• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 30
  • 12
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 134
  • 44
  • 36
  • 26
  • 23
  • 22
  • 20
  • 20
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Filtrations de Hodge-Newton, décomposition cellulaire et cohomologie de certains espaces de modules p-adiques

Shen, Xu 06 December 2012 (has links) (PDF)
Dans cette thèse, nous étudions la géométrie analytique p-adique et la cohomologie l-adique de certains espaces de Rapoport-Zink, en utilisant la théorie des filtrations de Harder-Narasimhan des schémas en groupes finis et plats élaborée par Fargues.Cette thèse se compose de trois parties. La première partie traite de certains espaces de Rapoport-Zink non-basiques, qui satisfont à la condition que leur polygone de Newton et polygone de Hodge ont un point de contact non-trivial, qui est un point de rupture pour le polygone de Newton. Sous cette hypothèse, nous prouvons que ces espaces de Rapoport-Zink peuvent être décomposés en une somme directe d'espaces de modules des types de Rapoport-Zink associés à certains sous-groupes paraboliques appropriés, donc leurs cohomologie l-adique sont des induites paraboliques et en particulier ne contiennent pas de représentations supercuspidales. Nous prouvons ces faits en démontrant d'abord un théorème sur la filtration de Hodge-Newton pour les groupes p-divisibles avec des structures additionelles sur des anneaux de valuation complets de rang un et de caractéristique mixte (0,p).Dans la deuxième partie, nous considérons les espaces de Rapoport-Zink basiques de signature (1,n-1) pour les groupes unitaires associés à l'extension quadratique non ramifiée de Qp. On étudie l'action de Hecke sur ces espaces en détails. En utilisant la théorie des filtrations de Harder-Narasimhan des schémas en groupes finis et plats, et la stratification de Bruhat-Tits de la fibre spéciale réduite Mred étudié par Vollaard-Wedhorn, on trouve un certain domaine analytique compact DK telle que ses itérés dans le groupe G(Qp)×Jb(Qp) forme un recouvrement localement fini de tout l'espace MK. Nous appelons un tel phénomène une décomposition cellulaire localement finie.Dans la troisième partie, nous démontrons une formule de Lefschetz pour ces espaces pour l'action des éléments semi-simples réguliers elliptiques, en tenant compte de l'action de ces éléments sur les cellules et en appliquant le théorème principal de Mieda. De la même manière, nous pouvons aussi reprouver la formule de Lefschetz pour les espaces de Lubin-Tate précédemment obtenue par Strauch et Mieda. Cette formule de Lefschetz devrait caractériser la réalisation de correspondances de Jacquet-Langlands locales pour les groupes unitaires dans la cohomologie l-adique de ces espaces de Rapoport-Zink, dès que certains problèmes correspondants de théorie des représentations auront été résolus.
122

Géométrie p-adique des variétés de Shimura de type P.E.L et familles de formes automorphes / P-adic geometry of P.E.L type Shimura varieties and families of automorphic forms

Hernandez, Valentin 28 June 2017 (has links)
Dans cette thèse nous étudions les propriétés p-adiques des variétés de Shimura de type P.E.L qui ont bonne réduction en p et pour lesquelles le lieu ordinaire est vide. Dans un premier chapitre on construit des invariants qui découpent dans les variétés de Shimura un ouvert dense, le lieu mu-ordinaire, et nous étudions les propriétés géométriques de ces invariants. Dans le second chapitre nous étendons au cas mu-ordinaire la théorie du sous-groupe canonique, et construisons donc pour des familles de groupes p-divisibles “presque” mu-ordinaire une filtration canonique de la p^n-torsion. Cela s’applique en particulier à certains voisinages rigides stricts du lieu mu-ordinaires des variétés de Shimura étudiées. Dans le troisième chapitre, qui est un travail en commun avec Stéphane Bijakowski, nous reconstruisons des invariants dans un cadre plus étendu que dans le premier chapitre sur certains modèles locaux de variétés de Shimura, lorsque l’on autorise le nombre premier p à ramifier dans la donnée de Shimura locale. Enfin, dans le quatrième chapitre on met en application les constructions des deux premiers chapitres pour construire une variété rigide, une variété de Hecke, qui paramètre les familles p-adiques de formes modulaires de Picard de pente finie, lorsque p est inerte dans le corps quadratique imaginaire de la donnée de Picard. / In this thesis we study the p-adic properties of P.E.L. type Shimura varieties which have good reduction at p and for which the ordinary locus is empty. In the first chapter, we construct locally some invariants that cuts out inside the Shimura varieties an open and dense locus, the mu-ordinary locus, and study the geometric properties of these invariants. In the second chapter we extend to the unramified mu-ordinary case the theory of the canonical subgroup. Thus, we construct for ’nearly’ mu-ordinary families of p-divisible groups a canonical filtration of the p^n-torsion. This applies in particular to some strict rigid neighbourhoods of the mu-ordinary locus of the Shimura varieties previously studied. In the third chapter, which is a collaboration with Stéphane Bijakowski, we extend the construction of the invariants of the first chapter to some local integral models of Shimura varieties where the prime p can be ramified in the local datum. Finally, in the last chapter, we use the constructions of the first two chapter to construct a rigid variety, the Eigenvariety, which parametrises the finite slope p-adic families of Picard automorphic forms when the prime p is inert in the quadratic imaginary field of the Picard datum.
123

Reading and Teaching Third World Women's Literature in the First World: Colonialism and Feminism in <i>Crick Crack, Monkey</i> and <i>Nervous Conditions</i>

Miller, Elvie January 2005 (has links)
No description available.
124

Fundamentos da geometria complexa: aspectos geométricos, topológicos e analiticos. / Foundations of Complex Geometry: geometric, topological and analytic aspects.

Sacchetto, Lucas Kaufmann 03 May 2012 (has links)
Este trabalho tem como objetivo apresentar um estudo detalhado dos fundamentos da Geometria Complexa, ressaltando seus aspectos geométricos, topológicos e analíticos. Começando com materiais preliminares, como resultados básicos sobre funções holomorfas de uma ou mais variáveis e a definição e primeiros exemplos de variedades complexas, passamos a uma introdução à teoria de feixes e sua cohomologia, ferramenta indispensável para o restante do trabalho. Após um estudo sobre fibrados de linha e divisores damos atenção à Geometria de Kähler e alguns de seus resultados centrais, como por exemplo o Teorema da Decomposição de Hodge, o Teorema ``Difícil\'\' e o Teorema das $(1,1)$-classes de Lefschetz. Em seguida, nos dedicamos ao estudo dos fibrados vetoriais complexos e sua geometria, abordando os conceitos de conexões, curvatura e Classes de Chern. Terminamos o trabalho descrevendo alguns aspectos da topologia de variedades complexas, como o Teorema dos Hiperplanos de Lefschetz e algumas de suas consequências. / The main goal of this work is to present a detailed study of the foundations of Complex Geometry, highlighting its geometric, topological and analytical aspects. Beginning with a preliminary material, such as the basic results on holomorphic functions in one or more variables and the definition and first examples of a complex manifold, we move on to an introduction to sheaf theory and its cohomology, an essential tool to the rest of the work. After a discussion on divisors and line bundles we turn attention to Kähler Geometry and its central results, such as the Hodge Decomposition Theorem, the Hard Lefschetz Theorem and the Lefschetz Theorem on $(1,1)$-classes. After that, we study complex vector bundles and its geometry, focusing on the concepts of connections, curvature and Chern classes. Finally, we finish by describing some aspects of the topology of complex manifolds, such as the Lefschetz Hyperplane Theorem and some of its consequences.
125

Sous-structures de Hodge, anneaux de Chow et action de certains automorphismes

Fu, Lie 03 October 2013 (has links) (PDF)
Cette thèse se compose de trois chapitres. Dans Chapitre 1, en supposant la conjecture standard de Lefschetz, on démontre la conjecture de Hodge généralisée pour une sous-structure de Hodge de convieau 1 qui est le noyau du cup-produit avec une classe de cohomologie grosse. Dans Chapitre 2, nous établissons une décomposition de la petite diagonale de X × X × X pour une intersection complète de type Calabi-Yau X dans un espace projectif. Comme une conséquence, on déduit une propriété de dégénérescence pour le produit d'intersection dans son anneau de Chow des deux cycles algébriques de dimensions complémentaires et strictement positives. Dans Chapitre 3, on démontre qu'un automorphisme symplectique polarisé de la variété des droites d'une hypersurface cubique de dimension 4 agit trivialement sur son groupe de Chow des 0-cycles, comme prédit par la conjecture de Bloch généralisée.
126

Produits tensoriels en théorie de Hodge p-adique

Di Matteo, Giovanni 12 December 2013 (has links) (PDF)
Soient K/Qp une extension finie et GK le groupe de Galois absolu de K. Cette thèse est consacrée à l'étude de produits tensoriels cristallins (ou semi-stables, ou de de Rham, ou de Hodge-Tate) de représentations p-adiques de GK,, ainsi que de produits tensoriels triangulins de représentations p-adiques de GK. On étudie également la situation où l'image d'une représentation p-adique par un foncteur de Schur (tel Symn ou Λn) est cristalline (ou semi-stable, ou de de Rham, ou de Hodge-Tate). Les résultats présentés dans cette thèse sont énoncés pour les B-paires, et ils s'appliquent donc en particulier aux représentations p-adiques.
127

Contributions à la théorie des jeux : valeur asymptotique des jeux dépendant de la fréquence et décompositions des jeux finis / Contributions in game theory : asymptotic value in frequency dependant games and decompositions of finite games

Pnevmatikos, Nikolaos 01 July 2016 (has links)
Les problèmes abordés et les résultats obtenus dans cette thèse se divisent en deux parties. La première concerne l'étude de la valeur asymptotique de jeux dépendant de la fréquence (jeux-FD). Nous introduisons un jeu différentiel associé au jeu-FD dont la valeur se ramène à une équation de Hamilton-Jacobi-Bellman-lsaacs. En affrontant un problème d'irrégularité à l'origine, nous prouvons l’existence de la valeur du jeu différentiel sur [0.1 ] et ceci nous permet de prouver que la valeur du jeu FD converge vers la valeur du jeu continu qui débute à l'état initial 0. Dans la deuxième partie, l'objectif fondamental est la décomposition de l'espace des jeux finis en sous espaces des jeux adéquats et plus faciles à étudier vu que leurs équilibres sont distingués. Cette partie est divisée en deux chapitres. Dans le premier chapitre, nous établissons une décomposition canonique de tout jeu arbitraire fini en trois composantes et nous caractérisons les équilibres approximatifs d'un jeu donné par les équilibres uniformément mixtes et en stratégies dominantes lesquels apparaissent sur ses composantes. Dans le deuxième chapitre, nous introduisons sur l'espace des jeux finis une famille de produits scalaires et nous définissons la classe des jeux harmoniques relativement au produit scalaire choisi dans cette famille. Inspiré par la décomposition de Helmholtz-Hodge appliquée aux jeux par Candogan et al. (2011), nous établissons une décomposition orthogonale de l'espace des jeux finis, par rapport au produit scalaire choisi, en les sous espaces des jeux potentiels, des jeux harmoniques et des jeux non­stratégiques c nous généralisons les résultats de Candogan et al. (2011). / The problems addressed and results obtained in this thesis are divided in two parts. The first part concerns the study of the asymptotic value of frequency-dependent games (FD-games). We introduce a differential game associated to the FD-game whose value leads to a Hamilton-Jacob-Bellman-lsaacs equation. Although an irregularity occurs at the origin, we prove existence of the value in the differential game played over [0.1 ], which allows to prove that the value of the FD-game, as the number of stages tend to infinity, converges to the value of the continuous-time game with initial state 0. ln the second part, the objective is the decomposition of the space of finite games in subspaces of suitable games which admit disguised equilibria and more tractable analysis. This part is divided in two chapters. In the first chapter, we establish a canonical decomposition of an arbitrary game into three components and we characterize the approximate equilibria of a given game in terms of the uniform equilibrium and the equilibrium in dominant strategies that appear in its components. In the second part, we introduce a family of inner products in the space of finite games and we define the class of harmonic games relatively to the chosen inner product. Inspired of the Helmholtz-Hodge decomposition applied to games by Candogan et al (2011 ), we establish an orthogonal decomposition of the space of finite games with respect to the chosen inner product, in the subspaces of potential harmonic and non-strategic games and we further generalize several results of Candogan et al (2011).
128

Fundamentos da geometria complexa: aspectos geométricos, topológicos e analiticos. / Foundations of Complex Geometry: geometric, topological and analytic aspects.

Lucas Kaufmann Sacchetto 03 May 2012 (has links)
Este trabalho tem como objetivo apresentar um estudo detalhado dos fundamentos da Geometria Complexa, ressaltando seus aspectos geométricos, topológicos e analíticos. Começando com materiais preliminares, como resultados básicos sobre funções holomorfas de uma ou mais variáveis e a definição e primeiros exemplos de variedades complexas, passamos a uma introdução à teoria de feixes e sua cohomologia, ferramenta indispensável para o restante do trabalho. Após um estudo sobre fibrados de linha e divisores damos atenção à Geometria de Kähler e alguns de seus resultados centrais, como por exemplo o Teorema da Decomposição de Hodge, o Teorema ``Difícil\'\' e o Teorema das $(1,1)$-classes de Lefschetz. Em seguida, nos dedicamos ao estudo dos fibrados vetoriais complexos e sua geometria, abordando os conceitos de conexões, curvatura e Classes de Chern. Terminamos o trabalho descrevendo alguns aspectos da topologia de variedades complexas, como o Teorema dos Hiperplanos de Lefschetz e algumas de suas consequências. / The main goal of this work is to present a detailed study of the foundations of Complex Geometry, highlighting its geometric, topological and analytical aspects. Beginning with a preliminary material, such as the basic results on holomorphic functions in one or more variables and the definition and first examples of a complex manifold, we move on to an introduction to sheaf theory and its cohomology, an essential tool to the rest of the work. After a discussion on divisors and line bundles we turn attention to Kähler Geometry and its central results, such as the Hodge Decomposition Theorem, the Hard Lefschetz Theorem and the Lefschetz Theorem on $(1,1)$-classes. After that, we study complex vector bundles and its geometry, focusing on the concepts of connections, curvature and Chern classes. Finally, we finish by describing some aspects of the topology of complex manifolds, such as the Lefschetz Hyperplane Theorem and some of its consequences.
129

Méthode SPH implicite d’ordre 2 appliquée à des fluides incompressibles munis d’une frontière libre

Rioux-Lavoie, Damien 05 1900 (has links)
L’objectif de ce mémoire est d’introduire une nouvelle méthode smoothed particle hydrodynamics (SPH) implicite purement lagrangienne, pour la résolution des équations de Navier- Stokes incompressibles bidimensionnelles en présence d’une surface libre. Notre schéma de discrétisation est basé sur celui de Kéou Noutcheuwa et Owens [19]. Nous avons traité la surface libre en combinant la méthode multiple boundary tangent (MBT) de Yildiz et al. [43] et les conditions aux limites sur les champs auxiliaires de Yang et Prosperetti [42]. Ce faisant, nous obtenons un schéma de discrétisation d’ordre $\mathcal{O}(\Delta t ^2)$ et $\mathcal{O}(\Delta x ^2)$, selon certaines contraintes sur la longueur de lissage $h$. Dans un premier temps, nous avons testé notre schéma avec un écoulement de Poiseuille bidimensionnel à l’aide duquel nous analysons l’erreur de discrétisation de la méthode SPH. Ensuite, nous avons tenté de simuler un problème d’extrusion newtonien bidimensionnel. Malheureusement, bien que le comportement de la surface libre soit satisfaisant, nous avons rencontré des problèmes numériques sur la singularité à la sortie du moule. / The objective of this thesis is to introduce a new implicit purely lagrangian smoothed particle hydrodynamics (SPH) method, for the resolution of the two-dimensional incompressible Navier-Stokes equations in the presence of a free surface. Our discretization scheme is based on that of Kéou Noutcheuwa et Owens [19]. We have treated the free surface by combining Yildiz et al. [43] multiple boundary tangent (MBT) method and boundary conditions on the auxiliary fields of Yang et Prosperetti [42]. In this way, we obtain a discretization scheme of order $\mathcal{O}(\Delta t ^2)$ and $\mathcal{O}(\Delta x ^2)$, according to certain constraints on the smoothing length $h$. First, we tested our scheme with a two-dimensional Poiseuille flow by means of which we analyze the discretization error of the SPH method. Then, we tried to simulate a two-dimensional Newtonian extrusion problem. Unfortunately, although the behavior of the free surface is satisfactory, we have encountered numerical problems on the singularity at the output of the die.
130

Representations p-adiques et equations differentielles

Berger, Laurent 17 May 2001 (has links) (PDF)
Dans cet article, on montre comment associer à toute représentation $p$-adique $V$, via la théorie des $(\varphi,\Gamma_K)$-modules de Fontaine, une équation différentielle $p$-adique $\mathbf(D)^(\dagger)_(\mathrm(rig))(V)$, c'est-à-dire un module à connexion sur l'anneau de Robba. Cette construction permet de faire le lien entre la théorie des $(\varphi,\Gamma_K)$-modules et la théorie de Hodge $p$-adique. On montre par exemple comment construire $\mathbf(D)_(\mathrm(cris))(V)$ et $\mathbf(D)_(\mathrm(st))(V)$ directement à partir de $\mathbf(D)^(\dagger)_(\mathrm(rig))(V)$, ce qui permet de reconna(\^\i)tre les représentations semi-stables ou cristallines; la connexion est alors unipotente ou triviale. Alliée à des techniques de la théorie des équations différentielles $p$-adiques, l'étude du module $\mathbf(D)^(\dagger)_(\mathrm(rig))(V)$ permet en outre de donner une nouvelle démon\-stration d'un théorème de Sen caractérisant les représen\-tations $\mathbf(C)_p$-admissibles. Finalement on peut utiliser les résultats précédents pour étendre au cas d'un corps résiduel parfait quelconque des résultats de Hyodo ($H^1_g=H^1_(st)$), de Perrin-Riou (sur la semi-stabilité des représentations ordinaires), de Colmez (les représentations absolument cristallines sont de hauteur finie), et de Bloch et Kato (si $r\gg 0$, alors l'exponentielle de Bloch-Kato $\exp_(V(r))$ est un isomorphisme) dont les démonstrations (dans le cas d'un corps résiduel fini) reposaient sur des considérations de dimensions de groupes de cohomologie galoisienne.

Page generated in 0.0545 seconds