting genômico é um processo regulado epigeneticamente que faz com que os alelos sejam expressos de acordo com a sua origem parental. No cromossomo 11 (11p15.5), existem duas regiões controladoras de imprinting (ICR1 e ICR2), que controlam a expressão de genes marcados (imprinted). Os padrões de metilação dessas regiões podem ser alterados pela dissomia uniparental (DUP), que ocorre quando parte de ou um cromossomo inteiro do mesmo par de homólogos é herdado de somente um genitor. Erros mitóticos podem gerar mosaicismo com uma linhagem de células com DUP e a outra biparental. As síndromes de Silver-Russell (SSR) e Beckwith-Wiedemann (SBW) são doenças de alterações do imprinting genômico, envolvendo os cromossomos 7 (SSR) e 11 (SSR e SBW). A Hemihiperplasia Isolada (HHI) parece corresponder a uma forma mais leve da SBW.. No presente trabalho, foi realizada uma varredura in silico para busca de novos microssatélites nos cromossomos 7 e 11, e selecionados seis do tipo tetra ou pentanucleotídeos, no cromossomo 7, e 12, no cromossomo 11. O perfil de metilação nas ICRs foi verificado por três técnicas distintas: MS-MLPA, DESM-RT e por uma nova estratégia desenvolvida neste trabalho denominada DESM-QFPCR. Foram avaliados 32 pacientes com SBW, 16 HHI, 20 com SSR e seus pais, quando disponíveis, além de um paciente com fenótipo aparentemente normal com cariótipo 46,XX/46,XY e cuja placenta apresentou displasia mesenquimal placentária (DMP) a qual está associada à SBW. Os novos marcadores apresentaram alta taxa de heterozigose (média de 70%), e ausência das características indesejáveis dos dinucleotídeos predominantemente utilizados para detecção de DUP. Seis marcadores estão entre genes controlados pelas ICRs 1 e 2. A DUP paterna do cromossomo 11 (DUPpat Cr11), sempre restrita a 11p15.5, foi responsável por 13% dos casos de HHI e 19% dos de SBW. As alterações estruturais foram confirmadas por minissequenciamento quantitativo de SNPs e por MS-MLPA. Um paciente apresentou duplicação paterna abrangendo ambas as ICRs. Uma deleção não descrita anteriormente no gene CDKN1C foi observada em uma paciente e sua mãe. Para os pacientes com DUPpat Cr11, foram investigados microssatélites em 13 autossomos e nos cromossomos sexuais para detecção de mosaicismo global. Apenas o paciente com DMP apresentou mosaicismo [células androgenéticas (25-30%) e biparentais], sugerindo evento de dupla fertilização. Nos pacientes com SSR, foi observada hipometilação na ICR1 em 25% dos casos. Para a SBW, foi observada hipermetilação na ICR1 e hipometilação na ICR2 em 6% e 42% dos casos, respectivamente. Os casos com DUPpat Cr11 apresentaram alteração de metilação em ambas as ICRs. As frequências de alterações (epi) genéticas encontradas foram semelhantes às previamente descritas na literatura para as SBW, SSR e HHI. Neste trabalho, foi desenvolvida uma nova técnica para estudo de metilação do DNA de ICRs e testados marcadores microssatélites inéditos na região 11p15, que quando comparados com metodologias mais tradicionais de avaliação, como DESM-RT e MS-MLPA, mostraram elevada correlação dos resultados. Os achados mostram a complexidade da etiologia das doenças estudadas no presente trabalho e os dados moleculares serão imprescindíveis para o aconselhamento genético adequado para cada caso em particular e suas famílias. / Genomic imprinting is a epigenetically regulated process where the alleles are expressed in terms of their parental origin. On chromosome 11 (11p15.5) there are two regions controlling imprinting (ICR1 and ICR2), which control imprinted gene expression. The methylation patterns in these regions may be altered by uniparental disomy (UPD), which occurs when part or whole chromose is inherited from only one parent. Mitotic errors can lead to mosaicism with a cell line with DUP and other, biparental. The Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS) are diseases of abnormal genomic imprinting, involving chromosomes 7 (SSR) and 11 (SRS and BWS). The Isolated Hemihiperplasia (IHH) seems to correspond to a milder form of the SBW. In the present study, we performed an in silico scan to search for new microsatellites on chromosomes 7 and 11, and selected six tetra- and/or pentanucleotides on chromosome 7, and 12 on chromosome 11. The pattern of methylation in ICRs was verified by three different techniques: MS-MLPA, DESM-RT and a new strategy developed in this work called DESM-QFPCR. We evaluated 32 patients with BWS, HHI 16, with 20 SSR and their parents, when available, and one patient with apparently normal phenotype with karyotype 46, XX/46, XY and whose placenta showed placental mesenchymal dysplasia (PMD) which is associated with SBW. The new markers showed a high heterozygosity rate (average 70%), and absence of undesirable characteristics of dinucleotides, predominantly used for detection of DUP. Six markers spans genes controlled by the ICRs 1 and 2. The paternal UPD for chromosome 11 (UPDpat Cr11), all restricted to 11p15.5, was responsible for 13% of cases of HHI and 19% of the SBW. Structural changes were confirmed by quantitative SNaPshot sequencing of SNPs and MS-MLPA. One patient had paternal duplication encompassing both ICRs. A not previously described deletion in the gene CDKN1C was observed in one patient and her mother. For patients with DUPpat Cr11, microsatellites were investigated in 13 autosomes and sex chromosomes to detect wide mosaicism. Only patients with DMP showed mosaicism [androgenetic cells (25-30%) and biparental], suggesting double fertilization. In patients with SRS, ICR1 hypomethylation was observed in 25% of cases. For BWS, ICR1 hypermethylation and in ICR2 hypomethylation were observed 6% and 42% of cases, respectively. All cases with UPDpat Cr11 presented abnormal methylation in both ICRs. The (epi) genetic change frequencies were similar to those previously described in the literature for BWS, SRR andIHH. In the present work, we developed a new technique to study DNA methylation of ICRs and tested novel microsatellite markers in the 11p15 region, which showed high correlation of results, when compared with more traditional methods such as RT-DESM and MS-MLPA. The results show the complex etiology of these diseases and the molecular data are essential for appropriate patient and families genetic counseling.
85

Estudo de expressão do gene UBE3A em neurônios derivados de células-tronco da polpa dentária de pacientes com a síndrome de Angelman / Study of UBE3A expression in dental pulp stem cells - derived neurons from patients with Angelman syndrome

Estela Mitie Cruvinel 22 June 2011 (has links)
Síndrome de Angelman (AS - MIM 105830) é causada pela ausência de função do gene UBE3A que codifica uma proteína ubiquitina - ligase (E6-AP). Esse gene é expresso bialelicamente em vários tecidos exceto no cérebro, onde a expressão é preferencialmente materna. O RNA anti-senso de UBE3A é considerado o regulador dessa expressão diferencial entre os alelos, e faz parte de um transcrito grande que só o alelo paterno é expresso devido ao imprinting genômico; no cérebro, esse transcrito se entende até a região anti-senso de UBE3A, mas nos demais tecidos o transcrito é menor e não engloba a região anti-senso. Este trabalho visa obter um modelo para estudo da AS. Células-tronco da polpa do dente (SHEDs) de pacientes com deleção do segmento 15q11-q13 ou mutação no gene UBE3A foram caracterizadas e submetidas à diferenciação neuronal. A diferenciação foi analisada através do estudo de RNA e proteínas para marcadores neuronais e, também, por testes funcionais. As SHEDs são células-tronco mesenquimais e constituem uma população heterogênea. Essas células ou algumas dessas células já expressam algumas proteínas neuronais ou de células excitáveis como nestina, β-tubulina III, MAP2 e proteína de canais dependentes de voltagem de sódio e potássio. Um ponto interessante é que as SHEDs apresentam baixa expressão do UBE3A anti-senso e a expressão do UBE3A nas células de pacientes é menor que 50% da expressão encontrada nas células de controles, que pode indicar a ocorrência de expressão preferencial materna desse gene em outros tipos celulares além de neurônios maduros. Quando induzidas à diferenciação neurogênica, a maioria das linhagens controles apresentou aumento da expressão de MAP2 e, principalmente, β-tubulina III; e a maioria das linhagens de pacientes com AS não apresentou aumento notável na expressão dessas proteínas, exceto uma linhagem de paciente que aumentou a expressão de β-tubulina III. As células induzidas à diferenciação apresentaram aumento estatisticamente significativo da condutância de sódio através de canais de sódio dependentes de voltagem. Com a análise de expressão de UBE3A e do UBE3A anti-senso é possível afirmar que a expressão deles não alterou com a diferenciação neuronal. Assim, é possível concluir que as células-tronco da polpa do dente, com o protocolo de diferenciação neurogênica, progrediram na via de diferenciação, mas a maioria das células não atingiu o estágio de maturação necessário para que ocorresse o imprinting do UBE3A ou a via de diferenciação não ia em direção a neurônios que apresentam imprinting do UBE3A. / Angelman syndrome (AS - MIN 105830) is caused by the loss of function of the maternal UBE3A gene, which encodes an ubiquitin protein ligase (E6-AP). UBE3A displays biallelic expression in most of tissues, but maternal predominant expression is observed in the brain. A RNA antisense that is paternally expressed in some regions in the brain is considered to be responsible for this tissue-specific imprinting; UBE3A antisense is part of a large transcript that starts at SNURF-SNRPN gene and is paternally expressed, and in the brain this transcript includes UBE3A antisense region however in other tissues this region is not included. The aim of the present study is to develop a new model for studying AS. Dental pulp stem cells (SHEDs) were characterized and differentiated by an already described protocol. SHEDs intrinsically express some neuronal proteins as nestin, β-tubulin III, MAP2 and voltage-gated sodium channels and potassium channels. Interestingly, SHEDs also present a low expression of UBE3A antisense, and UBE3A expression in cells from patients with AS is lower than 50% of the cells from normal control, so it is possible that preferential maternal expression of this gene might occur in some cells beyond mature neurons. After the neuronal differentiation, most control lineages and one lineage of AS patients had an increase of MAP2 and β-tubulin III expression. Two control lineages and most lineages from AS patients did not have a notable increase of expression of these proteins. Neuronal differentiated cells displayed an increase in conductance through voltage-gated sodium channels. Analysis of UBE3A and UBE3A antisense expression in SHEDs and cells induced to differentiate into neurons indicated no changes in their expression. Thus, after neuronal differentiation induction, dental pulp stem cells progressed through neuronal differentiation pathway. However, most cells did not reach the stage which UBE3A imprinting occurs or the neuronal differentiation is resulting in a cell that do not present UBE3A imprinting.
86

Identification de nouveaux mécanismes moléculaires dans les pathologies de croissance fœtale et postnatale des syndromes de Beckwith-Wiedemann et de Silver-Russell : approche génétique et épigénétique / Identification of new molecular defects underlying two diseases relating to growth in humans, the Beckwith-Wiedemann and Silver-Russell syndromes, through genetic and epigenetic approaches

Abi Habib, Walid 21 June 2016 (has links)
La croissance fœtale et postnatale est un processus finement régulé par des facteurs génétiques, épigénétiques et environnementaux complexes. Le système des IGFs (insulin-like growth factors) est l’un des acteurs principaux jouant un rôle crucial dans le développement fœtal et postnatal. Chez l’humain, plusieurs mutations des gènes IGF1 et IGF-1R ainsi qu’une mutation d’origine paternelle d’IGF2 ont été rapportées chez des patients ayant un retard de croissance intra-utérin (RCIU) qui peut persister et/ou s’aggraver en postnatal. Par ailleurs, les phénomènes épigénétiques comme la méthylation de l’ADN et le code histone jouent également un rôle prépondérant dans le développement fœtal et postnatal. L’empreinte parentale, mise en place grâce à des marques épigénétiques, est un des mécanismes important pour le développement fœtal. Chez l’humain, une anomalie de régulation de gènes soumis à empreinte parentale est associée à plusieurs syndromes de retard de croissance intra-utérin et postnatal ou à l’inverse de croissance excessive. Ce travail comporte deux parties: nous nous sommes dans un premier temps particulièrement intéressés à l’étude génétique et épigénétique de la région 11p15.5 et de son centre d’empreinte régulant le domaine IGF2/H19 dans une population de patients ayant une croissance excessive ou bien un RCIU (syndromes de Beckwith-Wiedemann et Silver-Russell respectivement), afin de mieux comprendre la régulation de ce domaine. Puis, la deuxième partie de notre étude a porté sur l’identification de nouvelles causes génétiques et épigénétiques de syndrome de Silver-Russell, altérant l’expression d’IGF2 mais n’étant pas directement secondaires à un défaut moléculaire de la région 11p15.5. / Fetal and postnatal growth is a process finely regulated by genetic, epigenetic and environmental complex. The IGFs system (insulin-like growth factors) is one of the main actors playing a crucial role in fetal and postnatal development. In humans, several mutations of IGF1 and IGF-1R genes and a paternal IGF2 mutation have been reported in patients with intrauterine growth restriction (IUGR), which can persist and/or worsen in postnatal life. Moreover, epigenetic phenomena such as DNA methylation and histone code also play a major role in fetal and postnatal development. Genomic imprinting, established due to epigenetic marks, is one of the major mechanisms for fetal development. In humans, abnormal regulation of genes subject to imprinting is associated with several syndromes of intrauterine and postnatal growth restriction or conversely excessive growth. This work has two parts: we initially particularly interested in the genetic and epigenetic study of the 11p15.5 region and its imprinting control region regulating the IGF2/H19 domain in a population of patients with overgrowth or IUGR (Beckwith-Wiedemann syndrome and Russell-Silver respectively), to better understand the regulation of this area. Then, the second part of our study focused on the identification of new genetic and epigenetic causes of Silver-Russell syndrome, altering the expression of IGF2, without being directly caused by a molecular defect of 11p15.5 region.
87

Paternal Effects on Metabolism in Mammals: A Dissertation

Shea, Jeremy M. 19 March 2015 (has links)
The following work demonstrates that paternal diet controls medically important metabolic phenotypes in offspring. We observe transmission of dietary information to the zygote via sperm, and this information evades reprogramming that typically occurs after fertilization. Cytosine methylation is implicated as a major contributor to meiotic epigenetic inheritance in several transgenerational phenomena. Our extensive characterization of the sperm methylome reveals that diet does not significantly affect methylation patterns. However, we find that extensive epivariability in the sperm epigenome makes important contributions to offspring variation. Importantly, coordinate cytosine methylation and copy number changes over the ribosomal DNA locus contributes to variation in offspring metabolism. Thus, rDNA variability acts independently of postadolescent paternal diet to influence offspring metabolism. Therefore, at least two mechanisms exist for epigenetically controlling offspring metabolism: stochastic epivariation and diet acting by an unknown mechanism to further modulate metabolism. This work argues that an offspring's phenotype can no longer be viewed solely as the result of genetic interactions with the developmental environment - the additional influences of paternal environment and inherited epigenetic variability must also be considered. These findings reveal novel contributions to metabolism that could revolutionize how we think about the risk factors for human health and disease.
88

A Novel Approach to Identify Candidate Imprinted Genes in Humans

Shapiro, Jonathan 21 March 2012 (has links)
Many imprinted genes are necessary for normal human development. Approximately 70 imprinted genes have been identified in humans. I developed a novel approach to identify candidate imprinted genes in humans using the premise that imprinted genes are often associated with nearby parent-of-origin-specific DNA differentially methylated regions (DMRs). I identified parent-of-origin-specific DMRs using sodium bisulfite-based DNA (CpG) methylation profiling of uniparental tissues, mature cystic ovarian teratoma (MCT) and androgenetic complete hydatidiform mole (AnCHM), and biparental tissues, blood and placenta. In support of this approach, the CpG methylation profiling led to the identification of parent-of-origin-specific differentially methylated CpG sites (DMCpGs) in known parent-of-origin-specific DMRs. I found new DMRs for known imprinted genes NAP1L5 and ZNF597. Most importantly, I discovered many new DMCpGs, which were associated with nearby genes, i.e., candidate imprinted genes. Allelic expression analyses of one candidate imprinted gene, AXL, suggested polymorphic imprinting of AXL in human blood.
89

A Novel Approach to Identify Candidate Imprinted Genes in Humans

Shapiro, Jonathan 21 March 2012 (has links)
Many imprinted genes are necessary for normal human development. Approximately 70 imprinted genes have been identified in humans. I developed a novel approach to identify candidate imprinted genes in humans using the premise that imprinted genes are often associated with nearby parent-of-origin-specific DNA differentially methylated regions (DMRs). I identified parent-of-origin-specific DMRs using sodium bisulfite-based DNA (CpG) methylation profiling of uniparental tissues, mature cystic ovarian teratoma (MCT) and androgenetic complete hydatidiform mole (AnCHM), and biparental tissues, blood and placenta. In support of this approach, the CpG methylation profiling led to the identification of parent-of-origin-specific differentially methylated CpG sites (DMCpGs) in known parent-of-origin-specific DMRs. I found new DMRs for known imprinted genes NAP1L5 and ZNF597. Most importantly, I discovered many new DMCpGs, which were associated with nearby genes, i.e., candidate imprinted genes. Allelic expression analyses of one candidate imprinted gene, AXL, suggested polymorphic imprinting of AXL in human blood.

Page generated in 0.1094 seconds