• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 251
  • 113
  • 32
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 398
  • 131
  • 107
  • 78
  • 78
  • 60
  • 55
  • 52
  • 49
  • 42
  • 41
  • 40
  • 40
  • 38
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Transport électrique et thermoélectrique dans les nanodispositifs / Electric and thermoelectric transport in nanodevices

Azema, Julien 17 December 2014 (has links)
Cette thèse est consacrée à l'étude théorique des propriétés de transportd'un nanodispositif comme par exemple une boîte quantique. A faible dimensionnalité,les propriétés de transport sont fortement liées à la densité d'étatsélectroniques du système, il est donc important d'utiliser une approche capablede calculer cette dernière correctement notamment en tenant comptedu confinement électronique.En utilisant le modèle d'Anderson et l'approximation de non croisementafin de calculer la densité d'états, on a pu observer et caractériser les transfertsde poids spectral pour des orbitales simplement, doublement ou triplementdégénérées. Ces transferts de poids spectral sont typiques des systèmescorrélés, mais lorsqu'une différence de potentiel est appliquée, on a pu remarquerque ces transferts se faisaient en deux temps.Dans un second temps, on a analysé les signatures du couplage de Hundincluant le terme de saut de paires dans les diagrammes de stabilité. Ces deuxtermes, provenant de l'interaction Coulombienne, modifient sensiblement lastructure des diamants de Coulomb et doivent donc être considérés lorsqu'ondéduit les paramètres microscopiques à partir du diagramme de stabilitéexpérimental.Enfin, on s'est placé dans le régime de générateur thermoélectrique, et ona utilisé le pic de Kondo comme canal de transport. Cependant l'optimisationà la fois du rendement et de la puissance en utilisant les bandes de Hubbardcomme canaux de transport est impossible. Or les particularités et les grandeurscaractérisant le pic de Kondo permettent d'une part de s'affranchirpartiellement de ce compromis mais cela permet également de générer uneplus grande puissance. / This thesis is devoted to the theoretical study of a nanodevice transportproperties, such as a quantum dot. At low dimensionality, transport propertiesare strongly related to the local density of state, it is important to use anapproach able to compute the latter properly especially tanking into accountthe electronic containment.Using the Anderson model and the non-crossing approximation to computedensity of states, we observed and characterize spectral weight transfersfor simply, doubly and triply degenerated orbitals. These spectral weighttransfers are typical of correlated systems, but when potential bias is applied,we note that these transfers occur in two stages.In a second step, we analyze Hund coupling footprint including pair hoppingin stability diagrams. These two terms, from the Coulomb interaction,substantially alter the Coulomb diamonds structure and must be considerwhen microscopic parameters are derived from experimental stability diagrams.Finally, we placed in the thermoelectric generator regime, and we usedKondo peak as transport channel. However, optimization of both efficiencyand power output using Hubbard bands as transport channel is impossible.But the features and scales characterizing Kondo peak serve on the one handto overcome this compromise and on the other hand to generate a greaterpower output.
242

Modeling of ballistic electron emission microscopy / Modélisation de la microscopie à émission d'électrons balistiques

Claveau, Yann 30 October 2014 (has links)
Après la découverte de la magnéto-résistance géante (GMR) par Albert Fert et Peter Grünberg, l'électronique a connu une véritable avancée avec la naissance d'une nouvelle branche appelée spintronique. Cette discipline, encore jeune, consiste à exploiter le spin des électrons dans le but notamment de stocker de l'information numérique. La plupart des dispositifs exploitant cette propriété quantique des électrons consistent en une alternance de fines couches magnétiques et non magnétiques sur un substrat semi-conducteur. L'un des outils de choix pour la caractérisation de ces structures, inventé en 1988 par Kaiser et Bell, est le microscope à émission d'électrons balistiques (BEEM). A l'origine, ce microscope, dérivé du microscope à effet tunnel (STM), était dédié à l'imagerie d'objets (nanométriques) enterrés ainsi qu'à l'étude de la barrière de potentiel (barrière Schottky) qui se forme à l'interface d'un métal et d'un semi-conducteur lors de leur mise en contact. Avec l'essor de la spintronique, le BEEM est devenu une technique de spectroscopie essentielle mais encore fondamentalement incomprise. C'est en 1996 que le premier modèle réaliste, basé sur le formalisme hors équilibre de Keldysh, a été proposé pour décrire le transport des électrons dans cette microscopie. Il permettait notamment d'expliquer certains résultats expérimentaux jusqu'alors incompris. Cependant, malgré son succès, son usage a été limité à l'étude de structures semi-infinies via un méthode de calcul appelée décimation de fonctions de Green. Dans ce contexte, nous avons étendu ce modèle au cas des films minces et des hétéro-structures du type vanne de spin : partant du même postulat que les électrons suivent la structure de bandes du matériaux dans lesquels ils se propagent, nous avons établi une formule itérative permettant le calcul des fonctions de Green du système fini par la méthode des liaisons fortes. Ce calcul des fonctions de Green a été encodé dans un programme Fortran 90, BEEM v3, afin de calculer le courant BEEM ainsi que la densité d'états de surface. En parallèle, nous avons développé une autre méthode, plus simple, qui permet de s'affranchir du formalisme hors équilibre de Keldysh. En dépit de sa naïveté, nous avons montré que cette approche permettait l'interprétation et la prédiction de certains résultats expérimentaux de manière intuitive. Cependant, pour une étude plus fine, le recours à l'approche “hors équilibre” reste inévitable, notamment pour la mise en évidence d'effets d'épaisseur, lés aux interfaces inter-plans. Nous espérons que ces deux outils puissent se révéler utiles aux expérimentateurs, et notamment pour l'équipe Surfaces et Interfaces de notre département. / After the discovery of Giant Magneto-Resistance (GMR) by Albert Fert and Peter Grünberg, electronics had a breakthrough with the birth of a new branch called spintronics. This discipline, while still young, exploit the spin of electrons, for instance to store digital information. Most quantum devices exploiting this property of electrons consist of alternating magnetic and nonmagnetic thin layers on a semiconductor substrate. One of the best tools used for characterizing these structures, invented in 1988 by Kaiser and Bell, is the so-called Ballistic Electron Emission Microscope (BEEM). Originally, this microscope, derived from the scanning tunneling microscope (STM), was dedicated to the imaging of buried (nanometer-scale) objects and to the study of the potential barrier (Schottky barrier) formed at the interface of a metal and a semiconductor when placed in contact. With the development of spintronics, the BEEM became an essential spectroscopy technique but still fundamentally misunderstood. It was in 1996 that the first realistic model, based on the non-equilibrium Keldysh formalism, was proposed to describe the transport of electrons during BEEM experiments. In particular, this model allowed to explain some experimental results previously misunderstood. However, despite its success, its use was limited to the study of semi-infinite structures through a calculation method called decimation of Green functions. In this context, we have extended this model to the case of thin films and hetero-structures like spin valves: starting from the same postulate that electrons follow the band structure of materials in which they propagate, we have established an iterative formula allowing calculation of the Green functions of the finite system by tight-binding method. This calculation of Green’s functions has been encoded in a FORTRAN 90 program, BEEM v3, in order to calculate the BEEM current and the surface density of states. In parallel, we have developed a simpler method which allows to avoid passing through the non-equilibrium Keldysh formalism. Despite its simplicity, we have shown that this intuitive approach gives some physical interpretation qualitatively similar to the non-equilibrium approach. However, for a more detailed study, the use of “non-equilibrium approach” is inevitable, especially for the detection of thickness effects linked to layer interfaces. We hope these both tools should be useful to experimentalists, especially for the Surfaces and Interfaces team of our department.
243

Physical modeling of the organization and dynamics of intracellular organelles / Modélisation physique de l'organisation et de la dynamique de organites intracellulaires

Vrel, Jean-Patrick 17 September 2019 (has links)
Les cellules eukaryotes sont compartimentées par des structures intracellulaires nommées organites. On peut citer le réticulum endoplasmique, l'appareil de Golgi, le réseau endosomal et lyzosomal. Ces structures délimitées par des membranes cellulaires sont hautement dynamiques, structures dont les composants s'échangent sans cesse entre les différents compartiments. Malgré cette dynamique, les structures qui composent les réseaux d'organites sont très stables et robustes, de sorte que l'on peut décrire un état stationnaire pour ces systèmes hors équilibre et auto-organisés. Bien qu'ils soient robustes en conditions physiologiques, ces compartiments peuvent subir des modification de structures en condition pathologiques ou sous l'effet de traitements pharmacologiques. L'auto-organisation de systèmes à l'équilibre et relativement bien compris par le biais de diagrammes de phases, où l'on peut représenter lesdites phases en fonctions de paramètres physiques, tels que la concentration, ou les interaction entre les différents composants. La situation est bien moins prédictible pour des systèmes hors équilibre. C'est là donc une question scientifique intéressante que de comprendre les mécanismes contraignant l'organisation intracellulaire, où transports actifs et modification biochimiques des composant, tout deux consommant de l'énergie, sont en compétition avec des phénomènes passifs telle que la diffusion. Nous étudions, aussi bien numériquement qu'analytiquement, des modèles d'auto-organisation et de transport, dans des systèmes où un nombre réduit de composants s'organisent par le biais de réaction stochastiques, en des structures de grandes tailles. La question principale que nous posons est de comprendre comment les dynamiques d'échanges entre compartiments (par le biais de vésiculations et de fusion) jouent de concert avec les cinétiques de maturation des composants d'organites, permettent la mise en place d'un réseau robuste. A cette fin, nous nous focalisons sur un organite type, multi-compartiments, doté d'une dynamique riche de transport et de maturation de ses composants : l'appareil de Golgi. Nous décrivons et analysons l'état stationnaire de ces systèmes, en des termes de tailles et de pureté des compartiments le composant - sont ils gros ou petit, triés dans leur composition ou mixés. De cet état stationnaire émerge spontanément un transport de vésicules entre les compartiments, dont la directionnalité est intimement liée à l'état stationnaire. Ce transport est antérograde dans les régimes triés, rétrograde dans les régimes mixés. Des interactions locales, entre les compartiments et ce qu'ils renferment (protéines dont le nom générique est cargo), suffisent à biaiser ces dynamiques de transport. Cela impacte à la fois le temps de résidence des cargos, mais aussi leur localisation dans le système. La capacité de cet organite à trier ces cargos dépend cependant grandement de l'état stationnaire précédemment décrit. / Eukaryotic cells are highly compartmentalized into intracellular organelles, such as the endoplasmic reticulum, the Golgi apparatus, endosomes and lysosomes. These are dynamical structures bounded by lipid membranes, within which components undergo biochemical modification by enzymes, and between which components are constantly being exchanged. Despite their highly dynamical nature, their spatial organization is fairly well conserved over time, so that they could be seen as stationary states of a highly non-equilibrium, and multi-component system. On the other hand, this organization has been observed to be totally disorganized in pathologies or drug treatments. Self-organization in equilibrium systems is fairly well understood by means of phase diagrams where the occurrence of different phases (dispersed, condensed, phase separated) depends on physical parameters (concentrations, interaction energy between components). The situation is much less clear for non-equilibrium systems. It is therefore an exciting challenge to reach a quantitative understanding of the mechanisms dictating the intra-cellular organization, where active transport and biochemical modification by energy-consuming enzymes compete with purely passive phenomena such as diffusion. We design and study, both analytically and numerically, simple models of self-organization and transport in systems where a limited number of components may self-organize into larger structures by means of stochastic reactions. Our main fundamental question is to determine how the interplay between the dynamics of inter-organelle exchange (by means of vesicle secretion, transport and fusion) and the kinetics of biochemical maturation within organelles may yield a precise and robust organelle network. To this end we focus on one "stereotype" organelle, that is already multi-compartments and with a very rich dynamics of vesiculation, fusion and maturation: the Golgi Apparatus. We describe and understand the steady-state organization of such systems, in term of compartments' size and purity - how big and well sorted are the different compartments. From this steady-state, a vesicular transport spontaneously emerges, whose directionality is linked to the steady-state organization. It is anterograde in a pure regime, and retrograde in a mixed configuration. Local interaction between components being transported, and membranes are sufficient to bias those transport. This both change the kinetics of transport in the system, and thus their location in the compartments. How efficient the system is in sorting these elements, strongly relies on the steady-state organization and the vesicular transport.
244

On the interface between physical systems and mathematical models : study of first-passage properties of fractional interfaces and large deviations in kinetically constrained models / A l’interface entre systèmes physiques et modèles mathématiques : propriétés de premier passage d’interfaces fractionnaires et grandes déviations de modèles cinétiquement contraints

Leos Zamorategui, Arturo 03 November 2017 (has links)
La thèse décrit les propriétés d’équilibre et hors d’équilibre de modèles mathématiques stochastiques de systèmes physiques. À l’aide de simulations numériques, on étudie les fluctuations des différentes quantités mais on s’interesse aussi aux grands déviations dans certains systèmes. La première partie de la thèse se concentre sur l’étude des interfaces rugueuses observées dans des processus de croissance. Ces interfaces sont simulées avec des nouvelles techniques de programmation en parallèle qui nous permettent d’accéder à des systèmes de très grande taille. D’une part, on discute le cas diffusif, représenté par l’équation d’Edward-Wilkinson dans des interfaces périodiques, pour lequel on obtient une solution exacte de l’équation discrète dans l’espace de Fourier. Avec cette solution on déduit le facteur de structure associé aux amplitudes des modes et l’expression exacte est comparée avec les valeurs numériques. De plus, on fait le lien entre les propriétés de premier passage des interfaces et le mouvement Brownien. On mesure la distribution des longueurs des intervalles et on compare les résultats avec une version modifiée du théorème de Sparre-Andersen. D’autre part, on étudie le cas général qui inclut les cas sous-diffusif et superdiffusif avec des conditions de bord périodiques. On étudie pour ces interfaces fractionnaires des propriétés de premier passage liées aux zéros des interfaces. Dans l’état stationnaire, on étudie également les premiers cumulants et propriétés d’échellement de la longueur des intervalles et de la densité de zéros. De plus, on mesure la largeur typique de l’interface et ses propriétés d’échellement. Finalement, on analyse le comportement de ces observables dans les interfaces hors d’équilibre et on discute leur dépendance en la taille du système. On discute également les conditions de stabilité des solutions del’équation discrète, importantes pour les simulations des interfaces. Dans une deuxième partie, on étude la transition de phase dynamique dans des modèles cinétiquement contraints afin d’étudier la transition vitreuse observée dans des verres structuraux. Pour un modèle en dimension un, on étudie la géométrie spatio-temporelle des bulles d’inactivité qui caractérisent les hétérogénéités dynamiques observées dans les verres. On trouve que les directions spatiales et temporelles des bulles ne sont pas liées par un comportement diffusif. En contraste, on confirme l’échellement de l’aire et d’autres quantités attendues pour un système, a priori diffusif. De plus, grâce à la théorie des grandes déviations et l’algorithme de clonage, on identifie la transition de phase dynamique dans des systèmes en deux dimensions spatiales. D’abord on mesure l’énergie libre dynamique pour différentes valeurs du paramètre λ. Après, on conjecture des valeurs critiques λ c = Σ/K, avec Σ la tension surface d’une ı̂le de sites actifs entourée par des sites inactifs dans un modèle effectif et K l’activité moyenne du système, pour laquelle la transition de phase a lieu dans la limite de taille infinie. En mesurant l’activité du système et le nombre d’occupation, on observe la dépendance de ces observables avec la taille des systèmes étudiés loin de la transition. Finalement, on mesure la propagation du front des sites actifs dans tout les systèmes. Pour l’un des systèmes étudiés, on identifie une vitesse balistique du front qui nous permet d’observer la transition de phase d’un point de vue dynamique. / This thesis investigates both equilibrium and nonequilibrium properties of mathematical stochastic models that as a representation of physical systems. By means of extensive numerical simulations we study mean quantities and their fluctuations. Nonetheless, in some systems we are interested also in large deviations. The first part of the thesis focuses on the study of rough interfaces observed in growth processes. These interfaces are simulated with state-of-the-art simulations based on parallel computing which allow us to study very large systems. On the one hand, we discuss the diffusive case given by the Edward-Wilkinson equation in periodic interfaces. For the discrete version of such an equation, we obtain an analytic solution in Fourier space. Fur-ther, we derive an exact expression of the structure factor related with the modes amplitudes describing the interface and compare it with the numerical values. Moreover, using a mapping between stationary interfaces and the Brownian motion, we relate the distribution of the intervals generated by the zeros of the interface with the first-passage distribution given by a the Sparre-Andersen theorem in the case of the Brownian motion. As a generalization of the results obtained in the diffusive case, we study a linear Langevin equation with a Riesz-Feller fractional Laplacian of order z used to simulate sub- and super-diffusive interfaces. In this general case, we identify three regimes based on the scaling behaviour of the cumulants of the intervallengths, the density of zeros and the width of the interface. Finally, we study the evolution in time of some of the observables introduced before. In the second part of the thesis, we study the dynamical phase transition in kinetically constrained models (KCMs) in order to get some insight on the glass transition observed in structural glasses. In a one-dimensional KCM we study the geometry of the bubbles of inactivity in space-time for systems at different temperatures. We find that the spatial length of the bubbles does not scale diffusively with its temporal duration. In contrast, we confirm a vidiffusive behaviour for other quantities studied. Further, by means of large deviation theory and cloning algorithms, we identify the dynamical phase transition in two-dimensional systems. To start with, we measure numerically the dynamical free energy both by measuring the largest eigenvalue of the evolution operator,for small systems, and via the cloning algorithm, for larger systems. We conjecture a value λ c = Σ/K, with Σ the surface tensionof a bubble of activity surrounded by a sea of inactive sites in an effective interfacial model and K the mean activity of the system, for each of the systems studied. For the activity of the system and the occupation number we discuss their scaling properties far from the phase transition. Starting from an empty system subject to different boundary conditions, we investigate the front propagation of active sites. We argue that the phase transition in this case can be identified by the abrupt slowing-down of the front. This is done by measuring the ballistic speed of the front in the simplest case studied. Finally, we propose an effective model following the Feynman-Kac formula for a moving front.-proprietés de premier passage, interface rugueuse, diffusion fractionnaire , système hors d'équilibre, transition de phase dynamique, modèle cinétiquement contraint, grandes déviations.-first-passage properties, rough interface, fractional diffusion, out-of-equilibrium system, dynamical phase transition, kinetically constrained model, large deviations
245

Optimisation et validation des méthodes de calcul de dose à distance des faisceaux d’irradiation pour leur application dans les études épidémiologiques et cliniques en radiothérapie / Optimization and validation of out-of-field dose calculation methods in external beam radiation therapy for use in epidemiological and clinical studies

Vũ Bezin, Jérémi 17 December 2015 (has links)
La proportion de survivants à un cancer dans la population des pays développés augmente rapidement. Dans plus de la moitié des cas, la radiothérapie a été une composante de leur traitement. Les rayons ionisants alors administrés peuvent induire de graves conséquences à long terme, en particulier les cancers radio-induits et les maladies cardiovasculaires. Ces évènements sont dus non seulement aux fortes doses administrées au volume cible, mais également aux doses plus faibles, de quelques milligray à quelques gray, non souhaitées, mais inévitablement administrées dans le reste du corps du patient par la dose hors champ. L’évolution des techniques de planification du traitement et de l’informatique en médecine permettent aujourd’hui d’obtenir, systématiquement, l’évaluation précise des doses les plus fortes administrées au patient. Les doses faibles à intermédiaires administrées en dehors du faisceau de traitement, ne sont pour leur part, ni habituellement prises en compte, ni correctement évaluées par les systèmes actuels de planification du traitement. L’objectif de ce travail était de proposer des méthodes pour estimer le rayonnement hors champ des faisceaux de photons des accélérateurs de radiothérapie externe. L’utilisation d’une bibliothèque graphique nous a permis de réaliser une représentation géométrique 3D partielle des appareils de traitement et des sources photoniques responsables de la dose reçue par le patient. Nous avons déterminé l’intensité de ces sources en utilisant des mesures réalisées dans des champs simples. Le modèle ainsi calibré permettait de simuler la variation de l’intensité des sources en fonction de la taille du champ. Cette approche a permis de décrire avec succès la variation de la dose mesurée par TLD en fonction de la distance et de la taille du champ en dehors de champs carrés. Les écarts entres les doses calculées et celles mesurées étaient inférieurs à 10 %. Une application dans des conditions cliniques a été menée, l’écart était alors en moyenne de 25 %. / The number of cancer survivors in developed counties increases rapidly. Fifty percent of patients treated for cancer will receive radiation therapy as part of their treatment. Ionizing radiation may induce severe long term effects, including secondary cancers and cardio-vascular diseases. Long term effects are not only due to high doses delivered in target volumes, but also to lower doses, ranging from several milligrays to several grays, undesired, but inevitably delivered in the rest of the patient’s body outside the treatment beams. Improvements in treatment planning technics and the use of computers in medicine made it possible to systematically estimate, prior to treatment, the highest doses delivered to the patient’s body. However, lower doses delivered outside the treatment beams are neither taken into account nor evaluated by present treatment planning systems. The aim of our work was to establish methods to estimate radiation doses outside photon beams from accelerators used in external radiation therapy. A graphics library was used to render a partial 3D representation of the accelerator and the photon sources associated. The intensity of these sources was determined using measurements performed in simple geometry fields. The calibrated model was hence used to estimate the source intensity variation with respect to field size. Using this method, we were able to estimate the variations of the TLD measured doses with respect to distance and field size with a 10% average discrepancy between calculations and measurements for points outside the field. Also, when testing the model in a clinical setup, the average discrepancy increased to 25%.
246

Application des outils de la physique statistique au transport intracellulaire / Application of statistical physics tools to intracellular transport

Klein, Sarah 27 April 2016 (has links)
La plupart des processus dans notre vie quotidienne sont des processus hors équilibre. Un exemple de système hors équilibre est la cellule biologique et le transport qui a lieu dedans. Dans cette thèse ce transport intracellulaire est modélisé par des processus stochastiques. Pour cela deux approches différentes ont été utilisées : d’une part une modélisation explicite de particules actives avec des degrés de liberté internes obtenus expérimentalement, d’autre part une description phénoménologique des effets collectifs, qui est réalisée au moyen de processus d’exclusion.Un des résultats principaux pour le modèle explicite est qu’il est crucial de prendre en compte les fluctuations des forces pour reproduire les caractéristiques principales du mou- vement. Un autre élément important est la prise en considération de l’environnement cellu- laire, qui peut produire des effets non-triviaux, comme par exemple une inversion du sens de déplacement moyen. Pour étudier les effets collectifs il est possible de représenter le mou- vement des particules d’une manière simplifiée, en utilisant un processus d’exclusion avec des particules ayant des états internes. Le désordre sur les taux de saut qui en résulte peut provoquer une condensation dépendant de la densité.Un autre modèle étudié est un processus d’exclusion sur un réseau à deux voies. On suppose que deux types de particules se déplacent dans une géométrie tubulaire, inspirée par les champignons filamenteux. Ces hypothèses définissent un modèle minimal qui présente une transition de phase d’une phase de basse densité vers une phase pulsante caractérisée par des oscillations de densité. / Most processes in our daily life are far from equilibrium. The prime example is a cell and the transport occurring within. In this thesis intracellular transport is modeled by means of stochastic processes. For this, two different approaches are applied: the explicit mod- eling of active particles with internal degrees of freedom with characteristics as they were determined experimentally. And secondly, the collective effects occurring in many particle systems are studied in a phenomenological way by means of exclusion processes.In the explicit model one important result is given by the fact that force fluctuations are essential to capture the relevant motion characteristics. Further, the influence of the cellular environment creates counter-intuitive effects, like a possible inversion of the bias. The motion characteristics can be represented in a coarse-grained manner as an exclusion process for particles with internal states. Due to the resulting disorder in the hopping rates a density-dependent condensation occurs.In a second part, a two-lane exclusion model is studied. Two species in a tubular geometry inspired by filamentous fungi are considered.This can be seen as a minimal model exhibiting a phase transition from a low density phase to an intriguing phase with periodically changing particle densities.
247

Un nouveau dispositif pour étudier la relaxation d'un système quantique à N corps / A new ultracold atom apparatus for investigating the relaxation dynamics of quantum many-body systems

Molineri, Anaïs 06 November 2019 (has links)
Les travaux présentés dans ce manuscrit de thèse portent sur la construction d'une nouvelle expérience d'atomes froids de strontium 84, depuis ses balbutiements jusqu'à l'obtention des pièges magnéto-optiques sur la raie large à 461 nm, puis sur la raie étroite à 689 nm.Les études menées avec cette expérience porteront sur la dynamique de relaxation de gaz quantiques placés initialement en situation hors-équilibre. Pour réaliser de telles expériences, un microscope à atomes sera mis en place prochainement et permettra de mesurer des fonctions de corrélations spatiales à partir de la répartition des atomes dans le piège optique bidimensionnel. C'est pourquoi, en parallèle du montage, des travaux ont été réalisés pour mettre au point un algorithme de reconstruction, indispensable au traitement des futures images obtenues par ce microscope. Ce manuscrit de thèse a pour objectif de détailler et justifier aussi précisément que possible les choix expérimentaux qui ont été effectués et de présenter le stade actuel d'avancement de l'algorithme de reconstruction d'images. Il reste encore quelques étapes de construction avant que le dispositif expérimental soit achevé: ajouter une chambre dans laquelle les mesures auront lieu, mettre en place le système d'imagerie et monter le système optique qui permettra de transporter les atomes entre les chambres à vide, les confiner dans un plan, d'effectuer la transition vers un condensat de Bose-Einstein et enfin les soumettre à un réseau optique bidimensionnel. / This manuscript presents the first steps of a new ultracold atoms experiment using strontium 84. The aim of this experiment is to study the relaxation dynamics of quantum gases initially prepared in an out-of-equilibrium state. This experiment will include a quantum gas microscope, allowing us to measure spatial correlation functions in two-dimensionnal systems. The current state of the construction allows us to generate both magneto-optical trap of strontium: along its wide transition at 461 nm and its narrow transition at 689 nm. Concurrently with the experimental setup, we carried out works on a reconstruction algorithm required for the future data processing of the microscope images. This manuscript details experimental aspects, justifying their choices, and presents the current state of work on the reconstruction algorithm. There are still steps to complete the experimental setup: add a chamber where we will make the measurements to the vaccuum system, set up the quantum gaz microscope and all the required optics to transport the atomic clouds between two vaccuum chambers, to reach Bose-Einstein condensation and to confine the atoms in two-dimensionnal optical traps.
248

Modèles microscopiques pour la loi de Fourier / Microscopic models for Fourier's law

Letizia, Viviana 19 December 2017 (has links)
Cette thèse est consacrée à l’étude des modèles microscopiques pour la dérivation de la conduction de la chaleur. Démontrer rigoureusement une équation diffusive macroscopique à partir d’une description microscopique du système est à aujourd’hui encore un problème ouvert. On étudie un système décrit par l’équation de Schrödinger linéaire discrète (DLS) en dim 1, perturbé par une dynamique stochastique conservative. On peut montrer que le système a une limite hydrodynamique donnée par la solution de l’équation de la chaleur. Quand le système est rattaché aux bords à deux réservoirs de Langevin à deux différents potentiels chimiques, on peut montrer que l’état stationnaire, dans la limite vers l'infinie, satisfait la loi de Fourier. On étudie une chaine des oscillateurs anharmonique immergée en un réservoir de chaleur avec un gradient de température. On exerce une tension, variable dans le temps, à une des deux extrémités de la chaine, et l’autre reste fixe. On montre que sous un changement d’échelle diffusive dans l’espace et dans le temps, la distribution d’étirement de la chaine évolue selon un équation diffusive non-linéaire. On développe des estimations qui reposent sur l’hypocoercitivité entropique. La limite macroscopique peut être utilisée pour modéliser les transformations thermodynamique isothermiques entre états stationnaire de non-équilibre. / The object of research of this thesis is the derivation of heat equation from the underlying microscopic dynamics of the system. Two main models have been studied: a microscopic system described by the discrete Schrödinger equation and an anharmonic chain of oscillators in presence of a gradient of temperature. The first model considered is the one-dimensional discrete linear Schrödinger (DLS) equation perturbed by a conservative stochastic dynamics, that changes the phase of each particles, conserving the total norm (or number of particles). The resulting total dynamics is a degenerate hypoelliptic diffusion with a smooth stationary state. It has been shown that the system has a hydrodynamical limit given by the solution of the heat equation. When it is coupled at the boundaries to two Langevin thermostats at two different chemical potentials, it has been proven that the stationary state, in the limit to infinity, satisfies the Fourier’s law. The second model considered is a chain of anharmonic oscillators immersed in a heat bath with a temperature gradient and a time varying tension applied to one end of the chain while the other side is fixed to a point. We prove that under diffusive space-time rescaling the volume strain distribution of the chain evolves following a non-linear diffusive equation. The stationary states of the dynamics are of non-equilibrium and have a positive entropy production, so the classical relative entropy methods cannot be used. We develop new estimates based on entropic hypocoercivity, that allows to control the distribution of the positions configurations of the chain. The macroscopic limit can be used to model isothermal thermodynamic transformations between non-equilibrium stationary states. CEMRACS project on simulating Rayleigh- Taylor and Richtmyer-Meshkov turbulent mixing zones with a probability density function method at last.
249

Nonequilibrium stationary states of rotor and oscillator chains / États stationnaires hors-équilibre de chaînes de rotateurs et oscillateurs

Iacobucci, Alessandra 20 October 2017 (has links)
Nous étudions les propriétés des états stationnaires et de dynamiques hors-équilibre, d’un point de vue théorique et numérique. Ces dynamiques sont obtenues en perturbant la dynamique d’équilibre par forçage mécanique et/ou thermique. Dans l’approche théorique, le système considéré évolue selon une dynamique de Langevin à laquelle on ajoute une force extérieure. Nous étudions la convergence de la loi de la dynamique vers la mesure stationnaire, en donnant des estimations quantitatives du taux, dans les régimes Hamiltonien et sur amorties. Dans l’approche numérique, nous considérons une chaîne de rotateurs soumise aux deux forçages et une chaîne d’oscillateurs de Toda soumise à un forçage thermique et à une perturbation stochastique. Nous étudions les caractéristiques de l’état stationnaire et les propriétés de transport. Dans le cas de la chaîne de rotateurs nous observons en particulier que le courant d’énergie moyen est dans certains cas accru par un gradient de température opposé. / We study the properties of stationary states associated with nonequilibrium dynamics from a theoretical and a numerical point of view. These dynamics are obtained by perturbing equilibrium dynamics with mechanical and / or thermal forcings. In the theoretical approach, the system considered evolves according to a Langevin dynamics perturbed by a torque. In this framework, we study the convergence of the law of dynamics to the stationary measure, giving quantitative estimates of the exponential rate, both in the Hamiltonian and `` overdamped '' regimes.By a numerical approach, we consider a chain of rotors subjected to both forcings and a chain of Toda oscillators subject to a thermal forcing and a stochastic perturbation. We study the features of the stationary state and analyze its transport properties. In particular, in the case of the rotor chain, contrary to what is naively expected, we observe that the average energy current is in some cases increased by an opposite temperature gradient.
250

Nonequilibrium statistical mechanics of a crystal interacting with medium / Mécanique statistique hors d'équilibre d'un cristal interagissant avec un milieu continu

Dymov, Andrey 17 June 2015 (has links)
Dans cette thèse nous étudions des systèmes hamiltoniens de particules en interaction, où chaque particule est faiblement couplée avec son propre thermostat de type Langevin de température positive arbitraire. Les modèles peuvent être vu comme des cristaux plongés dans un milieu continue et interagissants faiblement avec ce dernier.Nous nous intéressons au transport d'énergie dans les systèmes quand les couplages des particules avec leurs thermostats tendent vers zéro simultanément avec les couplages entre eux.Nous examinons deux situations opposées, quand la mesure de Lebesgue des resonances du système de particules découplées est nulle et quand elle est pleine. Dans le premier cas, en utilisant la méthode de moyennisation stochastique, nous démontrons que dans la limite ci-dessus le comportement de l'énergie locale des particules sur des intervalles de temps longs, et dans le régime stationnaire est donné par une équation autonome stochastique, laquelle predit uniquement le transport d'énergie non hamiltonien.Dans le second cas, en utilisant la méthode de moyennisation resonante stochastique, nous prouvons que la dynamique limite de l'énergie locale est contrôlée par une équation efficace stochastique. La dernière prevoit le transport d'energie hamiltonien entre les particules. Cependant, elle n'est pas autonome pour l'énergie locale. En utilisant cette asymptotique, nous montrons que dans la limite ci-dessus le flux d'énergie hamiltonien du système satisfait des relations qui ressemblent à la loi de Fourier et à la formule de Green-Kubo (cependant, elles ne le sont pas).La plupart des résultats et convergences que nous obtenons dans la thèse sont uniformes par rapport au nombre de particules dans les systèmes, qui rend nos résultats pertinents du point de vue de la physique statistique. / In the present thesis we study Hamiltonian systems of particles with weak nearest-neighbour interaction, where each particle is weakly coupled with its own stochastic Langevin-type thermostat of arbitrary positive temperature.The models can be seen as crystals plugged in some medium and weakly interacting with it.We are interested in the energy transport through the systems when the couplings of the particles with the thermostats go to zero simultaneously with their couplings with each other.We investigate two opposite situations, when resonances of the system of uncoupled particles have Lebesgue measure zero and when they are of full Lebesgue measure.In the first case, using the method of stochastic averaging, we prove that under the limit above behaviour of the local energy of particles on long time intervals and in a stationary regime is given by an autonomous stochastic equation, which does not provide any Hamiltonian energy transport.For the second situation, using the method of resonant stochastic averaging, we show that the limiting dynamics of the local energy is governed by a stochastic effective equation. The latter provides Hamiltonian energy transport between the particles, however, is not an autonomous equation for the local energy. Using this asymptotics, we prove that under the limit above the Hamiltonian energy flow in the system satisfies some relations which resemble the Fourier law and the Green-Kubo formula (however, which are not).Most of results and convergences obtained in the thesis are uniform with respect to the number of particles in the systems, what makes our results relevant from the point of view of statistical physics.

Page generated in 0.0853 seconds