151 |
Ergodic properties of operators on spaces of functionsRodríguez Arenas, Alberto 26 March 2020 (has links)
[ES] El objetivo de esta tesis es estudiar las propiedades ergódicas (acotación en potencias, ergodicidad media y ergodicidad media uniforme) de operadores definidos en varios espacios de funciones. En un espacio Hausdorff localmente convexo E, un operador T\in\L(E) es llamado acotado en potencias si el conjunto de sus iteradas es equicontinuo. Las medias de Cesàro de T son
T_[n] = 1/n (T+T^2+...+ T^m), n\in\N.
El operador T se dice ergódico en media si la sucesión (T_[n])_n converge puntualmente y se dice uniformemente ergódico en media si la sucesión converge uniformemente en conjuntos acotados.
En el Capítulo 1 se estudia el operador de multiplicación cuando está definido sobre espacios ponderados de funciones continuas y sobre sus límites inductivos y proyectivos. Trabajamos sobre un espacio topológico Hausdorff, normal y localmente compacto X. Dada una función continua phi, el operador de multiplicacion se define como M_ phi: f -> phi f.
Una función continua v se llama peso si es estrictamente positiva. Los espacios (de Banach) ponderados de funciones continuas son
C_v:= {f\in C(X) : ||f||_v:=\sup_(x\in X) v(x)|f(x)|< infty},
C_v ^0 :={f\in C(X) : vf se anula en el infinito},
con la norma ||.||_v.
En las Secciones 1.3 y 1.4 se centra la atención en límites indutivos y proyectivos de los espacios de la Sección 1.2. Si V=(v_n)_n es una familia decreciente de pesos, entonces los limites inductivos ponderados de funciones continuas son VC=ind _n C_v_n y V_0C=ind _n C^0_v_n. Si A=(a_n)_n es una familia creciente de pesos, los límites proyectivos ponderados de funciones continuas son CA=proj_n C_a_n y CA_0=proj _n C^0_a_n. El comportamiento es diferente para los límites de los C_v_n (resp. C_a_n) del de los límites de los C^0_v_n (resp. C^0_a_n).
En la Sección 1.5 se determinan completamente el espectro y el espectro de Waelbroeck del operador de multiplicación. En la última Sección 1.6 se compara la topología del conjunto de multiplicadores entre límites proyectivos con la inducida por la topología de operadores de convergencia uniforme en acotados.
El Capítulo 2 se centra en estudiar espacios ponderados de sucesiones y sus límites inductivos y proyectivos. Una sucesión v=(v(i))_i \in \C^\N se llama peso si es estrictamente positiva. Los espacios de Banach ponderados de sucesiones considerados son l_p(v), 1<= p<= infty y c_0(v).
Dada una matriz de K\"othe A=(a_n)_n, el espacio escalonado de orden 1<= p<= infty se define como
proj _n l _p (a_n) y proj _n c_0 (a_n).
El espacio co-escalonado de orden 1<= p<= infty se define, para una familia decreciente de pesos V=(v_n)_n, como
ind_n l _p (v_n) y ind_n c_0 (v_n).
En las Secciones 2.2 y 2.3 se estudian las propiedades ergódicas y espectrales del operador de multiplicación. En la Sección 2.4 se caracteriza cuándo el operador de multiplicación es acotado o compacto, de manera similar a la continuidad. En la Sección 2.5, como en la Sección 1.6, la topología del conjunto de multiplicadores entre espacios escalonados se compara con la inducida por la topología de operadores de convergencia uniforme en acotados. También se estudia la topología del conjunto de operadores acotados. En la última Sección 2.6, los resultados de las secciones anteriores se aplican a los espacios de series de potencias, como casos particulares de los espacios escalonados.
El Capítulo 3 trata el operador de composición dado por una aplicación holomorfa del disco unidad abierto complejo en sí mismo, considerado entre diferentes espacios de Banach de funciones holomorfas. Si phi : \D - > \D es holomorfa, el operador de composición es C_phi: f ->f o phi.
En la Sección 3.2 se dan condiciones necesarias y suficientes para las propiedades ergódicas del operador de composición definido en un espacio de Banach de funciones holomorfas general asumiendo una o varias propiedades dadas. Los resultados de la Sección 3.2 se aplican en la Sección 3.3 a espacios cl� / [CA] L'objectiu d'aquesta tesi és estudiar les propietats ergòdiques (fitació en potències, ergodicitat mitjana i ergodicitat mitjana uniforme) d'operadors definits en diversos espais de funcions. En un
espai Hausdorff localment convex E, un operador T\in\L(E) s'anomena fitat en potències si el conjunt de les seues iterades és equicontinu. Les mitjanes de Cesàro de T són
T_[n] = 1/n (T+T^2+...+ T^m), n\in\N.
L'operador T és ergòdic en mitjana si la successió (T_[n])_n convergeix puntualment i és uniformement ergòdic en mitjana si la successió convergeix uniformement en conjunts fitats.
Al Capítol 1 s'estudia l'operador de multiplicació quan està definit sobre espais ponderats de funcions contínues i sobre els seus límits inductius i projectius. Treballem sobre un espai topològic Hausdorff, normal i localment compacte X. Donada una funció contínua phi, l'operador de multiplicació es defineix com a M_ phi: f -> phi f.
Una funció contínua v s'anomena pes si és estrictament positiva. Els espais (de Banach) ponderats de funcions contínues són
C_v:= {f\in C(X) : ||f||_v:=\sup_(x\in X) v(x)|f(x)|< infty},
C_v ^0 :={f\in C(X) : vf s'anul·la a l'infinit},
amb la norma ||.||_v.
A les Seccions 1.3 i 1.4 es para atenció als límits inductius i projectius dels espais de la Secció 1.2. Si $V=(v_n)_n$ és una família decreixent de pesos, aleshores els límits inductius ponderats de
funcions contínues són VC=ind _n C_v_n y V_0C=ind _n C^0_v_n. Si A=(a_n)_n és una família creixent de pesos, aleshores els límits projectius ponderats de funcions contínues CA=proj_n C_a_n y CA_0=proj _n C^0_a_n. El comportament és diferent per als límits dels C_v_n (resp. C_a_n) del dels límits dels C^0_v_n (resp. C^0_a_n).
A la Secció 1.5 es determinen completament l'espectre i l'espectre de Waelbroeck de l'operador de multiplicació. A la darrera Secció 1.6 es compara la topologia del conjunt de multiplicadors entre límits projectius amb la induïda per la topologia d'operadors de convergència uniforme en fitats.
Al Capítol 2 es dedica a l'estudi d'espais ponderats de successions i els seus límits inductius i projectius. Una successió v=(v(i))_i \in \C^\N s'anomena pes si és estrictament positiva. Els espais de Banach ponderats de successions considerats l_p(v), 1<= p<= infty i c_0(v).
Donada una matriu de Köthe A=(a_n)_n, l'espai esglaonat d'ordre 1<= p<= infty es defineix com a
proj _n l _p (a_n) y proj _n c_0 (a_n).
L'espai co-esglaonat d'ordre 1<= p<= infty es defineix, per a una família decreixent de pesos V=(v_n)_n, com a
ind_n l _p (v_n) i ind_n c_0 (v_n).
A les Seccions 2.2 i 2.3 s'estudien les propietats ergòdiques i espectrals de l'operador de multiplicació. A la Secció 2.4 es caracteritza quan l'operador de multiplicació és fitat o compacte, d'un mode similar a la continuïtat. A la Secció 2.5, com a la Secció 1.6, la topologia del conjunt de multiplicadors entre espais esglaonats es compara amb la induïda per la topologia d'operadors de convergència uniforme en fitats. També s'estudia la topologia del conjunt d'operadors fitats. A la darrera Secció 2.6, els resultats de les seccions anteriors s'apliquen als espais de sèries de potències, com casos particulars dels espais esglaonats.
El Capítol 3 estudia l'operador de composició donat per una aplicació holomorfa del disc unitat obert complex en sí mateix, considerat entre dife\-rents espais de Banach de funcions holomorfes. Si phi : \D - > \D és holomorfa, aleshores l'operador de composició és C_phi: f ->f o phi.
A la Secció 3.2 es donen condicions necessàries i suficients per a les propietats ergòdiques de l'operador de composició definit en un espai de Banach de funcions holomorfes general assumint una o més propietats donades. Els resultats de la Secció 3.2 s'apliquen a la Secció 3.3 per a espais clàssics de funcions holomorfes. / [EN] The aim of this thesis is to study the ergodic properties of some operators defined on several spaces of functions. In a locally convex Hausdorff space E, an operator T\in L(E) is called power bounded if the set of its iterates is equicontinuous. The Cesàro means of T are
T_[n] = 1/n (T+T^2+...+ T^m), n\in\N.
The operator T is called mean ergodic if the sequence (T_[n])_n converges pointwise and it is called uniformly mean ergodic if the sequence converges uniformly on bounded sets.
In Chapter 1, the multiplication operator is studied when defined on weighted spaces of continuous functions and their inductive and projective limits. We work with a Hausdorff, normal, locally compact topological space X. Given a continuous function phi (a symbol), the multiplication operator is M_ phi: f -> phi f.
A continuous function v is a weight if it is strictly positive. The (Banach) weighted spaces of continuous functions are
C_v:= {f\in C(X) : ||f||_v:=\sup_(x\in X) v(x)|f(x)|< infty},
C_v ^0 :={f\in C(X) : vf vanishes at infinity},
with the norm ||.||_v.
The Sections 1.3 and 1.4 are devoted to inductive and projective limits of the spaces in Section 1.2. If V=(v_n)_n is a decreasing family of weights, the weighted inductive limits of continuous functions are VC=ind _n C_v_n and V_0C=ind _n C^0_v_n. If A=(a_n)_n is an increasing family of weights, the weighted projective limits of continuous functions are CA=proj_n C_a_n and CA_0=proj _n C^0_a_n. The behaviour is different for the limits of the C_v_n (resp. C_a_n) and the limits of the C^0_v_n (resp. C^0_a_n).
In Section 1.5 the spectrum and the Waelbroeck spectrum are completely determined. In the final Section 1.6 the topology of the set of multipliers between projective limits is compared with the one induced by the operator topology of uniform convergence on bounded sets.
The work of Chapter 2 is devoted to weighted sequence spaces and their inductive and projective limits. A sequence v=(v(i))_i \in \C^\N is called a weight if it is strictly positive. The weighted Banach spaces of sequences considered are l_p(v), 1<= p<= infty and c_0(v).
Given A=(a_n)_n, a Köthe matrix, the echelon space of order 1<= p<= infty is defined by
proj _n l _p (a_n) and proj _n c_0 (a_n).
The co-echelon space of order 1<= p<= infty is defined, for a decreasing family of weights V=(v_n)_n, by
ind_n l _p (v_n) and ind_n c_0 (v_n).
In the Sections 2.2 and 2.3 ergodic and spectral properties of the multiplication operator are studied. In Section 2.4 it is characterized when the multiplication operator is bounded or compact, in similar terms than continuity. In Section 2.5, as in Section 1.6, the topology of the set of multipliers between echelon spaces is compared with the one induced by the operator topology of uniform convergence on bounded sets. Also the topology of the set of bounded multiplication operators is studied. In the final Section 2.6, the results of the previous sections are applied to the power series spaces, as particular cases of echelon spaces.
Chapter 3 deals with the composition operator given by a holomorphic self-map of the complex open unit disc, when considered between different Banach spaces of holomorphic functions. If phi : \D - > \D is holomorphic, the composition operator is C_phi: f ->f o phi.
In Section 3.2 necessary and sufficient conditions are given for ergodic properties of a composition operator defined on a general Banach space of holomorphic functions under the assumption of one or many of given properties.
The results of Section 3.2 are applied in Section 3.3 to classical spaces of holomorphic functions, particularly, weighted Bergman spaces of infinite type H_v and H_v^0, Bloch spaces B_p and B_p ^0, Bergman spaces A^p and Hardy spaces H^p. / Rodríguez Arenas, A. (2020). Ergodic properties of operators on spaces of functions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/139519
|
152 |
Das Oka-Grauert-Prinzip für Kozyklen mit Werten in Bündeln von nicht-abelschen GruppenPlatt, Karl Florian Erich 13 January 2014 (has links)
Ein bedeutender Satz von L. Bungart und H. Grauert besagt, dass, für eine Gruppe G von invertierbaren Elementen einer Banachalgebra, je zwei G-wertige holomorphe Kozyklen über einer beliebigen Steinschen Mannigfaltigkeit holomorph äquivalent sind, wenn sie dort stetig äquivalent sind. Eine einfachere Form dieses Satzes wurde erstmals von K. Oka bewiesen. Aussagen dieser Art werden deshalb auch Okasche Prinzipe oder Oka-Grauert-Prinzipe genannt. Der Bungert-Grauert-Satz ist auch in dem Fall von Bedeutung, in dem die Steinsche Mannigfaltigkeit ein Gebiet in der komplexen Ebene ist. Man kann deshalb in der Literatur auch direkte Beweise für den Spezialfall finden, in dem ein G-wertiger holomorpher, stetig trivialer Kozyklus betrachtet wird. Dieser ist, nach dem oben erwähnten Satz, dann auch holomorph trivial. Ziel dieser Dissertation ist es, den Bungart-Grauert-Satz für Gebiete in der komplexen Ebene auch im allgemeinen Fall direkt zu beweisen. Dieser direkte Beweis ist wesentlich einfacher als der bisherige und muss nicht, wie bei L. Bungart und H. Grauert, auf eine Theorie von mehreren Veränderlichen zurückgreifen. Wie in den Arbeiten von L. Bungart und H. Grauert gezeigt, kann dies durch das sogenannte Verdrillen, einer Methode aus einer allgemeinen Theorie von holomorphen Kozyklen mit Werten in Bündeln von Gruppen, erzielt werden. Der größte Teil der Dissertation besteht deshalb darin, eine solche Theorie im Fall von Gebieten in der komplexen Ebene direkt aufzubauen. / An important theorem of L. Bungart and H. Grauert says that for the group G of invertible elements of a banachalgebra, two holomorphic, G-valued cocycles over a Stein manifold, which are continiously equivalent, are holomorphically equivalent there. A simpler form of that theorem was first proven by K. Oka. That''s why theorems like this are known as Oka-Grauert-priciples as well. The Bungart-Grauert theorem is also significant if the Stein manifold is a domain in the complex plane. That''s why direct proofs of the special case, in which a continiously trivial, holomorphic cocycle is considered, can also be found in literature. Following the Bungart-Grauert theorem mentioned above, such a cocycle is also holomorphically trivial. The goal of this thesis is to prove the general case of the Bungart-Grauert theorem for a domain in the complex plane directly. That direct proof is much more simple than the old one. Furthermore this direct proof doesn''t have to resort to a theory of multiple variables, unlike the proof from L. Bungart and H. Grauert does. As shown in the original works, such a proof can be archieved by using the so called twisting. Twisting is a method from a theory of holomorphic cocycles with values in bundles of groups. In the main part of this thesis such a theory is build directly for domains in the complex plane.
|
153 |
Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds / Automorphismes non-symplectiques des variétés symplectiques holomorphesCattaneo, Alberto 18 December 2018 (has links)
Nous allons étudier les automorphismes des variétés symplectiques holomorphes irréductibles de type K3^[n], c'est-à-dire des variétés équivalentes par déformation au schéma de Hilbert de n points sur une surface K3, pour n > 1.Dans la première partie de la thèse, nous classifions les automorphismes du schéma de Hilbert de n points sur une surface K3 projective générique, dont le réseau de Picard est engendré par un fibré ample. Nous montrons que le groupe des automorphismes est soit trivial soit engendré par une involution non-symplectique et nous déterminons des conditions numériques et géométriques pour l’existence de l’involution.Dans la deuxième partie, nous étudions les automorphismes non-symplectiques d’ordre premier des variétés de type K3^[n]. Nous déterminons les propriétés du réseau invariant de l'automorphisme et de son complément orthogonal dans le deuxième réseau de cohomologie de la variété et nous classifions leurs classes d’isométrie. Dans le cas des involutions, e des automorphismes d’ordre premier impair pour n = 3, 4, nous montrons que toutes les actions en cohomologie dans notre classification sont réalisées par un automorphism non-symplectique sur une variété de type K3^[n]. Nous construisons explicitement l’immense majorité de ces automorphismes et, en particulier, nous présentons la construction d’un nouvel automorphisme d’ordre trois sur une famille de dimension dix de variétés de Lehn-Lehn-Sorger-van Straten de type K3^[4]. Pour n < 6, nous étudions aussi les espaces de modules de dimension maximal des variétés de type K3^[n] munies d’une involution non-symplectique. / We study automorphisms of irreducible holomorphic symplectic manifolds of type K3^[n], i.e. manifolds which are deformation equivalent to the Hilbert scheme of n points on a K3 surface, for some n > 1. In the first part of the thesis we describe the automorphism group of the Hilbert scheme of n points on a generic projective K3 surface, i.e. a K3 surface whose Picard lattice is generated by a single ample line bundle. We show that, if it is not trivial, the automorphism group is generated by a non-symplectic involution, whose existence depends on some arithmetic conditions involving the number of points n and the polarization of the surface. We also determine necessary and sufficient conditions on the Picard lattice of the Hilbert scheme for the existence of the involution.In the second part of the thesis we study non-symplectic automorphisms of prime order on manifolds of type K3^[n]. We investigate the properties of the invariant lattice and its orthogonal complement inside the second cohomology lattice of the manifold, providing a classification of their isometry classes. We then approach the problem of constructing examples (or at least proving the existence) of manifolds of type K3^[n] with a non-symplectic automorphism inducing on cohomology each specific action in our classification. In the case of involutions, and of automorphisms of odd prime order for n=3,4, we are able to realize all possible cases. In order to do so, we present a new non-symplectic automorphism of order three on a ten-dimensional family of Lehn-Lehn-Sorger-van Straten eightfolds of type K3^[4]. Finally, for n < 6 we describe deformation families of large dimension of manifolds of type K3^[n] equipped with a non-symplectic involution.
|
154 |
Hyperholomorphic structures and corresponding explicit orthogonal function systems in 3D and 4D / Hyperholomorphe Strukturen und entsprechende explizite orthogonale Funktionensysteme in 3D und 4DLe, Thu Hoai 22 August 2014 (has links) (PDF)
Die Reichhaltigkeit und breite Anwendbarkeit der Theorie der holomorphen Funktionen in der komplexen Ebene ist stark motivierend eine ähnliche Theorie für höhere Dimensionen zu entwickeln. Viele Forscher waren und sind in diese Aufgaben involviert, insbesondere in der Entwicklung der Quaternionenanalysis. In den letzten Jahren wurde die Quaternionenanalysis bereits erfolgreich auf eine Vielzahl von Problemen der mathematischen Physik angewandt.
Das Ziel der Dissertation besteht darin, holomorphe Strukturen in höheren Dimensionen zu studieren. Zunächst wird ein neues Holomorphiekonzept vorgelegt, was auf der Theorie rechtsinvertierbarer Operatoren basiert und nicht auf Verallgemeinerungen des Cauchy-Riemann-Systems wie üblich. Dieser Begriff umfasst die meisten der gut bekannten holomorphen Strukturen in höheren Dimensionen. Unter anderem sind die üblichen Modelle für reelle und komplexe quaternionenwertige Funktionen sowie Clifford-algebra-wertige Funktionen enthalten. Außerdem werden holomorphe Funktionen mittels einer geeignete Formel vom Taylor-Typ durch spezielle Funktionen lokal approximiert.
Um globale Approximationen für holomorphe Funktionen zu erhalten, werden im zweiten Teil der Arbeit verschiedene Systeme holomorpher Basisfunktionen in drei und vier Dimensionen mittels geeigneter Fourier-Entwicklungen explizit konstruiert. Das Konzept der Holomorphie ist verbunden mit der Lösung verallgemeinerter Cauchy-Riemann Systeme, deren Funktionswerte reellen Quaternionen bzw. reduzierte Quaternionen sind. In expliziter Form werden orthogonale holomorphe Funktionensysteme konstruiert, die Lösungen des Riesz-Systems bzw. des Moisil-Teodorescu Systems über zylindrischen Gebieten im R3, sowie Lösungen des Riesz-Systems in Kugeln des R4 sind. Um konkrete Anwendungen auf Randwertprobleme realisieren zu können wird eine orthogonale Zerlegung eines Rechts-Quasi-Hilbert-Moduls komplex-quaternionischer Funktionen unter gegebenen Bedingungen studiert. Die Ergebnisse werden auf die Behandlung von Maxwell-Gleichungen mit zeitvariabler elektrischer Dielektrizitätskonstante und magnetischer Permeabilität angewandt. / The richness and widely applicability of the theory of holomorphic functions in complex analysis requires to perform a similar theory in higher dimensions. It has been developed by many researchers so far, especially in quaternionic analysis. Over the last years, it has been successfully applied to a vast array of problems in mathematical physics.
The aim of this thesis is to study the structure of holomorphy in higher dimensions. First, a new concept of holomorphy is introduced based on the theory of right invertible operators, and not by means of an analogue of the Cauchy-Riemann operator as usual. This notion covers most of the well-known holomorphic structures in higher dimensions including real, complex, quaternionic, Clifford analysis, among others. In addition, from our operators a local approximation of a holomorphic function is attained by the Taylor type formula.
In order to obtain the global approximation for holomorphic functions, the second part of the thesis deals with the construction of different systems of basis holomorphic functions in three and four dimensions by means of Fourier analysis. The concept of holomorphy is related to the null-solutions of generalized Cauchy-Riemann systems, which take either values in the reduced quaternions or real quaternions. We obtain several explicit orthogonal holomorphic function systems: solutions to the Riesz and Moisil-Teodorescu systems over cylindrical domains in R3, and solutions to the Riesz system over spherical domains in R4. Having in mind concrete applications to boundary value problems, we investigate an orthogonal decomposition of complex-quaternionic functions over a right quasi-Hilbert module under given conditions. It is then applied to the treatment of Maxwell’s equations with electric permittivity and magnetic permeability depending on the time variable.
|
155 |
Automorphismes des variétés de Kummer généralisées / Automorphisms of generalized Kummer varietiesTari, Kévin 08 December 2015 (has links)
Dans ce travail, nous classifions les automorphismes non-symplectiques des variétés équivalentes par déformations à des variétés de Kummer généralisées de dimension 4, ayant une action d'ordre premier sur le réseau de Beauville-Bogomolov. Dans un premier temps, nous donnons les lieux fixes des automorphismes naturels de cette forme. Par la suite, nous développons des outils sur les réseaux en vue de les appliquer à nos variétés. Une étude réticulaire des tores complexes de dimension 2 permet de mieux comprendre les automorphismes naturels sur les variétés de type Kummer. Nous classifions finalement tous les automorphismes décrits précédemment sur ces variétés. En application de nos résultats sur les réseaux, nous complétons également la classification des automorphismes d'ordre premier sur les variétés équivalentes par déformations à des schémas de Hilbert de 2 points sur des surfaces K3, en traitant le cas de l'ordre 5 qui restait ouvert. / Ln this work, we classify non-symplectic automorphisms of varieties deformation equivalent to 4-dimensional generalized Kummer varieties, having a prime order action on the Beauville-Bogomolov lattice. Firstly, we give the fixed loci of natural automorphisms of this kind. Thereafter, we develop tools on lattices, in order to apply them to our varieties. A lattice-theoritic study of 2-dimensional complex tori allows a better understanding of natural automorphisms of Kummer-type varieties. Finaly, we classify all the automorphisms described above on thos varieties. As an application of our results on lattices, we complete also the classification of prime order automorphisms on varieties deformation-equivalent to Hilbert schemes of 2 points on K3 surfaces, solving the case of order 5 which was still open.
|
156 |
Géométrie et dynamique des structures Hermite-Lorentz / Geometry and Dynamics of Hermite-Lorentz structuresBen Ahmed, Ali 06 July 2013 (has links)
Dans la veine du programme d'Erlangen de Klein, travaux d'E. Cartan, M. Gromov, et d'autres, ce travail se trouve à cheval, entre la géométrie et les actions de groupes. Le thème global serait de comprendre les groupes d'isométries des variétés pseudo-riemanniennes. Plus précisément, suivant une "conjecture vague" de Gromov, classifier les variétés pseudo-riemanniennes dont le groupe d'isométries agit non-proprement, i.e. que son action ne préserve pas de métrique riemannienne auxiliaire?Plusieurs travaux ont été accomplis dans le cas des métriques lorentziennes (i.e. de signature (- +...+)). En revanche, le cas pseudo-riemannien général semble hors de portée.Les structures Hermite-Lorentz se trouvent entre le cas lorentzien et le premier cas pseudo-riemannien général, i.e. de signature (- - +…+). De plus, elle se définit sur des variétés complexes, et promet une extra-rigidité. Plus précisément, une structure Hermite-Lorentz sur une variété complexe consiste en une métrique pseudo-riemannienne de signature (- - +…+) qui est hermitienne au sens qu'elle est invariante par la structure presque complexe. Par analogie au cas hermitien classique, on définit naturellement une notion de métrique Kähler-Lorentz.Comme exemple, on a l'espace de Minkowski complexe ; dans un certain sens, on a un temps de dimension 1 complexe (du point de vue réel, le temps est 2-dimensionnel). On a également l'espace de Sitter et anti de Sitter complexes. Ils ont une courbure holomorphe constante, et généralisent dans ce sens les espaces projectifs et hyperboliques complexes.Cette thèse porte sur les variétés Hermite-Lorentz homogènes. En plus des exemples cités, il y a deux autres espaces symétriques, qui peuvent naturellement jouer le rôle de complexification des espaces de Sitter et anti de Sitter réels.Le résultat principal de la thèse est un théorème de rigidité de ces espaces symétriques : tout espace Hermite-Lorentz homogène à isotropie irréductible est l'un des cinq espaces symétriques précédents. D'autres résultats concernent le cas où l'on remplace l'hypothèse d'irréductibilité par le fait que le groupe d'isométries soit semi-simple. / In the vein of Klein's Erlangen program, the research works of E. Cartan, M.Gromov and others, this work straddles between geometry and group actions. The overall theme is to understand the isometry groups of pseudo-Riemannian manifolds. Precisely, following a "vague conjecture" of Gromov, our aim is to classify Pseudo-Riemannian manifolds whose isometry group act’s not properly, i.e that it’s action does not preserve any auxiliary Riemannian metric. Several studies have been made in the case of the Lorentzian metrics (i.e of signature (- + .. +)). However, general pseudo-Riemannian case seems out of reach. The Hermite-Lorentz structures are between the Lorentzian case and the former general pseudo-Riemannian, i.e of signature (- -+ ... +). In addition, it’s defined on complex manifolds, and promises an extra-rigidity. More specifically, a Hermite-Lorentz structure on a complex manifold is a pseudo-Riemannian metric of signature (- -+ ... +), which is Hermitian in the sense that it’s invariant under the almost complex structure. By analogy with the classical Hermitian case, we naturally define a notion of Kähler-Lorentz metric. We cite as example the complex Minkowski space in where, in a sense, we have a one-dimensional complex time (the real point of view, the time is two-dimensional). We cite also the de Sitter and Anti de Sitter complex spaces. They have a constant holomorphic curvature, and generalize in this direction the projective and complex hyperbolic spaces.This thesis focuses on the Hermite-Lorentz homogeneous spaces. In addition with given examples, two other symmetric spaces can naturally play the role of complexification of the de Sitter and anti de Sitter real spaces.The main result of the thesis is a rigidity theorem of these symmetric spaces: any space Hermite-Lorentz isotropy irreducible homogeneous is one of the five previous symmetric spaces. Other results concern the case where we replace the irreducible hypothesis by the fact that the isometry group is semisimple.
|
157 |
Équidistribution des zéros de sections holomorphes aléatoires par rapport à des mesures modérées / Equidistribution of zeros of random holomorphic sections for moderate measuresShao, Guokuan 24 June 2016 (has links)
Cette thèse étudie les équidistributions de zéros de sections holomorphesaléatoires de fibrés en droites pour les mesures modérées. Elle consiste en deuxparties.Dans la première partie, nous construisons une famille étendue de mesuressingulières modérées sur des espaces projectifs. Ces mesures sont générées pardes fonctions quasi-plurisousharmoniques avec les potentiels höldériens.Le deuxième partie traite une propriété d' équidistribution dans un contextegénéral. Nous établissons un théorème d'équidistribution dans le cas dequelques fibrés en droites gros munis de métriques singulières. Une vitesse deconvergence précise pour l'équidistribution est obtenue. / This thesis investigates the equidistributions of zeros of random holomorphic sections of line bundles for moderate measures. It consists of two parts. In the first part, we construct a large family of singular moderate measures on projective spaces. These measures are generated by quasi-plurisubharmonic functions with Holder potentials.The second part deals with an equidistribution property in general settings. We establish an equidistribution theorem in the case of several big line bundles endowed with singular metrics. A precise convergence speed for the equidistribution is obtained.
|
158 |
Hyperholomorphic structures and corresponding explicit orthogonal function systems in 3D and 4DLe, Thu Hoai 20 June 2014 (has links)
Die Reichhaltigkeit und breite Anwendbarkeit der Theorie der holomorphen Funktionen in der komplexen Ebene ist stark motivierend eine ähnliche Theorie für höhere Dimensionen zu entwickeln. Viele Forscher waren und sind in diese Aufgaben involviert, insbesondere in der Entwicklung der Quaternionenanalysis. In den letzten Jahren wurde die Quaternionenanalysis bereits erfolgreich auf eine Vielzahl von Problemen der mathematischen Physik angewandt.
Das Ziel der Dissertation besteht darin, holomorphe Strukturen in höheren Dimensionen zu studieren. Zunächst wird ein neues Holomorphiekonzept vorgelegt, was auf der Theorie rechtsinvertierbarer Operatoren basiert und nicht auf Verallgemeinerungen des Cauchy-Riemann-Systems wie üblich. Dieser Begriff umfasst die meisten der gut bekannten holomorphen Strukturen in höheren Dimensionen. Unter anderem sind die üblichen Modelle für reelle und komplexe quaternionenwertige Funktionen sowie Clifford-algebra-wertige Funktionen enthalten. Außerdem werden holomorphe Funktionen mittels einer geeignete Formel vom Taylor-Typ durch spezielle Funktionen lokal approximiert.
Um globale Approximationen für holomorphe Funktionen zu erhalten, werden im zweiten Teil der Arbeit verschiedene Systeme holomorpher Basisfunktionen in drei und vier Dimensionen mittels geeigneter Fourier-Entwicklungen explizit konstruiert. Das Konzept der Holomorphie ist verbunden mit der Lösung verallgemeinerter Cauchy-Riemann Systeme, deren Funktionswerte reellen Quaternionen bzw. reduzierte Quaternionen sind. In expliziter Form werden orthogonale holomorphe Funktionensysteme konstruiert, die Lösungen des Riesz-Systems bzw. des Moisil-Teodorescu Systems über zylindrischen Gebieten im R3, sowie Lösungen des Riesz-Systems in Kugeln des R4 sind. Um konkrete Anwendungen auf Randwertprobleme realisieren zu können wird eine orthogonale Zerlegung eines Rechts-Quasi-Hilbert-Moduls komplex-quaternionischer Funktionen unter gegebenen Bedingungen studiert. Die Ergebnisse werden auf die Behandlung von Maxwell-Gleichungen mit zeitvariabler elektrischer Dielektrizitätskonstante und magnetischer Permeabilität angewandt. / The richness and widely applicability of the theory of holomorphic functions in complex analysis requires to perform a similar theory in higher dimensions. It has been developed by many researchers so far, especially in quaternionic analysis. Over the last years, it has been successfully applied to a vast array of problems in mathematical physics.
The aim of this thesis is to study the structure of holomorphy in higher dimensions. First, a new concept of holomorphy is introduced based on the theory of right invertible operators, and not by means of an analogue of the Cauchy-Riemann operator as usual. This notion covers most of the well-known holomorphic structures in higher dimensions including real, complex, quaternionic, Clifford analysis, among others. In addition, from our operators a local approximation of a holomorphic function is attained by the Taylor type formula.
In order to obtain the global approximation for holomorphic functions, the second part of the thesis deals with the construction of different systems of basis holomorphic functions in three and four dimensions by means of Fourier analysis. The concept of holomorphy is related to the null-solutions of generalized Cauchy-Riemann systems, which take either values in the reduced quaternions or real quaternions. We obtain several explicit orthogonal holomorphic function systems: solutions to the Riesz and Moisil-Teodorescu systems over cylindrical domains in R3, and solutions to the Riesz system over spherical domains in R4. Having in mind concrete applications to boundary value problems, we investigate an orthogonal decomposition of complex-quaternionic functions over a right quasi-Hilbert module under given conditions. It is then applied to the treatment of Maxwell’s equations with electric permittivity and magnetic permeability depending on the time variable.
|
159 |
Hamiltonian Floer theory on surfacesConnery-Grigg, Dustin 12 1900 (has links)
Dans cette thèse, nous développons de nouveaux outils pour relier les dynamiques qualitatives des systèmes hamiltoniens sur des surfaces aux propriétés algèbriques de leurs complexes de Floer - un objet algébrique qui encode l'information sur la façon dont les orbites 1-périodiques d'un système sont reliées par des cylindres satisfaisant une équation différentielle partielle elliptique appelée l'équation de Floer. L'idée principale est de considérer --- pour un hamiltonian \(H \in C^\infty(S^1 \times \Sigma)\) sur une surface symplectique \((\Sigma, \omega)\) --- les graphes des orbites contractiles 1-périodiques de l'isotopie \((\phi^H_t)_{t \in [0,1]}\) comme définissant une tresse \(P^H\) dans \(S^1 \times \Sigma\). En choisissant des capuchons pour chacune de ces orbites 1-périodiques, nous obtenons un objet que nous appelons une tresse encapuchonnée \(\hat{P}^H\), qui est muni d'une fonction d'indexation \(\mu_{CZ}: \hat{P}^H \rightarrow \mathbb{Z}\) obtenue en assignant à chaque brin encapuchonné l'indice de Conley-Zehnder de l'orbite encapuchonnée associée. L'idée est alors de s'interroger sur la relation entre l'information topologique encodée dans la tresse encapuchonnée indexée \((\hat{P}^H,\mu_{CZ})\) et la structure du complexe de Floer \(CF_*(H,J)\) pour une structure presque complexe générique \(J\). À cette fin, nous aurons recours à: un nouvel invariant relatif pour les paires de tresses encapuchonnées que nous appelons le nombre d'enlacement homologique, un cercle d'idées concernant le comportement asymptotique des courbes pseudo-holomorphes développé par Hofer-Wysocki-Zehnder dans leur série d'articles [8], [10], [12] et aussi [11] (ainsi qu'un raffinement supplémentaire dans le cas relatif dû à Siefring dans [32]), et une nouvelle technique en basses dimensions pour la construction de morphismes de continuation de Floer qui ont un comportement prescrit. En conséquence de ces techniques, nous établissons l'existence --- pour des systèmes hamiltoniens génériques sur une surface fermée arbitraire --- de certaines feuilletages singulières spéciaux sur \(S^1 \times \Sigma\) dont le comportement est étroitement lié à la fois à la dynamique sous-jacente et à la structure du complexe de Floer du système. La construction de tels feuilletages dans le cas particulier des pseudo-rotations d'un disque, par des méthodes très différentes des nôtres, a été au coeur des progrès significatifs récents de Bramham dans [3] sur une célèbre question de Katok concernant les systèmes conservatifs de basse dimension et d'entropie nulle. Ces feuilletages fournissent également, pour les systèmes hamiltoniens lisses génériques, une construction Floer-théorique des feuilletages positivement transversaux sur \(\Sigma\) qui ont été construits originellement (pour les homéomorphismes de surface généraux) par Le Calvez à travers d'une extension substantielle de la théorie de Brouwer classique pour les homéomorphismes de surface dans [16]. En plus de fournir un pont géométrique entre la dynamique d'une isotopie hamiltonienne et l'information algébrique contenue dans son complexe de Floer, les techniques développées dans cette thèse permettent également de donner une caractérisation --- purement en termes de la dynamique de l'isotopie hamiltonienne sous-jacente --- des cycles de Floer dans \(CF_*(H,J)\) qui représentent la classe fondamentale de la surface et qui de plus se trouvent dans l'image d'un morphisme de PSS au niveau des chaines. Finalement, ces techniques permettent de définir une nouvelle famille d'invariants d'un système hamiltonien (sur une variété symplectique arbitraire) qui se comporte formellement de manière similaire à une famille bien étudiée de tels invariants connue comme les invariants spectraux de Oh-Schwarz. L'avantage de nos nouveaux invariants est que nous sommes capable de calculer explicitement les plus importants d'entre eux pour des systèmes hamiltoniens génériques sur des surfaces arbitraires, ce uniquement en termes de topologie relative des orbites périodiques du système (avec leurs indices de Conley-Zehnder). Ceci généralise un résultat de Humilière-Le Roux-Seyfaddini dans [13] dans lequel ils ont donné une caractérisation dynamique du principal invariant spectral de Oh-Schwarz dans le cas de systèmes hamiltoniens autonomes sur des surfaces de genre positif. / In this thesis, we develop novel tools for relating the qualitative dynamics of Hamiltonian systems on surfaces to the algebraic properties of their Floer complexes --- an algebraic object which encodes information about the ways in which a system’s 1-periodic orbits are connected by cylinders satisfying an elliptic partial differential equation known as Floer’s equation. The main idea is to consider --- for a generic Hamiltonian \(H \in C^\infty(S^1 \times \Sigma)\) on a symplectic surface \((\Sigma, \omega)\) --- the graphs of the contractible time-1 periodic orbits of the isotopy \((\phi^H_t)_{t \in [0,1]}\) as defining a braid \(P^H\) in \(S^1 \times \Sigma\). Upon choosing cappings for each such 1-periodic orbit, we obtain an object which we term a capped braid \(\hat{P}^H\), which comes equipped with an indexing function \(\mu_{CZ}: \hat{P}^H \rightarrow \mathbb{Z}\) given by assigning to each (capped) strand of the braid the Conley-Zehnder index of the associated capped orbit. The idea is then to enquire into the relation of the topological information encoded in the indexed capped braid \((\hat{P}^H,\mu_{CZ})\) and the structure of the Floer complex \(CF_*(H,J)\) for a generic \(J\). The main tools employed to this end are: a novel relative invariant for pairs of capped braids which we term the homological linking number, a circle of ideas about the asymptotic behaviour of pseudo-holomorphic curves pioneered by Hofer-Wysocki-Zehnder in their series of papers [8], [10], [12] as well as in [11] (along with a further refinement to the relative case by Siefring in [32]), and a novel technique for the construction of regular Floer continuation maps in low-dimensions having prescribed behaviour. As a consequence of these techniques, we establish the existence --- for generic Hamiltonian systems on an arbitrary closed surface \(\Sigma\) --- of certain special singular foliations on \(S^1 \times \Sigma\) whose behaviour is tightly related to both the underlying dynamics, as well as the structure of the system’s Floer complex. The construction of such foliations (by very different methods) in the particular case of pseudo-rotations on a disk was the crux of Bramham’s recent significant progress in [3] on a famous question due to Katok about low-dimensional conservative systems with vanishing entropy. These foliations also provide, for generic smooth Hamiltonian systems, 7 a Floer-theoretic construction of the positively transverse foliations on \(\Sigma\) which were originally constructed (for general surface homeomorphisms) by Le Calvez through a significant extension of classical Brouwer theory for surface homeomorphisms in [16]. In addition to providing a geometric bridge between the dynamics of a Hamiltonian isotopy and the algebraic information contained in its associated Floer complex, the techniques developed in this dissertation also permit a characterization --- purely in terms of the dynamics of the underlying Hamiltonian isotopy --- of those Floer cycles in \(CF_*(H,J)\) which represent the fundamental class of the surface, and which moreover lie in the image of some chain-level PSS map. Finally, these techniques permit the definition of a new family of invariants of a Hamiltonian system (on an arbitrary symplectic manifold) which behave formally similarly to a well-studied family of such invariants known as ‘Oh-Schwarz spectral invariants’ (and which agree with them in all known cases). The advantage of these novel spectral invariants is that we are able to explicitly compute the most important of these spectral invariants for generic Hamiltonian systems on arbitrary surfaces purely in terms of the relative topology of the system’s periodic orbits (together with their Conley-Zehnder indices). This considerably generalizes a result by Humilière-Le Roux-Seyfaddini in [13] in which they gave a dynamical characterization of the main Oh-Schwarz spectral invariant in the case of time-independent Hamiltonian systems on surfaces with positive genus.
|
160 |
Invariants analytiques des difféomorphismes et multizêtas / Analytic invariants of diffeomorphisms and multizetas valuesBouillot, Olivier 19 October 2011 (has links)
Ce travail comprends deux parties indépendantes, mais intimement liées. La première partie concerne le calcul et l'évaluation numérique des invariants holomorphes des difféomorphismes tangents à l'identité, dans le cas-type. On y expose notamment trois méthodes de calculs numériques, dont l'une est basée sur une formule explicite des invariants. Celle-ci résulte de l'évaluation de l'application de cornes 7[+, dont les ingrédients de base sont des rationnels, des coefficients de Taylor du difféomorphisme étudié et des multitangentes. La seconde partie concerne l'étude des multitangentes et des relations les liant entre elles. Il s'agit de fonctions I-périodiques, généralisant les séries d'Eisenstein, et définissant un moule symétr~l. D'autres relations existent, tels la réduction en monotangentes qui indique un lien profond entre les multitangentes et les multizêtas. Des propriétés et conjectures de nature purement algébrique, arithmétique ou analytique sont ensuite exposées. / This work contains two independant parts, witch are deeply very closed. The first part deals with the calculation and the numerical evaluation of the holomor¬phic invariants of tangent to identity diffeomorphisms, in the type-case. ln particular, we display here three methods of numerical computation whose the last is based on an ex¬plicit formula of invariants. These result of calculation of the horn map 7[+, whose basics components are sorne rationnaIs, sorne Taylor coefficients of the diffeomorphism which is studied and multitangents. The second part deals with a général study of multitangents and relations between them. They are I-periodic functions, generalizing Eisenstein series and defining a symetr~l mould. There are others relations, like the reduction into monotangents which point out to us a profound link between multitangents and multiz~tas values. Properties and conjec¬tures of purely algebraic, arithmetical or analytical kirig are then explain
|
Page generated in 0.0566 seconds