• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 295
  • 51
  • 49
  • 28
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 2
  • Tagged with
  • 532
  • 207
  • 117
  • 87
  • 76
  • 69
  • 54
  • 46
  • 37
  • 36
  • 36
  • 36
  • 35
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Isospin symmetry breaking in sd shell nuclei / Brisure de la symétrie d'isospin dans les noyaux de la couche sd

Lam, Yek Wah 13 December 2011 (has links)
Dans cette thèse, nous avons développé une approche microscopique de la description des effets de la brisure de symétrie d’isospin dans les noyaux de la couche sd. Le travail est effectué dans le cadre du modèle en couches.Nous avons ajouté à un Hamiltonien nucléaire traditionnel, qui conserve l’isospin, l’interaction de Coulomb et le potentiel de type Yukawa d'échange de mésons pour modéliser les forces nucléaires dépendantes de la charge. La base de données sur les coefficients expérimentaux de l'équation des multiplets de masse isobariques (IMME) a été mise au point dans le cadre de cette thèse et a été utilisée pour ajuster les paramètres de l’hamiltonien. L'hamiltonien ainsi construit fournit une description théorique très précise du mélange d’isospin dans les états nucléaires. Nous montrons la pertinence de cette approche dans deux applications importantes : (i) le calcul des amplitudes d'émission de proton interdites par isospin, essentiels dans le cadre d’astrophysique nucléaire et (ii) le calcul de corrections (dues au mélange d'isospin) aux transitions bêta superpermises du type Fermi, cruciales pour les tests des symétries fondamentales du Modèle Standard de l’interaction électrofaible. / In the thesis, we develop a microscopic approach to describe theisospin-symmetry breaking effects in sd-shell nuclei.The work is performed within the nuclear shell model.A realistic isospin-conserving Hamiltonian is supplementedby a charge-dependent part consisting of the Coulomb interaction andYukawa-type meson exchange potentials to model charge-dependent forces ofnuclear origin. The extended database of the experimental isobaric mass multiplet equation coefficients is compiled during the thesis work and is used in a fit of the Hamiltonian parameters.The constructed Hamiltonian provides an accurate theoretical description ofthe isospin mixing nuclear states. A specific behaviour of the IMME coefficients have been revealed.We present two important applications (i) calculations of isospin-forbiddenproton emission amplitudes, which is often of interest for nuclearastrophysics, and (ii) calculation on corrections to nuclear Fermi beta decay, which is crucial for the tests of fundamental symmetries of the weak interaction.
522

Classification de systèmes intégrables en coordonnées cylindriques en présence de champs magnétiques

Fournier, Félix 08 1900 (has links)
No description available.
523

Evoluční algoritmy při řešení problému obchodního cestujícího / Evolutionary Algorithms for the Solution of Travelling Salesman Problem

Jurčík, Lukáš January 2014 (has links)
This diploma thesis deals with evolutionary algorithms used for travelling salesman problem (TSP). In the first section, there are theoretical foundations of a graph theory and computational complexity theory. Next section contains a description of chosen optimization algorithms. The aim of the diploma thesis is to implement an application that solve TSP using evolutionary algorithms.
524

Intégrabilité et superintégrabilité de deuxième ordre dans l'espace Euclidien tridimensionel

Abdul-Reda, Hassan 02 1900 (has links)
L'article "A systematic search for nonrelativistic systems with dynamical symetries, Part I" publié il y a à peu près 50 ans a commencé une classification de ce qui est maintenant appelé les systèmes superintégrables. Il était dévoué aux systèmes dans l'espace Euclidien ayant plus d'intégrales de mouvement que de degrés de liberté. Les intégrales étaient toutes supposées de second ordre en quantité de mouvement. Dans ce mémoire, sont présentés de nouveaux résultats sur la superintégrabilité de second ordre qui sont pertinents à l'étude de la superintégrabilité d'ordre supérieur et de la superintégrabilité de systèmes ayant des potentiels vecteurs ou des particules avec spin. / The article "A systematic search for nonrelativistic systems with dynamical symetries, Part I" published about 50 years ago started the classification of what is now called superintegrable systems. It was devoted to systems in Euclidean space with more integrals of motion than degrees of freedom. The integrals were all assumed to be second order polynomials in the particle momentum. Here we present some further results on second order superintegrability that are relevant for studies of higher order superintegrability and for superintegrability for systems with vector potentials or for particles with spin.
525

Splitting Methods for Partial Differential-Algebraic Systems with Application on Coupled Field-Circuit DAEs

Diab, Malak 28 February 2023 (has links)
Die Anwenung von Operator-Splitting-Methoden auf gewöhnliche Differentialgleichungen ist gut etabliert. Für Differential-algebraische Gleichungen und partielle Differential-algebraische Gleichungen unterliegt sie jedoch vielen Einschränkungen aufgrund des Vorhandenseins von Nebenbedingungen. Die räumliche Diskretisierung reduziert PDAEs und lenkt unseren Fokus auf das Konzept der DAEs. Um eine reibungslose Übertragung des Operator-Splittings von ODEs auf DAEs durchzuführen, ist es wichtig, eine geeignete entkoppelte Struktur für das gewünschte Differential-algebraische System zu haben. In dieser Arbeit betrachten wir ein Modell, das partielle Differentialgleichungen für elektromagnetische Bauelemente - modelliert durch die Maxwell-Gleichungen - mit Differential-algebraischen Gleichungen koppelt, die die elementaren Schaltungselemente beschreiben. Nach der räumlichen Diskretisierung der klassischen Formulierung der Maxwell-Gleichungen mit Hilfe der finiten Integrationstechnik formulieren wir das resultierende gekoppelte System als Differential-algebraische Gleichung. Um eine geeignete Entkopplung zu bekommen, verwenden wir den zweigorientierten Loop-Cutset-Ansatz für die Schaltungsmodellierung. Daraus folgt, dass wir in der Lage sind, eine geeignete Operatorzerlegung so zu konstruieren, dass wir eine natürliche topologisch entkoppelte Port-Hamiltonsche DAE-Struktur erhalten. Wir schlagen einen Operator-Splitting-Ansatz für die Schaltungs-DAEs und gekoppelten Feld-Schaltungs-DAEs in entkoppelter Form vor und analysieren seine numerischen Eigenschaften. Darüber hinaus nutzen wir das Hamiltonsche Verhalten der inhärenten gewöhnlichen Differentialgleichung durch die Verwendung expliziter und energieerhaltender Zeitintegrations-methoden. Schließlich führen wir numerische Tests, um das mathematische Modell zu illustrieren und die Konvergenzergebnisse für das vorgeschlagene DAE-Operator-Splitting zu demonstrieren. / Le equazioni algebriche differenziali e algebriche alle derivate parziali hanno avuto un enorme successo come modelli di sistemi dinamici vincolati. Nella modellazione matem- atica, spesso si desidera catturare diversi aspetti di una situazione come le leggi di conservazione della fisica, il trasporto convettivo o la diffusione. Queste aspetti si riflettono nel sistema di equazioni del modello come operatori diversi. La tecnica dell’Operator Splitting si è rivelata una strategia di successo per affrontare problemi così complicati. L’applicazione dei metodi di Operator Splitting alle equazioni differenziali ordinarie (ODE) è ormai una tecnologia ben consolidata. Tuttavia, per equazioni algebriche differenziali (DAE) e algebriche differenziali parziali (PDAE), l’approccio è soggetto a molte restrizioni dovute alla presenza di vincoli e alla proprietà di indice. La discretizzazione spaziale riduce le PDAE e indirizza la nostra attenzione al concetto di DAE. Le DAE emergono in problemi dinamici vincolati come circuiti elettrici o reti di trasporto di energia. Al fine di generalizzare agevolmente la tecnica dell’Operator Splitting dalle ODE alle DAE, è importante avere una struttura disaccoppiata adeguata per il sistema algebrico differenziale desiderato. In questa tesi, consideriamo un modello che accoppia equazioni differenziali alle derivate parziali per dispositivi elettromagnetici -modellati dalle equazioni di Maxwell- con equazioni algebriche differenziali che descrivono gli elementi base del circuito. Dopo aver discretizzato spazialmente la formulazione classica delle equazioni di Maxwell usando la tecnica di integrazione finita, formuliamo il sistema accoppiato risultante come una equazione algebrica differenziale. Interpretando il dispositivo elettromagnetico come un elemento capacitivo, l’indice dell’intero sistema di circuito e campo accoppiato può essere specificato utilizzando le proprietà topologiche del circuito e non supera il valore di due. Per eseguire un disaccoppiamento appropriato, utilizziamo l’approccio loop-cutset per la modellazione dei circuiti. In tal modo siamo in grado di costruire una opportuna decomposizione dell’operatore tale da ottenere una naturale struttura disaccoppiata port-Hamiltonian DAE. Proponiamo un approccio di suddivisione dell’operatore per i DAE a circuito disaccoppiato e a circuito di campo accoppiato utilizzando gli algoritmi di divisione Lie-Trotter e Strang e per analizzare le proprietà numeriche di questi sistemi. Inoltre, sfruttiamo il comportamento hamiltoniano del sistema di equazioni differenziali ordinarie mediante l’utilizzo di metodi di integrazione temporale con esatta conservazione dell’energia. Poggiando sull’analisi di convergenza del metodo di suddivisione dell’operatore ODE, deriviamo i risultati di convergenza per l’approccio proposto che dipendono dall’indice delsistema e quindi dalla sua struttura topologica. Infine, eseguiamo prove numeriche di sistemi circuitali, nonchè sistemi accoppiati a circuito di campo, per testare il modello matematico e dimostrare i risultati di convergenza per la proposta Operator Splitting DAE. / The application of operator splitting methods to ordinary differential equations (ODEs) is well established. However, for differential-algebraic equations (DAEs) and partial differential-algebraic equations (PDAEs), it is subjected to many restrictions due to the presence of constraints. In constrained dynamical problems as electrical circuits or energy transport networks, DAEs arise. In order to perform a smooth transfer of the operator splitting from ODEs to DAEs, it is important to have a suitable decoupled structure for the desired differential-algebraic system. In this thesis, we consider a model which couples partial differential equations for electro- magnetic devices -modeled by Maxwell’s equations- with differential-algebraic equations describing the basic circuit elements. After spatially discretizing the classical formulation of Maxwell’s equations using the finite integration technique, we formulate the resulting coupled system as a differential-algebraic equation. To perform an appropriate decoupling, we use the branch oriented loop-cutset approach for circuit modeling. It follows that we are able to construct a suitable operator decomposition such that we obtain a natural topologically decoupled port-Hamiltonian DAE structure. We propose an operator splitting approach for the decoupled circuit and coupled field- circuit DAEs using the Lie-Trotter and Strang splitting algorithms and analyze its numerical properties. Furthermore, we exploit the Hamiltonian behavior of the system’s inherent ordinary differential equation by the utilization of explicit and energy-preserving time integration methods. Based on the convergence analysis of the ODE operator splitting method, we derive convergence results for the proposed approach that depends on the index of the system and thus on its topological structure. Finally, we perform numerical tests, to underline the mathematical model and to demonstrate the convergence results for the proposed DAE operator splitting.
526

Sur la dynamique hamiltonienne et les actions symplectiques de groupes

Sarkis Atallah, Marcelo 07 1900 (has links)
Cette thèse contient quatre articles qui étudient les phénomènes de rigidité des transforma- tions hamiltoniennes des variétés symplectiques. Le premier article, rédigé en collaboration avec Egor Shelukhin, examine les obstructions à l’existence de symétries hamiltoniennes d’ordre fini sur une variété symplectique fermée (M,ω); c’est-à-dire de torsion hamiltonienne. En d’autres termes, nous étudions les sous- groupes finis du groupe des difféomorphismes hamiltoniens Ham(M,ω). Nous identifions trois sources principales d’obstructions: Contraintes topologiques. Inspirés par un résultat de Polterovich montrant que les variétés symplectiques asphériques n’admettent pas de torsion hamiltonienne, nous établissons que la présence d’un sous-groupe fini non trivial de Ham(M, ω) implique l’existence d’une sphère A ∈ π2(M) avec ⟨[ω],A⟩ > 0 et ⟨c1(M),A⟩ > 0. En particulier, les variétés symplectiques négativement monotones et les variétés symplectiques Calabi-Yau n’admettent pas de torsion hamiltonienne. Présence de courbes J-holomorphes. De manière générale, il y a de nombreux exemples de torsion hamiltonienne, par exemple toute rotation de la sphère de dimension deux par une fraction irrationnelle de π. Lorsque (M,ω) est positivement monotone, nous montrons que l’existence de torsion hamiltonienne impose une condition géométrique qui implique que les sphères J-holomorphes non constantes sont présentes partout. Ce phénomène était prédit dans une liste de problèmes contenue dans la monographie d’introduction de McDuff et de Salamon. Rigidité métrique spectrale. Notre analyse révèle que, pour les variétés symplectiques posi- tivement monotones, il existe un voisinage de l’identité dans Ham(M,ω) dans la topologie induite par la métrique spectrale qui ne contient aucun sous-groupe fini non trivial. Le principal résultat du deuxième article établit que, pour une large classe de variétés sym- plectiques, le flux d’un lacet de difféomorphismes symplectiques est entièrement déterminé par la classe d’homotopie de ses orbites. Comme application, nous obtenons de nouveaux exemples où l’existence d’un point fixe d’une action symplectique du cercle implique qu’elle est hamiltonienne et de nouvelles conditions assurant que le groupe de flux est trivial. De plus, nous obtenons des obstructions à l’existence d’éléments non triviaux de Symp0(M,ω) ayant un ordre fini. Le troisième article, rédigé en collaboration avec Han Lou, démontre une version de la conjecture de Hofer-Zehnder pour les variétés symplectiques fermées semi-positives dont l’homologie quantique est semi-simple; ce résultat généralise le travail révolutionnaire de Shelukhin sur les variétés symplectiques monotones. Le résultat montre qu’un difféomor- phisme hamiltonien possédant plus de points fixes contractiles, comptés homologiquement, que le nombre total de Betti de la variété doit avoir une infinité de points périodiques. La composante clé de la preuve est une nouvelle étude de l’effet de la réduction modulo p, un nombre premier, sur les bornes de l’homologie de Floer filtrée qui proviennent de la semi- simplicité. Cette étude repose sur la théorie des extensions algébriques des corps équipés d’une norme non-archimédienne. Le quatrième article, écrit en collaboration avec Habib Alizadeh et Dylan Cant, examine la déplaçabilité d’une sous-variété lagrangienne fermée L d’une variété symplectique convexe á l’infini par un difféomorphisme hamiltonien à support compact. Nous concluons qu’un difféomorphisme hamiltonien φ dont la norme spectrale est plus petite qu’un ħ(L) > 0 ne dépendant que de L ⊆ W ne peut pas déplacer L. De plus, nous établissons une estimation du nombre de valeurs d’action en terme de la longueur du cup-produit pour le nombre de valeurs d’action; lorsque L est rationnelle, cela implique une estimation du nombre de points d’intersection L ∩ φ(L) en terme de la longueur du cup-produit. Ainsi, nous montrons que le nombre de points fixes d’un difféomorphisme hamiltonien d’une variété symplectique fermée rationnelle (M, ω) dont la norme spectrale est plus petite que la constante de rationalité est au moins de 1 plus la longueur du cup-produit de M. / This thesis comprises four articles that study rigidity phenomena of Hamiltonian transfor- mations of symplectic manifolds. The first article, co-authored with Egor Shelukhin, examines obstructions to the existence of Hamiltonian symmetries of finite order on a closed symplectic manifold (M,ω); Hamil- tonian torsion. In other words, we study the finite subgroups of the group of Hamiltonian diffeomorphisms Ham(M, ω). We identify three primary sources of obstructions: Topological constraints. Inspired by a result of Polterovich showing that symplectically aspherical symplectic manifolds do not admit Hamiltonian torsion, we establish that the presence of a non-trivial finite subgroup of Ham(M,ω) implies that there exists a sphere A ∈ π2(M) with ⟨[ω],A⟩ > 0 and ⟨c1(M),A⟩ > 0. In particular, symplectically Calabi-Yau, and spherically negative-monotone symplectic manifolds do not admit Hamiltonian torsion. The presence of J-holomorphic curves. For general closed symplectic manifolds, there are plenty of examples of Hamiltonian torsion, for instance, any rotation of the two-sphere by an irrational fraction of π. When (M, ω) is spherically positive-monotone, we show the existence of Hamiltonian torsion imposes geometrical uniruledness, which implies that non-constant J-holomorphic spheres are ubiquitous. This phenomenon was predicted in a list of problems contained in the introductory monograph of McDuff and Salamon. The spectral metric rigidity. Our study reveals that for spherically positive-monotone (M, ω), there exists a neighbourhood of the identity in Ham(M,ω), in the topology induced by the spectral metric, that does not contain any non-trivial finite subgroup. The main result of the second article establishes that for a broad class of symplectic manifolds the flux of a loop of symplectic diffeomorphisms is completely determined by the homotopy class of its orbits. As an application, we obtain a new vanishing result for the flux group and new instances where the existence of a fixed point of a symplectic circle action implies that it is Hamiltonian. Moreover, we obtain obstructions to the existence of non-trivial elements of Symp0(M,ω) that have finite order. The third article, co-authored with Han Lou, proves a version of the Hofer-Zehnder conjec- ture for closed semipositive symplectic manifolds whose quantum homology is semisimple; this result generalizes the groundbreaking work of Shelukhin in the spherically positive- monotone setting. The result shows that a Hamiltonian diffeomorphism possessing more contractible fixed points, counted homologically, than the total Betti number of the mani- fold, must have infinitely many periodic points. The key component of the proof is a new study of the effect of reduction modulo a prime on the bounds on filtered Floer homology that arise from semisimplicity. It relies on the theory of algebraic extensions of non-Archimedean normed fields. The fourth article, co-authored with Habib Alizadeh and Dylan Cant, investigates the dis- placeability of a closed Lagrangian submanifold L of a convex-at-infinity symplectic manifold by a compactly supported Hamiltonian diffeomorphism. We conclude that a Hamiltonian diffeomorphism φ whose spectral norm is smaller than some ħ(L) > 0, depending only on L ⊂ W , cannot displace L. Furthermore, we establish a cup-length estimate for the number of action values; when L is rational, this implies a cup-length estimate on the number of intersection points L ∩ φ(L). As a corollary, we demonstrate that the number of fixed points of a Hamiltonian diffeomorphism of a closed rational symplectic manifold (M,ω), whose spectral norm is smaller than the rationality constant, is bounded below by one plus the cup-length of M.
527

Experimental and numerical study of a magnetic realization of a Bose-Einstein Condensate in a purely organic spin-1/2 quantum magnet (NIT2Py)

Moosavi Askari, Reza 08 1900 (has links)
No description available.
528

Sur des méthodes préservant les structures d'une classe de matrices structurées / On structure-preserving methods of a class of structured matrices

Ben Kahla, Haithem 14 December 2017 (has links)
Les méthodes d'algèbres linéaire classiques, pour le calcul de valeurs et vecteurs propres d'une matrice, ou des approximations de rangs inférieurs (low-rank approximations) d'une solution, etc..., ne tiennent pas compte des structures de matrices. Ces dernières sont généralement détruites durant le procédé du calcul. Des méthodes alternatives préservant ces structures font l'objet d'un intérêt important par la communauté. Cette thèse constitue une contribution dans ce domaine. La décomposition SR peut être calculé via l'algorithme de Gram-Schmidt symplectique. Comme dans le cas classique, une perte d'orthogonalité peut se produire. Pour y remédier, nous avons proposé deux algorithmes RSGSi et RMSGSi qui consistent à ré-orthogonaliser deux fois les vecteurs à calculer. La perte de la J-orthogonalité s'est améliorée de manière très significative. L'étude directe de la propagation des erreurs d'arrondis dans les algorithmes de Gram-Schmidt symplectique est très difficile à effectuer. Nous avons réussi à contourner cette difficulté et donner des majorations pour la perte de la J-orthogonalité et de l'erreur de factorisation. Une autre façon de calculer la décomposition SR est basée sur les transformations de Householder symplectique. Un choix optimal a abouti à l'algorithme SROSH. Cependant, ce dernier peut être sujet à une instabilité numérique. Nous avons proposé une version modifiée nouvelle SRMSH, qui a l'avantage d'être aussi stable que possible. Une étude approfondie a été faite, présentant les différentes versions : SRMSH et SRMSH2. Dans le but de construire un algorithme SR, d'une complexité d'ordre O(n³) où 2n est la taille de la matrice, une réduction (appropriée) de la matrice à une forme condensée (J(Hessenberg forme) via des similarités adéquates, est cruciale. Cette réduction peut être effectuée via l'algorithme JHESS. Nous avons montré qu'il est possible de réduire une matrice sous la forme J-Hessenberg, en se basant exclusivement sur les transformations de Householder symplectiques. Le nouvel algorithme, appelé JHSJ, est basé sur une adaptation de l'algorithme SRSH. Nous avons réussi à proposer deux nouvelles variantes, aussi stables que possible : JHMSH et JHMSH2. Nous avons constaté que ces algorithmes se comportent d'une manière similaire à l'algorithme JHESS. Une caractéristique importante de tous ces algorithmes est qu'ils peuvent rencontrer un breakdown fatal ou un "near breakdown" rendant impossible la suite des calculs, ou débouchant sur une instabilité numérique, privant le résultat final de toute signification. Ce phénomène n'a pas d'équivalent dans le cas Euclidien. Nous avons réussi à élaborer une stratégie très efficace pour "guérir" le breakdown fatal et traîter le near breakdown. Les nouveaux algorithmes intégrant cette stratégie sont désignés par MJHESS, MJHSH, JHM²SH et JHM²SH2. Ces stratégies ont été ensuite intégrées dans la version implicite de l'algorithme SR lui permettant de surmonter les difficultés rencontrées lors du fatal breakdown ou du near breakdown. Rappelons que, sans ces stratégies, l'algorithme SR s'arrête. Finalement, et dans un autre cadre de matrices structurées, nous avons présenté un algorithme robuste via FFT et la matrice de Hankel, basé sur le calcul approché de plus grand diviseur commun (PGCD) de deux polynômes, pour résoudre le problème de la déconvolution d'images. Plus précisément, nous avons conçu un algorithme pour le calcul du PGCD de deux polynômes bivariés. La nouvelle approche est basée sur un algorithme rapide, de complexité quadratique O(n²), pour le calcul du PGCD des polynômes unidimensionnels. La complexité de notre algorithme est O(n²log(n)) où la taille des images floues est n x n. Les résultats expérimentaux avec des images synthétiquement floues illustrent l'efficacité de notre approche. / The classical linear algebra methods, for calculating eigenvalues and eigenvectors of a matrix, or lower-rank approximations of a solution, etc....do not consider the structures of matrices. Such structures are usually destroyed in the numerical process. Alternative structure-preserving methods are the subject of an important interest mattering to the community. This thesis establishes a contribution in this field. The SR decomposition is usually implemented via the symplectic Gram-Schmidt algorithm. As in the classical case, a loss of orthogonality can occur. To remedy this, we have proposed two algorithms RSGSi and RMSGSi, where the reorthogonalization of a current set of vectors against the previously computed set is performed twice. The loss of J-orthogonality has significantly improved. A direct rounding error analysis of symplectic Gram-Schmidt algorithm is very hard to accomplish. We managed to get around this difficulty and give the error bounds on the loss of the J-orthogonality and on the factorization. Another way to implement the SR decomposition is based on symplectic Householder transformations. An optimal choice of free parameters provided an optimal version of the algorithm SROSH. However, the latter may be subject to numerical instability. We have proposed a new modified version SRMSH, which has the advantage of being numerically more stable. By a detailes study, we are led to two new variants numerically more stables : SRMSH and SRMSH2. In order to build a SR algorithm of complexity O(n³), where 2n is the size of the matrix, a reduction to the condensed matrix form (upper J-Hessenberg form) via adequate similarities is crucial. This reduction may be handled via the algorithm JHESS. We have shown that it is possible to perform a reduction of a general matrix, to an upper J-Hessenberg form, based only on the use of symplectic Householder transformations. The new algorithm, which will be called JHSH algorithm, is based on an adaptation of SRSH algorithm. We are led to two news variants algorithms JHMSH and JHMSH2 which are significantly more stable numerically. We found that these algortihms behave quite similarly to JHESS algorithm. The main drawback of all these algorithms (JHESS, JHMSH, JHMSH2) is that they may encounter fatal breakdowns or may suffer from a severe form of near-breakdowns, causing a brutal stop of the computations, the algorithm breaks down, or leading to a serious numerical instability. This phenomenon has no equivalent in the Euclidean case. We sketch out a very efficient strategy for curing fatal breakdowns and treating near breakdowns. Thus, the new algorithms incorporating this modification will be referred to as MJHESS, MJHSH, JHM²SH and JHM²SH2. These strategies were then incorporated into the implicit version of the SR algorithm to overcome the difficulties encountered by the fatal breakdown or near-breakdown. We recall that without these strategies, the SR algorithms breaks. Finally ans in another framework of structured matrices, we presented a robust algorithm via FFT and a Hankel matrix, based on computing approximate greatest common divisors (GCD) of polynomials, for solving the problem pf blind image deconvolution. Specifically, we designe a specialized algorithm for computing the GCD of bivariate polynomials. The new algorithm is based on the fast GCD algorithm for univariate polynomials , of quadratic complexity O(n²) flops. The complexitiy of our algorithm is O(n²log(n)) where the size of blurred images is n x n. The experimental results with synthetically burred images are included to illustrate the effectiveness of our approach
529

Non-convex Bayesian Learning via Stochastic Gradient Markov Chain Monte Carlo

Wei Deng (11804435) 18 December 2021 (has links)
<div>The rise of artificial intelligence (AI) hinges on the efficient training of modern deep neural networks (DNNs) for non-convex optimization and uncertainty quantification, which boils down to a non-convex Bayesian learning problem. A standard tool to handle the problem is Langevin Monte Carlo, which proposes to approximate the posterior distribution with theoretical guarantees. However, non-convex Bayesian learning in real big data applications can be arbitrarily slow and often fails to capture the uncertainty or informative modes given a limited time. As a result, advanced techniques are still required.</div><div><br></div><div>In this thesis, we start with the replica exchange Langevin Monte Carlo (also known as parallel tempering), which is a Markov jump process that proposes appropriate swaps between exploration and exploitation to achieve accelerations. However, the na\"ive extension of swaps to big data problems leads to a large bias, and the bias-corrected swaps are required. Such a mechanism leads to few effective swaps and insignificant accelerations. To alleviate this issue, we first propose a control variates method to reduce the variance of noisy energy estimators and show a potential to accelerate the exponential convergence. We also present the population-chain replica exchange and propose a generalized deterministic even-odd scheme to track the non-reversibility and obtain an optimal round trip rate. Further approximations are conducted based on stochastic gradient descents, which yield a user-friendly nature for large-scale uncertainty approximation tasks without much tuning costs. </div><div><br></div><div>In the second part of the thesis, we study scalable dynamic importance sampling algorithms based on stochastic approximation. Traditional dynamic importance sampling algorithms have achieved successes in bioinformatics and statistical physics, however, the lack of scalability has greatly limited their extensions to big data applications. To handle this scalability issue, we resolve the vanishing gradient problem and propose two dynamic importance sampling algorithms based on stochastic gradient Langevin dynamics. Theoretically, we establish the stability condition for the underlying ordinary differential equation (ODE) system and guarantee the asymptotic convergence of the latent variable to the desired fixed point. Interestingly, such a result still holds given non-convex energy landscapes. In addition, we also propose a pleasingly parallel version of such algorithms with interacting latent variables. We show that the interacting algorithm can be theoretically more efficient than the single-chain alternative with an equivalent computational budget.</div>
530

Weak nonergodicity in anomalous diffusion processes

Albers, Tony 23 November 2016 (has links)
Anomale Diffusion ist ein weitverbreiteter Transportmechanismus, welcher für gewöhnlich mit ensemble-basierten Methoden experimentell untersucht wird. Motiviert durch den Fortschritt in der Einzelteilchenverfolgung, wo typischerweise Zeitmittelwerte bestimmt werden, entsteht die Frage nach der Ergodizität. Stimmen ensemble-gemittelte Größen und zeitgemittelte Größen überein, und wenn nicht, wie unterscheiden sie sich? In dieser Arbeit studieren wir verschiedene stochastische Modelle für anomale Diffusion bezüglich ihres ergodischen oder nicht-ergodischen Verhaltens hinsichtlich der mittleren quadratischen Verschiebung. Wir beginnen unsere Untersuchung mit integrierter Brownscher Bewegung, welche von großer Bedeutung für alle Systeme mit Impulsdiffusion ist. Für diesen Prozess stellen wir die ensemble-gemittelte quadratische Verschiebung und die zeitgemittelte quadratische Verschiebung gegenüber und charakterisieren insbesondere die Zufälligkeit letzterer. Im zweiten Teil bilden wir integrierte Brownsche Bewegung auf andere Modelle ab, um einen tieferen Einblick in den Ursprung des nicht-ergodischen Verhaltens zu bekommen. Dabei werden wir auf einen verallgemeinerten Lévy-Lauf geführt. Dieser offenbart interessante Phänomene, welche in der Literatur noch nicht beobachtet worden sind. Schließlich führen wir eine neue Größe für die Analyse anomaler Diffusionsprozesse ein, die Verteilung der verallgemeinerten Diffusivitäten, welche über die mittlere quadratische Verschiebung hinausgeht, und analysieren mit dieser ein oft verwendetes Modell der anomalen Diffusion, den subdiffusiven zeitkontinuierlichen Zufallslauf. / Anomalous diffusion is a widespread transport mechanism, which is usually experimentally investigated by ensemble-based methods. Motivated by the progress in single-particle tracking, where time averages are typically determined, the question of ergodicity arises. Do ensemble-averaged quantities and time-averaged quantities coincide, and if not, in what way do they differ? In this thesis, we study different stochastic models for anomalous diffusion with respect to their ergodic or nonergodic behavior concerning the mean-squared displacement. We start our study with integrated Brownian motion, which is of high importance for all systems showing momentum diffusion. For this process, we contrast the ensemble-averaged squared displacement with the time-averaged squared displacement and, in particular, characterize the randomness of the latter. In the second part, we map integrated Brownian motion to other models in order to get a deeper insight into the origin of the nonergodic behavior. In doing so, we are led to a generalized Lévy walk. The latter reveals interesting phenomena, which have never been observed in the literature before. Finally, we introduce a new tool for analyzing anomalous diffusion processes, the distribution of generalized diffusivities, which goes beyond the mean-squared displacement, and we analyze with this tool an often used model of anomalous diffusion, the subdiffusive continuous time random walk.

Page generated in 0.0849 seconds