• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 59
  • 24
  • 15
  • 11
  • 10
  • 8
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 267
  • 133
  • 51
  • 50
  • 39
  • 37
  • 35
  • 30
  • 29
  • 27
  • 27
  • 25
  • 25
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

MULTISCALE MODELING OF POLYMER PROCESSING AND ELECTRONIC MATERIALS

Shukai Yao (17419314) 20 November 2023 (has links)
<p dir="ltr">Computational materials science has emerged as a powerful technique to discover and develop new materials in past decades, primarily because accurate computational modeling can act as guidance before performing experiments that are expensive and time-consuming. However, modeling material behaviors across different scales of length and time poses a challenge, accentuating the importance of choosing appropriate levels of approximations and theories. First principles calculations based on density functional theory (DFT) are essential to predict the electronic structure of periodic crystalline systems. We will discuss a prediction of chemical doping induced metal-to-insulator transition (MIT) of transition metal perovskites owing to the variation of the electronic occupation. Nevertheless, electronic structure predictions based on DFT are not without limitation as it fails when treating strongly correlated electronic system due to the over-delocalization of valence electrons. In principle, adding on-site Hubbard U corrects this error with a low computational cost. Using an example of a two-dimensional rare-earth MXene, we demonstrate the essence of choosing the appropriate U value self-consistently for the prediction of electronic and magnetic configurations. Furthermore, molecular dynamics (MD) can be employed to study the dynamic evolution of complex condensed systems with thousands to millions of atoms at the atomistic and molecular levels. Carbon fiber manufacturing is an established industry, though the fiber produced achieves only 10% of its theoretical tensile strength. Therefore, optimizing the carbon fiber processing is a pressing topic. To achieve this, we study two steps, spinning and stabilization, of polyacrylonitrile (PAN)-based fiber fabrication at the molecular level using MD. We will discuss the realistic molecular structure of the spun PAN and the properties affected by its structural heterogeneity. Moreover, for the following step, we develop a PAN stabilization simulator, an automated workflow that addresses the underlying chemistry and the molecular-level structure-property relationship, often inaccessible through experiments.</p>
232

Complexity near critical points

Uday Sood (16993635) 15 September 2023 (has links)
<p dir="ltr">Complexity has played an increasingly important role in recent years. In this dissertation, we study some notions of complexity in systems that exhibit critical behaviour. Our results show that complexity as it is generally understood in holographic and lattice models of criticality can have several ambiguities. But despite these ambiguities, there are some features that are universally true. On the phase diagram of the system, it is the critical point which has the most complex ground state. States of physical systems with a large complexity tend to be hard to simulate using quantum circuits. Near the critical point, there is a part of complexity which is non-analytic and scales universally, i.e, the scaling is independent of the microscopic details of the Hamiltonian but depends only on the dimensionality of the system, and of the deforming operator. The coefficient of this term is unambiguous, i.e, it is not affected by the various changes in the definition of complexity which plague all the analytic terms near the critical point. We show this in lattice, field-theoretic and holographic calculations. These results were first presented in our earlier studies.</p>
233

The Power in Multiplying: Growth in New Religious Movements

Wrobel, Nicole 01 January 2018 (has links)
Starting in November of 2016, a documentary series aired on the original network A&E where it continues to capture the attention of thousands of viewers in America. Scientology: The Aftermath, starring the well-known King of Queens and Dancing with the Stars actress Leah Remini and former senior executive of the church of Scientology International and Sea Organization Mike Rinder, aim to reveal the "truth" that hides behind the church of Scientology. The show interviews ex-practitioners who claim their lives have been deeply impacted by the church and who want to assist in revealing the shocking stories of abuse and harassment the church tries to keep secret. The goal of the show, in short, is to not only share the "real" face of Scientology to the public, but to also reach out and assist people who have been affected personally by the church; some have lost their family and friends while others have been followed or monitored by church members. A simple Google search on Scientology brings up multiple news headlines on the church being labeled as a "cult" and "criminal" while magazines in the lines of grocery stores display the downfall on the marriage of Tom Cruise and Katie Holmes due to the intensity of the Church of Scientology. Yet Scientology isn’t alone in receiving negative attention from the media. Christian Science has been accused of depriving the ill of needed medical attention which has led to some members becoming severely ill and dying in some cases. Most of these cases are children that were deprived of needed medical assistance due to their parents' religious views. Religious Studies scholar, Mary Bednarowski, adds that due to these circumstances, Christian Science has long experienced harsh criticism. With families and anti-cult movements protesting in the streets, ads, books, and magazines displaying their opposition, and the media labeling these movements as "dangerous", why would people join and remain in these New Religious Movements? What is it that makes these religious movements alluring and what are their adherents benefiting from them?
234

Phases, Transitions, Patterns, And Excitations In Generalized Bose-Hubbard Models

Kurdestany, Jamshid Moradi 05 1900 (has links) (PDF)
This thesis covers most of my work in the field of ultracold atoms loaded in optical lattices. This thesis can be divided into five different parts. In Chapter 1, after a brief introduction to the field of optical lattices I review the fundamental aspects pertaining to the physics of systems in periodic potentials and a short overview of the experiments on ultracold atoms in an optical lattice. In Chapter 2 we develop an inhomogeneous mean-field theory for the extended Bose-Hubbard model with a quadratic, confining potential. In the absence of this poten¬tial, our mean-field theory yields the phase diagram of the homogeneous extended Bose-Hubbard model. This phase diagram shows a superfluid (SF) phase and lobes of Mott-insulator(MI), density-wave(DW), and supersolid (SS) phases in the plane of the chemical potential and on-site repulsion ; we present phase diagrams for representative values of , the repulsive energy for bosons on nearest-neighbor sites. We demonstrate that, when the confining potential is present, superfluid and density-wave order parameters are nonuniform; in particular, we obtain, for a few representative values of parameters, spherical shells of SF, MI ,DW ,and SSphases. We explore the implications of our study for experiments on cold-atom dipolar con¬densates in optical lattices in a confining potential. In Chapter3 we present an extensive study of Mottinsulator( MI) and superfluid (SF) shells in Bose-Hubbard (BH) models for bosons in optical lattices with har¬monic traps. For this we develop an inhomogeneous mean-field theory. Our results for the BH model with one type of spinless bosons agrees quantitatively with quan¬tum Monte Carlo(QMC) simulations. Our approach is numerically less intensive than such simulations, so we are able to perform calculations on experimentally realistic, large three-dimensional(3D) systems, explore a wide range of parameter values, and make direct contact with a variety of experimental measurements. We also generalize our inhomogeneous mean-field theory to study BH models with har¬monic traps and(a) two species of bosons or(b) spin-1bosons. With two species of bosons we obtain rich phase diagrams with a variety of SF and MI phases and as¬sociated shells, when we include a quadratic confining potential. For the spin-1BH model we show, in a representative case, that the system can display alternating shells of polar SF and MI phases; and we make interesting predictions for experi¬ments in such systems. . In Chapter 4 we carry out an extensive study of the phase diagrams of the ex-tended Bose Hubbard model, with a mean filling of one boson per site, in one dimension by using the density matrix renormalization group and show that it contains Superfluid (SF), Mott-insulator (MI), density-wave (DW) and Haldane ¬insulator(HI) phases. We show that the critical exponents and central charge for the HI-DW,MI-HI and SF-MI transitions are consistent with those for models in the two-dimensional Ising, Gaussian, and Berezinskii-Kosterlitz-Thouless (BKT) uni¬versality classes, respectively; and we suggest that the SF-HI transition may be more exotic than a simple BKT transition. We show explicitly that different bound¬ary conditions lead to different phase diagrams.. In Chapter 5 we obtain the excitation spectra of the following three generalized of Bose-Hubbard(BH) models:(1) a two-species generalization of the spinless BH model, (2) a single-species, spin-1 BH model, and (3) the extended Bose-Hubbard model (EBH) for spinless interacting bosons of one species. In all the phases of these models we show how to obtain excitation spectra by using the random phase approximation (RPA). We compare the results of our work with earlier studies of related models and discuss implications for experiments.
235

Dynamique quantique hors-équilibre et systèmes désordonnés pour des atomes ultrafroids bosoniques / Out of equilibrium quantum dynamics and disordered systems in bosonic ultracold atoms

Sciolla, Bruno 13 September 2012 (has links)
Durant cette thèse, je me suis intéressé à deux thématiques générales qui peuvent être explorées dans des systèmes d’atomes froids : d’une part, la dynamique hors-équilibre d’un système quantique isolé, et d’autre part l’influence du désordre sur un système fortement corrélé à basse température. Dans un premier temps, nous avons développé une méthode de champ moyen, qui permet de résoudre la dynamique unitaire dans un modèle à géométrie particulière, le réseau complètement connecté. Cette approche permet d’établir une correspondance entre la dynamique unitaire du système quantique et des équations du mouvement classique. Nous avons mis à profit cette méthode pour étudier le phénomène de transition dynamique qui se signale, dans des modèles de champ moyen, par une singularité des observables aux temps longs, en fonction des paramètres initiaux ou finaux de la trempe. Nous avons montré l’existence d’une transition dynamique quantique dans les modèle de Bose-Hubbard, d’Ising en champ transverse et le modèle de Jaynes-Cummings. Ces résultats confirment l’existence d’un lien fort entre la présence d’une transition de phase quantique et d’une transition dynamique.Dans un second temps, nous avons étudié un modèle de théorie des champs relativiste avec symétrie O(N) afin de comprendre l’influence des fluctuations sur ces singularités. À l’ordre dominant en grand N, nous avons montré que la transition dynamique s’apparente à un phénomène critique. En effet, à la transition dynamique, les fonctions de corrélations suivent une loi d’échelle à temps égaux et à temps arbitraires. Il existe également une longueur caractéristique qui diverge à l’approche du point de transition. D’autre part, il apparaît que le point fixe admet une interprétation en terme de particules sans masse se propageant librement. Enfin, nous avons montré que la dynamique asymptotique au niveau du point fixe s’apparente à celle d’une trempe d’un état symétrique dans la phase de symétrie brisée. Le troisième volet de cette thèse apporte des éléments nouveaux pour la compréhension du diagramme des phases du modèle de Bose-Hubbard en présence de désordre. Pour ce faire,nous avons utilisé et étendu la méthode de la cavité quantique en champ moyen de Ioffe et Mézard, qui doit être utilisée avec la méthode des répliques. De cette manière, il est possible d’obtenir des résultats analytiques pour les exposants des lois de probabilité de la susceptibilité.Nos résultats indiquent que dans les différents régimes de la transition de phase de superfluide vers isolant, les lois d’échelle conventionnelles sont tantôt applicables, tantôt remplacées par une loi d’activation. Enfin, les exposants critiques varient continûment à la transition conventionnelle. / The fast progress of cold atoms experiments in the last decade has allowed to explore new aspects of strongly correlated systems. This thesis deals with two such general themes: the out of equilibrium dynamics of closed quantum systems, and the impact of disorder on strongly correlated bosons at zero temperature. Among the different questions about out of equilibrium dynamics, the phenomenon of dynamical transition is still lacking a complete understanding. The transition is typically signalled, in mean-field, by a singular behaviour of observables as a function of the parameters of the quench. In this thesis, a mean field method is developed to give evidence of a strong link between the quantum phase transition at zero temperature and the dynamical transition. We then study using field theory techniques a relativistic O($N$) model, and show that the dynamical transition bears similarities with a critical phenomenon. In this context, the dynamical transition also appears to be formally related to the dynamics of symmetry breaking. The second part of this thesis is about the disordered Bose-Hubbard model and the nature of its phase transitions. We use and extend the cavity mean field method, introduced by Ioffe and Mezard to obtain analytical results from the quantum cavity method and the replica trick. We find that the conventional transition, with power law scaling, is changed into an activated scaling in some regions of the phase diagram. Furthermore, the critical exponents are continuously varying along the conventional transition. These intriguing properties call for further investigations using different methods.
236

Bosons couplés à des spins 1/2 sur réseau / Bosons coupled to spins 1/2 in lattice

Flottat, Thibaut 17 October 2016 (has links)
Les systèmes fortement corrélés, pouvant adopter des phases surprenantes de la matière, émergent dans le domaine des atomes ultra-froids ou dans celui de l’électrodynamique quantique en cavité (CQED). Ceux-ci sont au centre d’intenses travaux expérimentaux et théoriques. Dans cette thèse, nous présentons une étude de deux modèles de bosons avec deux ou zéro états internes. Ceux-ci peuvent se déplacer sur un réseau, et sont localement couplés avec des spins 1/2. Notre intérêt réside dans la détermination du diagramme de phase de l’état fondamental de ces systèmes ainsi que de l’étude des propriétés de phase et des transitions entre ces dernières. Nous avons utilisé deux outils : une approximation de champ moyen et des simulations de Monte-Carlo quantique, qui fournit des résultats numériquement exacts. Le premier modèle, appelé modèle de Kondo bosonique sur réseau, s’inscrit dans le contexte des atomes ultra-froids sur réseau. Nous trouvons que sa physique est proche de celle du modèle de Bose-Hubbard, présentant des phases de Mott et superfluide. Le couplage local renforce le caractère isolant et on observe l’émergence de phases magnétiques au travers de couplage direct ou indirect entre bosons et/ou spins. Les effets thermiques, inhérents à tout dispositif expériemental, sont aussi étudiés. Le second modèle s’inscrit dans le domaine de la CQED sur réseau, décrit un régime de couplage ultra-fort entre des photons et des atomes, et est appelé modèle de Rabi sur réseau. Le diagramme de phase présente juste deux phases : une phase cohérente dans laquelle les spins locaux s’ordonnent ferromagnétiquement ainsi qu’une phase incohérente compressible paramagnétique / Strongly correlated systems, where new surprising phases of matter may appear both in the context of ultra-cold atoms and cavity quantum electrodynamics, are the focus of intense experimental and theoritical activity. In this thesis we present a study of two models of bosons with two or zero internal states, that is to say spin-1/2 or spin-0 bosons. These particles can move around a lattice, and they are locally coupled to immobile spins 1/2. Our interest was to determine the ground state phase diagram, study phase properties and quantum phase transitions. We used two methods: an approximate one using a mean field approach and the other using quantum Monte-Carlo simulations, which provides numerically exact results. The first model, namely the bosonic Kondo lattice model, is in the context of ultra-cold atoms in optical lattices. We found that its physics is close to that of the Bose-Hubbard model, exhibiting Mott and superfluid phases. The local coupling strengthens the insulating behaviour of the system and magnetism emerges through indirect or direct coupling between bosons. Thermal effects, inherent in experiments, are also studied. The second model, which is in the context of light-matter interaction, describes a situation of an ultra-strong coupling between spin-0 bosons (photons) and local spins 1/2 (two levels atoms) and is known as the Rabi lattice model. The phase diagram generally consists of only two phases: a coherent phase and a compressible incoherent one. The locals
237

Étude des transitions de Peierls dans les systèmes unidimensionnels et quasi-unidimensionnels

Bakrim, Hassan January 2010 (has links)
We studied the structural instabilities of one-dimensional (1D) and quasi-one-dimensional (Q1D) electron-phonon systems at low temperature through two models, SuSchrieffer-Heeger (SSH) and molecular crystal (CM) with and without spin. The phase diagrams are obtained using a Kadanoff-Wilson renormalization group approach (GR). For the 1D half-filled system the study of the frequency dependence of the electronic gap allowed us to connect continuously the two limits, adiabatic and non-adiabatic. The Peierls and Cooper channels interference and the quantum fluctuations reduce the gap. A regime change occurs when the frequency becomes of the order of mean field gap, marking a quantum-classical crossover that is the Kosterlitz-Thouless type. At this level, the effective coupling behaves in power law function on frequency. For the case with spin, a gapped Peierls state is maintained in the non-adiabatic limit, while for the case without spin, the system transits to ungapped disordered state, namely the Luttinger liquid stat (LL). For the SSH model without spin, the GR confirms the existence of a threshold phonon coupling beyond which the gap is restored. The study of the rigidities of the two models without spin allowed us to trace the main features of the LL state predicted by the bosonization method. The study of the Holstein-Hubbard model has allowed us not only to reproduce the phase diagrams already obtained by the Monte Carlo method, but to highlight two additional phases, namely, free fermions phase and the bond charge-density-wave phase. We have extended this study to the quarter-filled Q1D Peierls systems at finite temperature. Within the SSH model, an unconventional superconducting phase with spin singlet symmetry SS-s emerges at low temperature when the deviation to the perfect nesting of the Fermi surface is strong enough. Peierls-SS transition is characterized by the presence of a quantum critical point at low frequency and by a power law behavior of the transition temperature as a function of frequency with an exponent identical to one of 1D system. This exponent which universality has been verified contrasts with the BCS result. Coulomb interactions have been introduced through the study of the extended SSH-Hubbard model. The extension of this work to half-filled SSH and CM cases was also performed.
238

Electron-electron and electron-phonon interactions in strongly correlated systems

Sica, G. January 2013 (has links)
In this work we investigate some aspects of the physics of strongly correlated systems by taking into account both electron-electron and electron-phonon interactions as basic mechanisms for reproducing electronic correlations in real materials. The relevance of the electron-electron interactions is discussed in the first part of this thesis in the framework of a self-consistent theoretical approach, named Composite Operator Method (COM), which accounts for the relevant quasi-particle excitations in terms of a set of composite operators that appear as a result of the modification imposed by the interactions on the canonical electronic fields. We show that the COM allows the calculation of all the relevant Green s and correlation functions in terms of a number of unknown internal parameters to be determined self-consistently. Therefore, depending on the balance between unknown parameters and self-consistent equations, exact and approximate solutions can be obtained. By way of example, we discuss the application of the COM to the extended t-U-J-h model in the atomic limit, and to the two-dimensional single-band Hubbard model. In the former case, we show that the COM provides the exact solution of the model in one dimension. We study the effects of electronic correlations as responsible for the formation of a plethora of different charge and/or spin orderings. We report the phase diagram of the model, as well as a detailed analysis of both zero and finite temperature single-particle and thermodynamic properties. As far as the single-band Hubbard model is concerned, we illustrate an approximated self-consistent scheme based on the choice of a two-field basis. We report a detailed analysis of many unconventional features that arise in single-particle properties, thermodynamics and system's response functions. We emphasize that the accuracy of the COM in describing the effects of electronic correlations strongly relies on the choice of the basis, paving the way for possible multi-pole extensions to the two-field theory. To this purpose, we also study a three-field approach to the single-band Hubbard model, showing a significant step forward in the agreements with numerical data with respect to the two-pole results. The role of the electron-phonon interaction in the physics of strongly correlated systems is discussed in the second part of this thesis. We show that in highly polarizable lattices the competition between unscreened Coulomb and Fröhlich interactions results in a short-range polaronic exchange term Jp that favours the formation of local and light pairs of bosonic nature, named bipolarons, which condense with a critical temperature well in excess of hundred kelvins. These findings, discussed in the framework of the so-called polaronic t-Jp model, are further investigated in the presence of a finite on-site potential U, coming from the competition between on-site Coulomb and Fröhlich interactions. We discuss the role of U as the driving parameter for a small-to-large bipolaron transition, providing a possible explanation of the BEC-BCS crossover in terms of the properties of the bipolaronic ground state. Finally, we show that a hard-core bipolarons gas, studied as a charged Bose-Fermi mixture, allows for the description of many non Fermi liquid behaviours, allowing also for a microscopic explanation of pseudogap features in terms of a thermal-induced recombination of polarons and bipolarons, without any assumption on preexisting order or broken symmetries.
239

Elektronendynamik und Phasendiagramme in Vielteilchen-Modellen des Magnetismus

Henning, Soeren 26 August 2013 (has links)
Der erste Teil dieser Arbeit ist dem Kondogittermodell gewidmet. Für ein Elektron, das in einen ferromagnetisch gesättigten Hintergrund aus lokalen Spinmomenten eingebracht wird (ferromagnetisches Polaron), wird die stationäre Schrödingergleichung gelöst und das vollständige Eigenwertspektrum im endlichen und unendlichen Gitter abgeleitet. Danach wird die zeitabhängige Schrödingergleichung für beliebige Anfangsbedingungen gelöst und eine detaillierte Analyse des Down-Elektron-Zerfalls vorgenommen. Für endliche Bandfüllungen wird im Anschluss das magnetische Grundzustandsphasendiagramm mit Hilfe einer Molekularfeldtheorie bestimmt. Der Einfluss von Verdünnung/Unordnung im lokalen Momentensystem auf die auftretenden Phasen wird analysiert. Im zweiten Teil der Arbeit wird das Hubbardmodell untersucht. Für dieses wird mit Hilfe einer modifizierten Störungstheorie (englisch: modified perturbation theory, MPT) eine wellenzahlabhängige (nicht-lokale) Selbstenergie abgeleitet, die sowohl für schwache als auch für starke Coulombwechselwirkungen gute Ergebnisse liefert. Mit dieser werden dann Spektraldichten und Quasiteilchenzustandsdichten berechnet, wobei insbesondere die nicht-lokalen Korrelationseffekte im Fokus stehen. Daneben werden Ergebnisse für die optische Leitfähigkeit, die in einer renormierten diagrammatischen Ein-Schleifen-Näherung berechnet wurden, besprochen. Es wird dann gezeigt, dass nur unter Beachtung der nicht-lokalen Korrelationseffekte ein ferromagnetisches Phasendiagramm konstruiert werden kann, das in Einklang mit dem Mermin-Wagner-Theorem steht. / The first part of this work deals with the Kondo-lattice model. The stationary Schrödinger equation is solved for the case of one electron in a ferromagnetically saturated local moment system (the magnetic polaron). The complete eigensystem is derived for the finite and infinite lattice. The time-dependent Schrödinger equation is then solved for arbitrary initial conditions and a detailed analysis of the down-electron decay dynamics is given. For finite band occupations the magnetic ground-state phase diagram is constructed within a mean-field theory. The effect of disorder/dilution in the local moment system on the phase diagram is discussed. The second part concentrates on the investigation of the Hubbard model. A nonlocal self-energy is derived within a modified perturbation theory that interpolates between weak and strong Coulomb repulsion. Results for the spectral density and quasiparticle density of states are shown with special attention to the effects of nonlocal correlations. Results for the optical conductivity within a renormalized one-loop approximation are also discussed. The main result of this section is the importance of nonlocal correlations for the fulfillment of the Mermin-Wagner theorem. A phase diagram that shows regions of ferromagnetic order is calculated for the simple cubic lattice.
240

Development of new embedding techniques for strongly correlated electrons : from in-principle-exact formulations to practical approximations. / Nouvelles techniques d'embedding pour les électrons fortement corrélés : de la formulation exacte au développement d'approximations

Senjean, Bruno 24 September 2018 (has links)
Cette thèse traite du développement et de l’implémentation de nouvelles méthodes visant à décrire la corrélation électronique forte dans les molécules et les solides. Après avoir introduit l’état de l’art des méthodes utilisées en chimie quantique et en physique de la matière condensée, une nouvelle méthode hybride combinant théorie de la fonction d’onde et théorie de la fonctionnelle de la densité (DFT) est présentée et s’intitule “site-occupation embedding theory” (SOET). Celle-ci est appliquée au modèle de Hubbard à une dimension. Ensuite, le problème du gap fondamental est revisité en DFT pour les ensembles, où la dérivée discontinue est réécrite comme une fonctionnelle de la densité de l'état fondamental. Enfin, une extension à la chimie quantique est proposée, basée sur une fonction d’onde de séniorité zéro complémentée par une fonctionnelle de la matrice densité, et exprimée dans la base des orbitales naturelles. / The thesis deals with the development and implementation of new methods for the description of strong electron correlation effects in molecules and solids. After introducing the state of the art in quantum chemistry and in condensed matter physics, a new hybrid method so-called ``site-occupation embedding theory'' (SOET) is presented and is based on the merging of wavefunction theory and density functional theory (DFT). Different formulations of this theory are described and applied to the one-dimensional Hubbard model. In addition, a novel ensemble density functional theory approach has been derived to extract the fundamental gap exactly. In the latter approach, the infamous derivative discontinuity is reformulated as a derivative of a weight-dependent exchange-correlation functional. Finally, a quantum chemical extension of SOET is proposed and based on a seniority-zero wavefunction, completed by a functional of the density matrix and expressed in the natural orbital basis.

Page generated in 0.0361 seconds