1 |
Positional Awareness Map 3D (PAM3D)Hoffman, Monica, Allen, Earl, Yount, John, Norcross, April 10 1900 (has links)
ITC/USA 2012 Conference Proceedings / The Forty-Eighth Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2012 / Town and Country Resort & Convention Center, San Diego, California / The Western Aeronautical Test Range of the National Aeronautics and Space Administration's Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.
|
2 |
OVERVIEW OF THE NASA WALLOPS FLIGHT FACILITY MOBILE RANGE CONTROL SYSTEMDavis, Rodney A., Semancik, Susan K., Smith, Donna C., Stancil, Robert K. Jr 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The NASA GSFC’s Wallops Flight Facility’s (WFF) Mobile Range Control System
(MRCS) is based on the functionality of the WFF Range Control Center at Wallops
Island, Virginia. The MRCS provides real time instantaneous impact predictions, real
time flight performance data, and other critical information needed by mission and range
safety personnel in support of range operations at remote launch sites.
The MRCS integrates a PC telemetry processing system (TELPro), a PC radar processing
system (PCDQS), multiple Silicon Graphics display workstations (IRIS), and
communication links within a mobile van for worldwide support of orbital, suborbital,
and aircraft missions.
This paper describes the MRCS configuration; the TELPro’s capability to provide
single/dual telemetry tracking and vehicle state data processing; the PCDQS’ capability
to provide real time positional data and instantaneous impact prediction for up to 8 data
sources; and the IRIS’ user interface for setup/display options.
With portability, PC-based data processing, high resolution graphics, and flexible
multiple source support, the MRCS system is proving to be responsive to the ever-changing
needs of a variety of increasingly complex missions.
|
3 |
Spatial prediction tools for biodiversity in environmental assessmentGontier, Mikael January 2008 (has links)
Human activities in the form of land use changes, urbanisation and infrastructure developments are major threats to biodiversity. The loss and fragmentation of natural habitats are great obstacles for the long term preservation of biodiversity and nature protection measures alone may not be sufficient to tackle the problem. Environmental impact assessment (EIA) and strategic environmental assessment (SEA) play a central role in identifying, predicting and managing the impacts of human activities on biodiversity. The review of current practice suggests that the complexity of the task is underestimated and that new methodological approaches encompassing the entire landscape are needed. Spatial aspects of the assessment and the lack of information on scale-related issues are particular problems affecting the appropriate assessment of cumulative effects. In parallel with the development and establishment of EIA and SEA, spatial modelling is an expanding field in ecology and many derived applications could be suitable for the prediction and assessment of biodiversity-related impacts. The diversity of modelling methods suggests that a strategy is needed to identify prediction methods appropriate for EIA and SEA. The relevance and potential limitations of GIS-based species distribution and habitat models in predicting impacts on biodiversity were examined in three studies in the greater Stockholm area. Distinct approaches to habitat suitability modelling were compared from the perspective of environmental assessment needs and requirements. The results showed that model performance, validity and ultimate suitability for planning applications were strongly dependent on empirical data and expert knowledge. The methods allowed visual, qualitative and quantitative assessment of habitat loss, thus improving decision support for assessment of impacts on biodiversity. The proposed methods allowed areas of high ecological value and the surrounding landscape to be considered in the same assessment, thereby contributing to better integration of biodiversity issues in physical planning. / QC 20100727
|
4 |
A Rule-Based Predictive Model for Estimating Human Impact Data in Natural Onset Disasters - The Case of PRED ModelRye, Sara, Aktas, E. 17 May 2023 (has links)
Yes / This paper proposes a framework to cope with the lack of data at the time of a disaster by em-ploying predictive models. The framework can be used for disaster human impact assessment based on the socio-economic characteristics of the affected countries. A panel data of 4252 natural onset disasters between 1980 to 2020 is processed through concept drift phenomenon and rule-based classifiers, namely Moving Average (MA). A Predictive model for Estimating Data (PRED) is developed as a decision-making platform based on the Disaster Severity Analysis (DSA) Technique. A comparison with the real data shows that the platform can predict the human impact of a disaster (fatality, injured, homeless) up to 3% errors; thus, it is able to inform the selection of disaster relief partners for various disaster scenarios.
|
5 |
In-plane compression of preconditioned carbon/epoxy panelsRivera, Luis A. January 2004 (has links)
This thesis investigates the effects of damage characteristics on residual compressive strength (RCS) of 4-mm thick preconditioned carbon/epoxy quasi-isotropic panels through the study of their compressive behaviour. Results of 2-mm thick preconditioned panels mostly from a previous study are also analysed. The preconditions of varying sizes include impact damage, quasi-static damage, single and multiple artificial delaminations of circular and elliptical shapes embedded at different through-the-thickness (TTT) locations, hemispherical-shaped domes of different curvature and depth and open holes. The mechanisms of impact damage and the characteristics of energy absorption were dependent on panel thickness and incident kinetic energy (IKE). A damage threshold for compressive strength (CS) reduction was found at 455-mm2 and 1257 mm2 for 2- and 4-mm thick panels, respectively. Panels affected by the presence of internal delaminations followed a sequence of prebuckling, local and global buckling (mode I) and postbuckling (mode II) in both the longitudinal and transverse directions. Their compressive failure was related to mode I to II transition. Possibility of delamination propagation was examined using response characteristics on the basis of the sequences. Evidence of delamination propagation was found only in panels with large damages and was not sensitive to RCS. For low and intermediate IKEs the effect of impact damage could be simulated with a single delamination (2-mm thick panels) and 3 delaminations of medium size (4-mm thick panels). For high IKEs, the additional effect of local curvature change was significant. The combined effect of delamination number, size and curvature change determines the RCSs. It was demonstrated that the present method of embedding artificial delaminations proves to be very useful for studying RCS of impact-damaged panels via the establishment of response characteristics and their links to the effects of the preconditions on them. This thesis also presents two analytical models, one for deflection of transversely loaded panels and the other one for the prediction of compressive strength retention factor (CSRF) based on the correlation between the ratio of maximum transverse force to initial threshold force and the CSRF, observed experimentally in thick panels.
|
6 |
Physics-Based Lidar Simulation and Wind Gust Detection and Impact Prediction for Wind TurbinesJanuary 2019 (has links)
abstract: Lidar has demonstrated its utility in meteorological studies, wind resource assessment, and wind farm control. More recently, lidar has gained widespread attention for autonomous vehicles.
The first part of the dissertation begins with an application of a coherent Doppler lidar to wind gust characterization for wind farm control. This application focuses on wind gusts on a scale from 100 m to 1000 m. A detecting and tracking algorithm is proposed to extract gusts from a wind field and track their movement. The algorithm was implemented for a three-hour, two-dimensional wind field retrieved from the measurements of a coherent Doppler lidar. The Gaussian distribution of the gust spanwise deviation from the streamline was demonstrated. Size dependency of gust deviations is discussed. A prediction model estimating the impact of gusts with respect to arrival time and the probability of arrival locations is introduced. The prediction model was applied to a virtual wind turbine array, and estimates are given for which wind turbines would be impacted.
The second part of this dissertation describes a Time-of-Flight lidar simulation. The lidar simulation includes a laser source module, a propagation module, a receiver module, and a timing module. A two-dimensional pulse model is introduced in the laser source module. The sampling rate for the pulse model is explored. The propagation module takes accounts of beam divergence, target characteristics, atmosphere, and optics. The receiver module contains models of noise and analog filters in a lidar receiver. The effect of analog filters on the signal behavior was investigated. The timing module includes a Time-to-Digital Converter (TDC) module and an Analog-to-Digital converter (ADC) module. In the TDC module, several walk-error compensation methods for leading-edge detection and multiple timing algorithms were modeled and tested on simulated signals. In the ADC module, a benchmark (BM) timing algorithm is proposed. A Neyman-Pearson (NP) detector was implemented in the time domain and frequency domain (fast Fourier transform (FFT) approach). The FFT approach with frequency-domain zero-paddings improves the timing resolution. The BM algorithm was tested on simulated signals, and the NP detector was evaluated on both simulated signals and measurements from a prototype lidar (Bhaskaran, 2018). / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2019
|
7 |
Súčasná finančná kríza a menová politika FED / Recent financial crisis and the monetary policy of the FEDDohányos, Vojtech January 2008 (has links)
The diploma thesis describes the implementation of the monetary policy by FED and its goals. Afterwards the aim of the thesis is focus on the plain definition of a crisis followed by describtion of the causes and the course of the recent crisis and the monetary policy reactions of FED regarding the recent crisis. Finally, the thesis plots the assumed impacts of the crisis with a probable prediction of the following course of the crisis in the financial sector and the real economy.
|
8 |
Crisis Impact Prediction: A Data-driven ApproachPaglamidis, Konstantinos January 2024 (has links)
The field of crisis management and humanitarian assistance has been one of the major fields of development for governmental and common best European practices in the last decades. The European Union as a major humanitarian stakeholder has taken great effort to strengthen the response in case of humanitarian disasters. This work addresses the feasibility and possible benefits of using machine learning in the prediction of the impact severity of a disaster as a model-driven data analysis in comparison to data-driven reference models for early response coordination and preparedness. In comparison to classical data analysis systems the feasibility of earthquake impact prediction based on machine learning models is evaluated and further debated.
|
9 |
Network Based Tools and Indicators for Landscape Ecological Assessments, Planning, and DesignZetterberg, Andreas January 2009 (has links)
<p>Land use change constitutes a primary driving force in shaping social-ecological systems world wide, and its effects reach far beyond the directly impacted areas. Graph based landscape ecological tools have become established as a promising way to efficiently explore and analyze the complex, spatial systems dynamics of ecological networks in physical landscapes. However, little attention has been paid to making these approaches operational within ecological assessments, physical planning, and design. This thesis presents a network based, landscape-ecological tool that can be implemented for effective use by practitioners within physical planning and design, and ecological assessments related to these activities. The tool is based on an ecological profile system, a common generalized network model of the ecological infrastructure, graph theoretic metrics, and a spatially explicit, geographically defined representation, deployable in a GIS. Graph theoretic metrics and analysis techniques are able to capture the spatio-temporal dynamics of complex systems, and the generalized network model places the graph theoretic toolbox in a geographically defined landscape. This provides completely new insights for physical planning, and environmental assessment activities. The design of the model is based on the experience gained through seven real-world cases, commissioned by different governmental organizations within Stockholm County. A participatory approach was used in these case studies, involving stakeholders of different backgrounds, in which the tool proved to be flexible and effective in the communication and negotiation of indicators, targets, and impacts. In addition to successful impact predictions for alternative planning scenarios, the tool was able to highlight critical ecological structures within the landscape, both from a system-centric, and a site-centric perspective. In already being deployed and used in planning, assessments, inventories, and monitoring by several of the involved organizations, the tool has proved to effectively meet some of the challenges of application in a multidisciplinary landscape.</p>
|
10 |
Network Based Tools and Indicators for Landscape Ecological Assessments, Planning, and DesignZetterberg, Andreas January 2009 (has links)
Land use change constitutes a primary driving force in shaping social-ecological systems world wide, and its effects reach far beyond the directly impacted areas. Graph based landscape ecological tools have become established as a promising way to efficiently explore and analyze the complex, spatial systems dynamics of ecological networks in physical landscapes. However, little attention has been paid to making these approaches operational within ecological assessments, physical planning, and design. This thesis presents a network based, landscape-ecological tool that can be implemented for effective use by practitioners within physical planning and design, and ecological assessments related to these activities. The tool is based on an ecological profile system, a common generalized network model of the ecological infrastructure, graph theoretic metrics, and a spatially explicit, geographically defined representation, deployable in a GIS. Graph theoretic metrics and analysis techniques are able to capture the spatio-temporal dynamics of complex systems, and the generalized network model places the graph theoretic toolbox in a geographically defined landscape. This provides completely new insights for physical planning, and environmental assessment activities. The design of the model is based on the experience gained through seven real-world cases, commissioned by different governmental organizations within Stockholm County. A participatory approach was used in these case studies, involving stakeholders of different backgrounds, in which the tool proved to be flexible and effective in the communication and negotiation of indicators, targets, and impacts. In addition to successful impact predictions for alternative planning scenarios, the tool was able to highlight critical ecological structures within the landscape, both from a system-centric, and a site-centric perspective. In already being deployed and used in planning, assessments, inventories, and monitoring by several of the involved organizations, the tool has proved to effectively meet some of the challenges of application in a multidisciplinary landscape.
|
Page generated in 0.0811 seconds