• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • Tagged with
  • 19
  • 19
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Efficient Solvers for the Phase-Field Crystal Equation

Praetorius, Simon 27 January 2016 (has links) (PDF)
A preconditioner to improve the convergence properties of Krylov subspace solvers is derived and analyzed in this work. This method is adapted to linear systems arising from a finite-element discretization of a phase-field crystal equation.
12

The evolution equations for Dirac-harmonic Maps

Branding, Volker January 2012 (has links)
This thesis investigates the gradient flow of Dirac-harmonic maps. Dirac-harmonic maps are critical points of an energy functional that is motivated from supersymmetric field theories. The critical points of this energy functional couple the equation for harmonic maps with spinor fields. At present, many analytical properties of Dirac-harmonic maps are known, but a general existence result is still missing. In this thesis the existence question is studied using the evolution equations for a regularized version of Dirac-harmonic maps. Since the energy functional for Dirac-harmonic maps is unbounded from below the method of the gradient flow cannot be applied directly. Thus, we first of all consider a regularization prescription for Dirac-harmonic maps and then study the gradient flow. Chapter 1 gives some background material on harmonic maps/harmonic spinors and summarizes the current known results about Dirac-harmonic maps. Chapter 2 introduces the notion of Dirac-harmonic maps in detail and presents a regularization prescription for Dirac-harmonic maps. In Chapter 3 the evolution equations for regularized Dirac-harmonic maps are introduced. In addition, the evolution of certain energies is discussed. Moreover, the existence of a short-time solution to the evolution equations is established. Chapter 4 analyzes the evolution equations in the case that the domain manifold is a closed curve. Here, the existence of a smooth long-time solution is proven. Moreover, for the regularization being large enough, it is shown that the evolution equations converge to a regularized Dirac-harmonic map. Finally, it is discussed in which sense the regularization can be removed. In Chapter 5 the evolution equations are studied when the domain manifold is a closed Riemmannian spin surface. For the regularization being large enough, the existence of a global weak solution, which is smooth away from finitely many singularities is proven. It is shown that the evolution equations converge weakly to a regularized Dirac-harmonic map. In addition, it is discussed if the regularization can be removed in this case. / Die vorliegende Dissertation untersucht den Gradientenfluss von Dirac-harmonischen Abbildungen. Dirac-harmonische Abbildungen sind kritische Punkte eines Energiefunktionals, welches aus supersymmetrischen Feldtheorien motiviert ist. Die kritischen Punkte dieses Energiefunktionals koppeln die Gleichung für harmonische Abbildungen mit Spinorfeldern. Viele analytische Eigenschaften von Dirac-harmonischen Abbildungen sind bereits bekannt, ein allgemeines Existenzresultat wurde aber noch nicht erzielt. Diese Dissertation untersucht das Existenzproblem, indem der Gradientenfluss von einer regularisierten Version Dirac-harmonischer Abbildungen untersucht wird. Die Methode des Gradientenflusses kann nicht direkt angewendet werden, da das Energiefunktional für Dirac-harmonische Abbildungen nach unten unbeschränkt ist. Daher wird zunächst eine Regularisierungsvorschrift für Dirac-harmonische Abbildungen eingeführt und dann der Gradientenfluss betrachtet. Kapitel 1 stellt für die Arbeit wichtige Resultate über harmonische Abbildungen/harmonische Spinoren zusammen. Außerdem werden die zur Zeit bekannten Resultate über Dirac-harmonische Abbildungen zusammengefasst. In Kapitel 2 werden Dirac-harmonische Abbildungen im Detail eingeführt, außerdem wird eine Regularisierungsvorschrift präsentiert. Kapitel 3 führt die Evolutionsgleichungen für regularisierte Dirac-harmonische Abbildungen ein. Zusätzlich wird die Evolution von verschiedenen Energien diskutiert. Schließlich wird die Existenz einer Kurzzeitlösung bewiesen. In Kapitel 4 werden die Evolutionsgleichungen für den Fall analysiert, dass die Ursprungsmannigfaltigkeit eine geschlossene Kurve ist. Die Existenz einer Langzeitlösung der Evolutionsgleichungen wird bewiesen. Es wird außerdem gezeigt, dass die Evolutionsgleichungen konvergieren, falls die Regularisierung groß genug gewählt wurde. Schließlich wird diskutiert, ob die Regularisierung wieder entfernt werden kann. Kapitel 5 schlussendlich untersucht die Evolutionsgleichungen für den Fall, dass die Ursprungsmannigfaltigkeit eine geschlossene Riemannsche Spin Fläche ist. Es wird die Existenz einer global schwachen Lösung bewiesen, welche bis auf endlich viele Singularitäten glatt ist. Die Lösung konvergiert im schwachen Sinne gegen eine regularisierte Dirac-harmonische Abbildung. Auch hier wird schließlich untersucht, ob die Regularisierung wieder entfernt werden kann.
13

A Mathematical Model of Graphene Nanostructures

Rhoads, Daniel Joseph 15 September 2015 (has links)
No description available.
14

Evolution and Regularity Results for Epitaxially Strained Thin Films and Material Voids

Piovano, Paulo 01 June 2012 (has links)
In this dissertation we study free boundary problems that model the evolution of interfaces in the presence of elasticity, such as thin film profiles and material void boundaries. These problems are characterized by the competition between the elastic bulk energy and the anisotropic surface energy. First, we consider the evolution equation with curvature regularization that models the motion of a two-dimensional thin film by evaporation-condensation on a rigid substrate. The film is strained due to the mismatch between the crystalline lattices of the two materials and anisotropy is taken into account. We present the results contained in [62] where the author establishes short time existence, uniqueness and regularity of the solution using De Giorgi’s minimizing movements to exploit the L2 -gradient flow structure of the equation. This seems to be the first analytical result for the evaporation-condensation case in the presence of elasticity. Second, we consider the relaxed energy introduced in [20] that depends on admissible pairs (E, u) of sets E and functions u defined only outside of E. For dimension three this energy appears in the study of the material voids in solids, where the pairs (E, u) are interpreted as the admissible configurations that consist of void regions E in the space and of displacements u of the atoms of the crystal. We provide the precise mathematical framework that guarantees the existence of minimal energy pairs (E, u). Then, we establish that for every minimal configuration (E, u), the function u is C 1,γ loc -regular outside an essentially closed subset of E. No hypothesis of starshapedness is assumed on the voids and all the results that are contained in [18] hold true for every dimension d ≥ 2.
15

Keller-Segel-type models and kinetic equations for interacting particles : long-time asymptotic analysis

Hoffmann, Franca Karoline Olga January 2017 (has links)
This thesis consists of three parts: The first and second parts focus on long-time asymptotics of macroscopic and kinetic models respectively, while in the third part we connect these regimes using different scaling approaches. (1) Keller–Segel-type aggregation-diffusion equations: We study a Keller–Segel-type model with non-linear power-law diffusion and non-local particle interaction: Does the system admit equilibria? If yes, are they unique? Which solutions converge to them? Can we determine an explicit rate of convergence? To answer these questions, we make use of the special gradient flow structure of the equation and its associated free energy functional for which the overall convexity properties are not known. Special cases of this family of models have been investigated in previous works, and this part of the thesis represents a contribution towards a complete characterisation of the asymptotic behaviour of solutions. (2) Hypocoercivity techniques for a fibre lay-down model: We show existence and uniqueness of a stationary state for a kinetic Fokker-Planck equation modelling the fibre lay-down process in non-woven textile production. Further, we prove convergence to equilibrium with an explicit rate. This part of the thesis is an extension of previous work which considered the case of a stationary conveyor belt. Adding the movement of the belt, the global equilibrium state is not known explicitly and a more general hypocoercivity estimate is needed. Although we focus here on a particular application, this approach can be used for any equation with a similar structure as long as it can be understood as a certain perturbation of a system for which the global Gibbs state is known. (3) Scaling approaches for collective animal behaviour models: We study the multi-scale aspects of self-organised biological aggregations using various scaling techniques. Not many previous studies investigate how the dynamics of the initial models are preserved via these scalings. Firstly, we consider two scaling approaches (parabolic and grazing collision limits) that can be used to reduce a class of non-local kinetic 1D and 2D models to simpler models existing in the literature. Secondly, we investigate how some of the kinetic spatio-temporal patterns are preserved via these scalings using asymptotic preserving numerical methods.
16

Efficient Solvers for the Phase-Field Crystal Equation: Development and Analysis of a Block-Preconditioner

Praetorius, Simon 08 December 2015 (has links)
A preconditioner to improve the convergence properties of Krylov subspace solvers is derived and analyzed in this work. This method is adapted to linear systems arising from a finite-element discretization of a phase-field crystal equation.
17

Deformation of a Graphene Sheet Driven by Lattice Mismatch with a Supporting Substrate

Stanek, Lucas James 20 November 2018 (has links)
No description available.
18

Equations d'évolution non locales et problèmes de transition de phase / Non local evolution equations and phase transition problems

Nguyen, Thanh Nam 29 November 2013 (has links)
L'objet de cette thèse est d'étudier le comportement en temps long de solutions d'équations d'évolution non locales ainsi que la limite singulière d'équations et de systèmes d'équations aux dérivées partielles, où intervient un petit paramètre epsilon. Au Chapitre 1, nous considérons une équation de réaction-diffusion non locale avec conservation au cours du temps de l'intégrale en espace de la solution; cette équation a été initialement proposée par Rubinstein et Sternberg pour modéliser la séparation de phase dans un mélange binaire. Le problème de Neumann associé possède une fonctionnelle de Lyapunov, c'est-à-dire une fonctionnelle qui décroit selon les orbites. Après avoir prouvé que la solution est confinée dans une région invariante, nous étudions son comportement en temps long. Nous nous appuyons sur une inégalité de Lojasiewicz pour montrer qu'elle converge vers une solution stationnaire quand t tend vers l'infini. Nous évaluons également le taux de la convergence et calculons précisément la solution stationnaire limite en dimension un d'espace. Le Chapitre 2 est consacré à l'étude de l'équation différentielle non locale que l'on obtient en négligeant le terme de diffusion dans l'équation d'Allen-Cahn non locale étudiée au Chapitre 1. Sans le terme de diffusion, la solution ne peut pas être plus régulière que la fonction initiale. C'est la raison pour laquelle on ne peut pas appliquer la méthode du Chapitre 1 pour l'étude du comportement en temps long de la solution. Nous présentons une nouvelle méthode basée sur la théorie des réarrangements et sur l'étude du profil de la solution. Nous montrons que la solution est stable pour les temps grands et présentons une caractérisation détaillée de sa limite asymptotique quand t tend vers l'infini. Plus précisément, la fonction limite est une fonction en escalier, qui prend au plus deux valeurs, qui coïncident avec les points stables d'une équation différentielle associée. Nous montrons aussi par un contre-exemple non trivial que, quand une hypothèse sur la fonction initiale n'est pas satisfaite, la fonction limite peut prendre trois valeurs, qui correspondent aux points instable et stables de l'équation différentielle associée. Nous étudions au Chapitre 3 une équation différentielle ordinaire non locale qui a éte proposée par M. Nagayama. Une difficulté essentielle est que le dénominateur dans le terme de réaction non local peut s'annuler. Nous appliquons un théorème de point fixe lié a une application contractante pour démontrer que le problème à valeur initiale correspondant possède une solution unique qui reste connée dans un ensemble invariant. Ce problème possède une fonctionnelle de Lyapunov, qui est un ingrédient essentiel pour démontrer que la solution converge vers une solution stationnaire constante par morceaux quand t tend vers l'infini. Au Chapitre 4, nous considérons un modèle d'interface diffuse pour la croissance de tumeurs, où intervient une équation d'ordre quatre de type Cahn Hilliard. Après avoir introduit un modèle de champ de phase associé, on étudie formellement la limite singulière de la solution quand le coefficient du terme de réaction tend vers l'infini. Plus précisément, nous montrons que la solution converge vers la solution d'un problème à frontière libre. AMS subject classifications. 35K57, 35K50, 35K20, 35R35, 35R37, 35B40, 35B25. / The aim of this thesis is to study the large time behavior of solutions of nonlocal evolution equations and to also study the singular limit of equations and systems of parabolic partial differential equations involving a small parameter epsilon. In Chapter 1, we consider a nonlocal reaction-diffusion equation with mass conservation, which was originally proposed by Rubinstein and Sternberg as a model for phase separation in a binary mixture. The corresponding Neumann problem possesses a Lyapunov functional, namely a functional which decreases in time along solution orbits. After having proved that the solution is conned in an invariant region, we study its large time behavior and apply a Lojasiewicz inequality to show that it converges to a stationary solution as t tends to infinity. We also evaluate the rate of convergence and precisely compute the limiting stationary solution in one space dimension. Chapter 2 is devoted to the study of a nonlocal evolution equation which one obtains by neglecting the diffusion term in the nonlocal Allen-Cahn equation studied in Chapter 1. Without the diffusion term, the solution can not be expected to be more regular than the initial function. Moreover, because of the absence of the diusion term, the method of Chapter 1 can not be applied to study the large time behavior of the solution. We present a new method based up on rearrangement theory and the study of the solution profile. We show that the solution stabilizes for large times and give a detailed characterization of its asymptotic limit as t tends to infinity. More precisely, it turns out that the limiting function is a step function, which takes at most two values, which are stable points of a corresponding ordinary dierential equation. We also show by means of a nontrivial counterexample that, when a certain hypothesis on the initial function does not hold, the limiting function may take three values. One of them is the unstable point and the two others are the stable points of the ordinary dierential equation. We study in Chapter 3 a nonlocal ordinary dierential equation which has been proposed by M. Nagayama. The nonlocal term involves a denominator which may vanish. We apply a contraction fixed point theorem to prove the existence of a unique solution which stays confined in an invariant region. We also show that the corresponding initial value problem possesses a Lyapunov functional and prove that the solution stabilizes for large times to a step function, which takes at most two values. In Chapter 4, we consider a diffuse-interface tumor-growth model which involves a fourth order Cahn-Hilliard type equation. Introducing a related phase-field model, we formally study the singular limit of the solution as the reaction coecient tends to infinity. More precisely, we show that the solution converges to the solution of a moving boundary problem. AMS subject classifications. 35K57, 35K50, 35K20, 35R35, 35R37, 35B40, 35B25.
19

Transport optimal : régularité et applications / Optimal Transport : Regularity and applications

Gallouët, Thomas 10 December 2012 (has links)
Cette thèse comporte deux parties distinctes, toutes les deux liées à la théorie du transport optimal. Dans la première partie, nous considérons une variété riemannienne, deux mesures à densité régulière et un coût de transport, typiquement la distance géodésique quadratique et nous nous intéressons à la régularité de l’application de transport optimal. Le critère décisif à cette régularité s’avère être le signe du tenseur de Ma-Trudinger-Wang (MTW). Nous présentons tout d’abord une synthèse des travaux réalisés sur ce tenseur. Nous nous intéressons ensuite au lien entre la géométrie des lieux d’injectivité et le tenseur MTW. Nous montrons que dans de nombreux cas, la positivité du tenseur MTW implique la convexité des lieux d’injectivité. La deuxième partie de cette thèse est liée aux équations aux dérivées partielles. Certaines peuvent être considérées comme des flots gradients dans l’espace de Wasserstein W2. C’est le cas de l’équation de Keller-Segel en dimension 2. Pour cette équation nous nous intéressons au problème de quantification de la masse lors de l’explosion des solutions ; cette explosion apparaît lorsque la masse initiale est supérieure à un seuil critique Mc. Nous cherchons alors à montrer qu’elle consiste en la formation d’un Dirac de masse Mc. Nous considérons ici un modèle particulaire en dimension 1 ayant le même comportement que l’équation de Keller-Segel. Pour ce modèle nous exhibons des bassins d’attractions à l’intérieur desquels l’explosion se produit avec seulement le nombre critique de particules. Finalement nous nous intéressons au profil d’explosion : à l’aide d’un changement d’échelle parabolique nous montrons que la structure de l’explosion correspond aux points critiques d’une certaine fonctionnelle. / This thesis consists in two distinct parts both related to the optimal transport theory.The first part deals with the regularity of the optimal transport map. The key tool is the Ma-Trundinger-Wang tensor and especially its positivity. We first give a review of the known results about the MTW tensor. We then explore the geometrical consequences of the MTW tensor on the injectivity domain. We prove that in many cases the positivity of MTW implies the convexity of the injectivity domain. The second part is devoted to the behaviour of a Keller-Segel solution in the super critical case. In particular we are interested in the mass quantization problem: we wish to quantify the mass aggregated when the blow-up occurs. In order to study the behaviour of the solution we consider a particle approximation of a Keller-Segel type equation in dimension 1. We define this approximation using the gradient flow interpretation of the Keller-Segel equation and the particular structure of the Wasserstein space in dimension 1. We show two kinds of results; we first prove a stability theorem for the blow-up mechanism: we exhibit basins of attraction in which the solution blows up with only the critical number of particles. We then prove a rigidity theorem for the blow-up mechanism: thanks to a parabolic rescaling we prove that the structure of the blow-up is given by the critical points of a certain functional.

Page generated in 0.0431 seconds