• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 40
  • 13
  • 8
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 145
  • 53
  • 22
  • 19
  • 18
  • 18
  • 17
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Design of Power Converter and Wireless Data Acquisition System for TEG Energy Harvester

Xing, Shaoxu 01 November 2016 (has links)
In order to avoid the accidents like Fukushima Disaster and monitor the operation status of nuclear power plant, a wireless sensor system which is powered by the Thermoelectric Generator (TEG) Energy Harvester is designed and built. Meanwhile, a power converter circuit has also been designed to converter the output voltage of TEG Energy Harvester to a DC voltage to charge the battery or power the application systems. Several prototypes based on this power converter circuit have been built for Thermoelectric Generator (TEG) energy harvester and tested in both working and laboratory conditions. The reliability of the TEG Energy Harvester system in the gamma radiation environment has been examined in the experiments. Based on the experiments results, the design was optimized. And an optimized Maximum Power Point Tracking algorithm has also been applied in the prototype to extract the maximum power from the TEG Energy Harvester in all conditions. The TEG Energy Harvester system would be greatly simplified as a new type of sensor will be applied. The design of the signal conditioning circuit for this sensor has also been presented. / Master of Science
32

Backpack Energy Harvester with Human Walking Model

Yuan, Yue 05 June 2017 (has links)
The objective of this thesis is to design, analyze, and fabricate an innovative backpack energy harvester for human walking. To model human walking with backpack energy harvester, a simple dual-mass model has been developed and studied first. Dual-mass model for three types of distinct harvesters were investigated, pure damping, traditional rack pinion energy harvester and our MMR based energy harvester. A comparison in the output power and human comfort between the three types of harvesters is discussed. However, the dual-mass model could not effectively represent human walking in real situation with sinusoidal input, like M shaped Ground Reaction Force (GRF), vertical Center of Mass (COM) motion, etc. Thus, a bipedal walking model has been proposed to simulate human walking with backpack harvester. Experiments were conducted to compare power output and efficiency of MMR based backpack energy harvester with traditional rack pinion backpack energy harvester, and verify conclusions from the bipedal walking model that the proposed backpack energy harvester using mechanical motion rectifier (MMR) mechanism has larger power output than traditional backpack energy harvester at different walking speed. In human treadmill test, subjects were asked to wear the backpack frame which embedded with harvesters walking on a treadmill. Two walking speed, 3mph and 3.5mph, and four resistor values has been tested. The test results showed that the MMR based backpack energy harvester generated more power regardless of resistor values and walking speed. Up to 4.84W average power and instant power of 12.8W could be obtained while the subject walking on the treadmill at 3.5mph speed with MMR based backpack energy harvester. / Master of Science
33

Magnetoelectric Composites for On-Chip Near-Resonance Applications

Zhou, Yuan 08 September 2014 (has links)
Magnetoelectric (ME) effect is defined as the change in dielectric polarization (P) of a material under an applied magnetic field (H) or an induced magnetization (M) under an external electric field (E). ME materials have attracted number of investigators due to their potential for improving applications such as magnetic field sensors, filters, transformers, memory devices and energy harvesters. It has been shown both experimentally and theoretically that the composite structures consisting of piezoelectric and magnetostrictive phases possess stronger ME coupling in comparison to that of single phase materials. Giant magnetoelectric effect has been reported in variety of composites consisting of bulk-sized ME composites and thin film ME nanostructures. In this dissertation, novel ME composite systems are proposed, synthesized and characterized in both bulk and thin films to address the existing challenges in meeting the needs of practical applications. Two applications were the focused upon in this study, tunable transformer and dual phase energy harvester, where requirements can be summarized as: high ME coefficient under both on-resonance and off-resonance conditions, broad bandwidth, and low applied DC bias. In the first chapter, three challenges related to the conventional ME behavior in bulk ME composites have been addressed (1) The optimized ME coefficient can be achieved without external DC magnetic field by using a self-biased ME composite with a homogenous magnetostrictive material. The mechanism of such effect and its tunability are studied; (2) A near-flat ME response regardless of external magnetic field is obtained in a self-biased ME composite with geometry gradient structure; (3) By optimizing interfacial coupling with co-firing techniques, the ME coefficient can be dramatically enhanced. Theses co-fired ME laminates not only exhibit high coupling coefficient due to direct bonding, but also illustrate a self-biased effect due to the built-in stress during co-sintering process. These results present significant advancement toward the development of multifunctional ME devices since it eliminates the need for DC bias, expands the working bandwidth and enhances the ME voltage coefficient. Next, magnetoelectric nanocomposites were developed for understanding the nature of the growth of anisotropic thin film structures. In this chapter following aspects were addressed: (1) Controlled growth of nanostructures with well-defined morphology was obtained. Microstructure and surface morphology evolution of the piezoelectric BaTiO3 films was systematically analyzed. A growth model was proposed by considering the anisotropy of surface energy and the formation of twin lamellae structure within the frame work of Structure Zone Model (SZM) and Dynamic Scaling Theory (DST). In parallel to BaTiO3 films, well-ordered nanocomposite arrays [Pb1.1(Zr0.6Ti0.4)O3/CoFe2O4] with controlled grain orientation were developed and investigated by a novel hybrid deposition method. The influence of the pre-deposited template film orientation on the growth of ME composite array was studied. (2) PZT/CFO/PZT thick composite film and BTO/CFO thin film were synthesized using sol-gel deposition (SGD) and pulsed laser deposition (PLD) techniques, respectively. The HRTEM analysis revealed local microstructure at the interface of consecutive constituents. The interfacial property variation of these films was found to affect the coupling coefficient of corresponding ME nanocomposites. Subsequently, a novel complex three-dimensional ME composite with highly anisotropic structure was developed using a hybrid synthesis method. The influence of growth condition on the microstructure and property of the grown complex composites was studied. The film with highly anisotropic structure was found to possess tailored ferroelectric response indicating the promise of this synthesis method and microstructure. Based on the laminated ME composites, three types of ME tunable transformer designs were designed and fabricated. The goal was to develop a novel ME transformer with tunable performance (voltage gain and/or working resonance frequency) under applied DC magnetic field. Conventional ME transformers need either winding coil or large external magnetic field to achieve the tunable feature. Considering the high ME coupling of ME laminate, two ME transformers were developed by epoxy bonding Metglas with transversely/longitudinally poled piezoelectric ceramic transformer. The influence of different operation modes toward magnetoelectric tunability was analyzed. In addressing the concern of the epoxy bonding interface, a co-fired ME transformer with unique piezoelectric transformer/magnetostrictive layer/piezoelectric transformer trilayer structure was designed. The design and development strategy of thin film ME transformer was discussed to illustrate the potential for ME transformer miniaturization and on-chip integration. Lastly, motivated by the increasing demand of energy harvesting (EH) systems to support self-powered sensor nodes in structural health monitoring system, a magnetoelectric composite based energy harvester was developed. The development and design concept of the magnetoelectric energy harvester was systematically discussed. In particular, the first dual-phase self-biased ME energy harvester was designed which can simultaneously harness both vibration and stray magnetic field (Hac) in the absence of DC magnetic field. Strain distribution of the EH was simulated using the finite element model (FEM) at the first three resonance frequencies. Additionally, the potential of transferring this simple EH structure into MEMS scalable components was mentioned. These results provide significant advancement toward high energy density multimode energy harvesting system. / Ph. D.
34

The design of a hydraulic equalizer bar for the feeding mechanism on forest harvester heads

Söderlund, Arvid January 2023 (has links)
Due to the importance of a correct tree placement and the wear that occurs to equalizer bars inharvester heads, Komatsu Forest AB in Umeå was interested if the bar could be replaced with ahydraulic system. According to Komatsu, the problems were that the equalizer bars that are responsible forsynchronizing the delimbing knives and feeding mechanism add weight, take up space and have atendency to break before their life expectancy. Some harvester heads do not possess equalizer barsbut this complicates tree length and diameter measurements, risks increasing wear to parts of theharvester head not designed to be in contact with the trees and makes cutting the tree correctlymore difficult during certain actions. Thus, Komatsu saw a potential opportunity to increase thefeeding mechanisms performance and life span through a hydraulic solution. In this thesis, a literature study investigating practiced solutions to similar systems as well asa previous study by Komatsu in the subject are included. Furthermore, the product design process,implementation and verification of the solution are covered. The resulting solution included two Parker A2N0029D2H Series 3000 accumulators and fourParker DSH083NV valves, coupled in parallel pairs to create two arrangements of the final conceptsystem, “Half Control Remastered”; “regenerative coupling force distributor” and “shut off valveflow divider”. During the testing both the Regen and shut off function, mounted on a Komatsu C164harvester head, were observed to help during tree picking, grasping and feeding, but both functions,unfortunately, had disadvantages. The Regen function was unstable since hydraulic flow occurredfrom one cylinder to the other, and the Shut off function was imprecise because it became “choppy”with increased accuracy. While testing the system arranged with the Shut off function in the forest,it assisted during slow feeding as well as feeding while simultaneously forcing rotation, where theharvester head tended to drop trees. However, the system did little to no difference as soon thedelimbing knives were deployed. The results that are revealed in this thesis are difficult to evaluate, since Scandinavian forestharvester drivers do not challenge the harvester head in a way for the hydraulic equalizer barsystem to assist to its full potential. To conclude, the system shows promise to meet Komatsu’sperformance requirements but further testing and development is necessary for it to become refinedenough to implement in their mass produced harvester heads.
35

Redução em campo da sujidade em toras de madeira de eucalipto para produção de celulose / Decrease in the dirt field in logs of eucalyptus wood for pulp production

Silva, Dório Anderson Vicente da 31 July 2014 (has links)
Made available in DSpace on 2015-03-26T14:01:18Z (GMT). No. of bitstreams: 1 texto completo.pdf: 890323 bytes, checksum: 14941c57092a195f5e5c48023e05d0ee (MD5) Previous issue date: 2014-07-31 / The aim of the study was to evaluate some alternatives for reducing dirt on eucalyptus logs without bark, coming from the field to the pulp industry, without loss of productivity in harvesting activities with the Harvester. Five treatments were applied: change in angle of the screens scrolls head; application of stretch marks on the back of the head; reduction of the radius of the lower head knives; applying the sheet metal back on the outside of the upper knife cylinder head (deflector), and processing the wood in front of the harvester, ie away from the stack (modification process). All treatments reduced the soil except the reduction of the radius of the lower knives. The most effective was the change in the process. However, in this treatment, a loss of 6.8% yield. When analyzed, the application of stretch marks on the back of the head was considered the most efficient because it reduced the dirt (- 21%) and increased productivity (+3.8%). When analyzed financially harvesting and transportation, would be more feasible to transport the dirt than working with lower productivity in the harvest. / O objetivo do trabalho avaliar algumas alternativas para redução da sujidade nas toras de eucalipto sem casca, advindos do campo, para indústria de celulose, sem perda de produtividade nas atividades de colheita com o Harvester. Foram aplicados cinco tratamentos: alteração no ângulo dos crivos dos rolos do cabeçote; aplicação de estrias no dorso do cabeçote; redução do raio das facas inferiores do cabeçote; aplicação de chapa metálica no dorso exterior das facas superiores do cabeçote (defletor) e processamento da madeira na frente do Harvester, ou seja, longe da pilha (alteração de processo). Todos os tratamentos reduziram a sujidade, exceto a redução do raio das facas inferiores. O mais eficiente foi a alteração no processo. Porém, neste tratamento houve uma perda de 6,8% na produtividade. Quando analisada, a aplicação das estrias no dorso do cabeçote foi considerada a mais eficiente, pois reduziu a sujidade (-21 %) e aumentou a produtividade (+3,8 %). Quando analisado financeiramente a colheita e o transporte, seria mais viável transportar a sujidade do que trabalhar com menor produtividade na colheita.
36

Modélisation, simulation et mise en œuvre d'un système de récupération d'énergie : application à un amortisseur semi-actif autonome / Modeling, simulation and implementation of an energy recovery system : application to a semi-active autonomous damper

Lafarge, Barbara 22 June 2018 (has links)
Ce travail est consacré à l’étude et à la mise au point de récupérateurs d’énergie intégrés à une suspension automobile afin par exemple d’alimenter soit un microcontrôleur, soit des capteurs, soit de réaliser le contrôle santé des pièces ou encore de rendre l’amortisseur au sein d’une suspension d’un véhicule semi-actif autonome en fonction du niveau d’énergie disponible. Compte tenu des types de déplacement disponible dans la suspension, il est naturel de s’orienter vers des techniques électromagnétiques pour la récupération d’énergie liée aux grands déplacements et vers des techniques piézoélectriques pour les vibrations. L’utilisation de tels systèmes s’avère cependant complexe et un certain nombre de points techniques doivent être résolus pour les mettre en œuvre. En premier lieu, une parfaite connaissance des techniques de conversion piézoélectrique et électromagnétique est nécessaire. Dans ce but, le langage Bond Graph est utilisé et appliqué avec succès sur l’ensemble du système de suspension ainsi que sur les récupérateurs d’énergie en raison de sa capacité à traduire les effets physiques et les échanges énergétiques au sein de systèmes multiphysiques. D’autre part, des confrontations simulation/expérience sont réalisées en laboratoire sur chacun des récupérateurs d’énergie piézoélectrique et électromagnétique, afin de s’assurer du bon fonctionnement de ces systèmes lors de leurs intégrations dans un véhicule réel. Ainsi, des défauts de nature différente comme la force magnétique déformant le mouvement de translation de l’amortisseur, la mauvaise conduction des lignes de champ magnétique ou les endommagements du matériau piézoélectrique lors d’essais répétés, sont analysés dans les premiers démonstrateurs afin d'être ensuite corrigés. Enfin, un modèle global de suspension automobile intégrant simultanément les deux sous-systèmes de récupération d’énergie est étudié. Afin de compléter cette analyse, une modélisation du circuit de restitution et du stockage d’énergie est également proposée et permet une étude qualitative et quantitative des performances des systèmes de récupération d’énergie piézoélectrique et électromagnétique. Les résultats issus de ces modèles sont exploités dans le but de concevoir des récupérateurs d’énergie s’adaptant au mieux au domaine de l'automobile. Pour conclure, des tests sur route avec le récupérateur d’énergie piézoélectrique démontrent la validité de l’analyse théorique et la faisabilité des techniques développées. / This work is devoted to the study and the development of energy harvesters integrated in an automobile suspension, for example to supply either a microcontroller or sensors, or to perform an health check of parts or render semi-active the shock absorber within a suspension of an autonomous vehicle according to the level of energy available. Given the types of displacement available in the suspension, it is natural to move towards electromagnetic techniques for energy recovery related to large displacements and to piezoelectric techniques for vibrations. However, the use of such systems is complex and a number of technical issues need to be addressed to implement them. First, a perfect knowledge of piezoelectric and electromagnetic conversion techniques is required. To this end, the Bond Graph language is used and successfully applied to the entire suspension system as well as energy harvesters because of its ability to translate physical effects and energy exchanges into multiphysics systems. Furthermore, simulation / experiment confrontations are carried out in the laboratory on each of the piezoelectric and electromagnetic energy harvesters, to ensure the proper functioning of these systems during their integration into a real vehicle. Thus, defects of different nature such as the magnetic force deforming the translation movement of the damper, the poor conduction of the magnetic field lines or the damage of the piezoelectric material during repeated tests, are analyzed in the first demonstrators in order to be corrected. Finally, a global model of automobile suspension simultaneously integrating the two subsystems of energy recovery is studied. To complete this analysis, a modeling of the circuit of restitution and energy storage is also proposed and allows a qualitative and quantitative study of the performances of piezoelectric and electromagnetic energy recovery systems. The results from these models are used to design energy recovery systems that best fit the automotive field. To conclude, road tests with the piezoelectric energy harvesters demonstrate the validity of the theoretical analysis and the feasibility of the techniques developed.
37

Vibrational Energy Harvesting : Design, Performance and Scaling Analysis

Sriramdas, Rammohan January 2016 (has links) (PDF)
Low-power requirements of contemporary sensing technology attract research on alternate power sources that can replace batteries. Energy harvesters function as power sources for sensors and other low-power devices by transducing the ambient energy into usable electrical form. Energy harvesters absorbing the ambient vibrations that have potential to deliver uninterrupted power to sensing nodes installed in remote and vibration rich environments motivate the research in vibrational energy harvesting. Piezoelectric bimorphs have been demonstrating a pre-eminence in converting the mechanical energy in ambient vibrations into electrical energy. Improving the performance of these harvesters is pivotal as the energy in ambient vibrations is innately low. The present work is organized in three major sections: firstly, audit of the energy available in a vibrating source and design for effective transfer of the energy to harvesters, secondly, design of vibration energy harvesters with a focus to enhance their performance, and lastly, identification of key performance metrics influencing conversion efficiencies and scaling analysis for MEMS harvesters. Typical vibration levels in stationary installations such as surfaces of blowers and ducts, and in mobile platforms such as light and heavy transport vehicles, are determined by measuring the acceleration signal. The frequency content in the signal is determined from the Fast Fourier Transform. A method of determining the energy associated with the vibrating source and the associated power using power spectral density of the signal is proposed. Power requirements of typical sensing nodes are listed with an intent to determine the adequacy of energy harvesting. Effective transfer of energy from a given vibration source is addressed through the concept of dynamic vibration absorption, which is a passive technique for suppressing unintended vibrations. Optimal absorption of energy from a vibration source entails the determination of absorber parameters such as resonant frequency and damping. We propose an iterative method to obtain these parameters for a generic case of large number of identical vibration absorbers resembling harvesters by minimizing the total energy absorbed by the system. The proposed method is verified by analysing the response of a set of cantilever absorber beams placed on a vibrating cantilever plate. We find, using our method, the values of the absorber mass, resonant frequency and damping of the absorber at which significant amount of energy supplied to the system flows into the absorber, a scenario which is favourable for energy harvesting. We emphasize through our work that monitoring energies in the system and optimizing their flow is both rational and vital for designing multiple harvesters that absorb energy from a given vibration source optimally. Enhancing the performance of piezoelectric energy harvesters through a multilayer and, in particular, a multistep configuration is presented. Partial coverage of piezoelectric material in steps along the length of a cantilever beam results in a multistep piezoelectric energy harvester. We find that the power generated by a multistep beam is almost twice of that generated by a multilayer harvester made out of the same volume of polyviny-lidine fluoride (PVDF), further corroborated experimentally. Improvements observed in the power generated prove to be a boon for weakly coupled, low pro le, piezoelectric materials. Thus, in spite of the weak piezoelectric coupling observed in PVDF, its energy harvesting capability can be improved significantly by using it in a multistep piezoelectric beam configuration. Besides, the effect of piezoelectric step length and thickness in a piezoelectric unimorph harvester and performance metrics such as piezoelectric coupling factor and efficiency of conversion are presented. Modeling of a hybrid energy harvester composed of piezoelectric and electromagnetic mechanisms of energy conversion motivated by the need to determine the contribution of each domain to the power generated by the harvester is presented, particularly, when multiple domains exist in a single harvester. Two exclusive schemes of energy transduction are represented using equivalent circuits, which allow modeling any additional transduction scheme employed in the hybrid harvester with relative ease. Furthermore, a method of determining optimal loads in the respective domains using the equivalent circuit of the hybrid harvester is presented. Four different hybrid energy harvesters were fabricated and evaluated for their performance in comparison with that estimated from the proposed models. Additionally, scaling laws for hybrid energy harvesters are presented. The power developed by both piezoelectric and electromagnetic domains is observed to decrease with width and length cubed. Power indices and figures of merit in a hybrid harvester are proposed and are used to estimate the efficiencies of the four fabricated hybrid harvesters. The important design parameters for micro scale harvesting are identified by performing scaling analysis on MEMS piezoelectric harvesters. Performance of energy harvesters is directly related to the harvester attributes, viz., size, material, and end-mass. Depending on the contribution from each attribute, the power developed by MEMS harvesters can vary widely. A novel method of delineating the power developed by a harvester using five exclusive factors representing scaling, composition, inertia, material, and power (SCIMP) factors is presented. Although the proposed method can be extended to bi-morph and multilayer harvesters, in the present work, we elucidate it by applying it to a MEMS unimorph. We also present a unique coupling factor that ensures maximum power factor in a harvester. As any tiny increment in the power generated would considerably improve the power densities of MEMS harvesters, we focus on enhancing the power developed by maximizing each of the five exclusive factors irrespective of material and size. Furthermore, we demonstrate the competence of the proposed method by applying it on nine different MEMS harvesters reported in the literature. Considering the close match between the reported and predicted performance, we emphasize that monitoring the proposed factors is sufficient to attain the best performance from a harvester.
38

Automatisk gallringsuppföljning i olika beståndstyper : Ingående beståndsvariablers inverkan på precisionen hos programvaran hprGallring

Häggeborg, Johan January 2017 (has links)
För att kontrollera så gallringar utförs på ett korrekt sätt genomförs kontinuerliga kvalitetskontroller, dels som enkla egenuppföljningar av maskinförarna men även som mer omfattande gallringsuppföljningar av skogsbolag och skogsägarföreningar. Eftersom dessa kontroller är tidskrävande så görs i dagsläget enbart stickprovskontroller. Skogforsk har utvecklat ett program vid namn hprGallring, som utifrån skördardata beräknar beståndsvariabler och gör en prognos för det kvarvarande beståndet. Syftet med den här studien har varit att undersöka om precisionen i hprGallring är tillräckligt bra för att vara tillfredsställande och på så vis kunna minska ner det manuella arbetet. Resultaten pekar på att hprGallring nästan alltid överskattar grundytan och volym något. Allra tydligast blir det i gallringar som är riktade mot ett visst trädslag, dvs. när trädslagsfördelningen i gallringsuttaget skiljer sig avsevärt från trädslagsfördelningen i det ursprungliga beståndet. I dessa fall stämmer även den prognostiserade trädslagsfördelningen i det kvarvarande beståndet dåligt. / Continuous controls are made to see if the thinning is done as specified. This is made by self-controls by the harvester drivers or more comprehensive controls by the logging companies. Those controls are done by random samples since they are very time consuming. Skogforsk has developed software named hprGallring, which uses harvester data and mathematical algorithms to calculate stand variables and forecasting the remaining stand after thinning. The purpose with this study has been to investigate if hprGallrings forecast is good enough to reduce the manual work. The results show that hprGallring seems to overestimate the basal area and volume. This is most obvious in stands were the thinning are concentrated against a specific sort of wood. The forecast for tree composition in the remaining stand are in these cases very inaccurate.
39

Sexual Conflict and Chemical Communication in Hybridizing Harvester Ants

Herrmann, Michael Philip 01 January 2016 (has links)
Sexual conflict occurs when the fitness interests of males and females do not align with one another. The resolution of sexual conflict often depends on the level of control each sex has on the behavior in conflict. In Pogonomyrmex harvester ants with a genetically determined caste system, two separate lineages interbreed with one another during summer mating swarms. Diploid offspring sired by a single lineage develop into reproductive queens, while offspring sired by opposite-lineage parents develop into sterile workers. This results in sexual conflict, as males which mate with opposite lineage queens will produce only workers, resulting in no fitness benefit, while queens must mate with opposite-lineage males in order to obtain workers and survive. Despite these fitness differences, males do not discriminate between lineages prior to mating. One possible reason for the lack of male discrimination is that queens "mask" their identity cues, making discrimination difficult for males. In eusocial insects, identity cues are encoded by cuticular hydrocarbons (CHC’s) found on the exoskeleton of the insects. These cues contain information on the insect's reproductive status, sex, species, state, and nest membership. In addition to their communication functions, CHC’s also serve as desiccation-resistance molecules, preventing water from freely passing out of the cuticle. However, molecules that are best-suited for communication functions are poor desiccation resistance molecules, and molecules that are best-suited for waterproofing lack the diversity needed for communication; therefore, a tradeoff between these two functions is expected. In this dissertation, I explore sexual conflict in these ants and the chemical recognition cues that likely play a role in this conflict. To test for cryptic strategies in harvester ant mating swarms, I experimentally paired males and females from two interbreeding lineages of harvester ant with different fitness outcomes based on pairing, and measured the propensity to initiate copulation, pre-copulatory time, time in copula, and rate and amount of sperm transferred in each mating. Although females controlled copulation duration, males altered sperm transfer rates, resulting in no quantitative difference in total sperm transfer between lineages. To test for thermal constraints on the diversity and composition of cuticular hydrocarbon profiles, and changes in CHC profiles that occur in workers isolated from the queen, I surveyed the cuticular hydrocarbon profiles of a species complex of harvester ants. The CHC profiles of ants from more xeric environments showed evidence of constraints, while isolated workers differentiated from their queen-raised sisters, although not in queen-specific molecules. To test for queen identity masking and lack of discrimination ability in mating swarms, I tested for convergence in the CHC profiles of reproductives in two hybridizing lineages in response to the sexual conflict playing out in this species. Differences in CHC profiles were lost during the mating swarm, likely limiting male ability to discriminate between mates, limiting discrimination ability in mating swarms. To study the genetic regions that control CHC production, I created a physical linkage map of two of the interbreeding populations, and used that map to perform quantitative trait loci analysis on the cuticular hydrocarbon profile of recombinant males. One significant region associated with 13-methylnonacosane contained numerous odorant receptor genes, suggesting a link between that CHC production and the receptors that detect it, while a second region associated with n-pentacosane contained numerous genes that control expression levels. Overall, the genetic caste determination system in these ants leads to antagonistic coevolution between species. This coevolution is likely reinforced by the thermal constraints and exchange of recognition cues between species, lowering the ability of useful discrimination between lineages during mating swarms.
40

A Hybrid Technique of Energy Harvesting from Mechanical Vibration and Ambient Illumination

Rahman, M Shafiqur 10 August 2016 (has links)
Hybrid energy harvesting is a concept applied for improving the performance of the conventional stand-alone energy harvesters. The thesis presents the analytical formulations and characterization of a hybrid energy harvester that incorporates photovoltaic, piezoelectric, electromagnetic, and electrostatic mechanisms. The initial voltage required for electrostatic mechanism is obtained by the photovoltaic technique. Other mechanisms are embedded into a bimorph piezoelectric cantilever beam having a tip magnet and two sets of comb electrodes on two sides of its substructure. All the segments are interconnected by an electric circuit to generate combined output when subjected to vibration and solar illumination. Results for power output have been obtained at resonance frequency using an optimum load resistance. As the power transduced by each of the mechanisms is combined, more power is generated than those obtained by stand-alone mechanisms. The synergistic feature of this research is further promoted by adding fatigue analysis using finite element method.

Page generated in 0.3072 seconds