• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Perturbative quantization of superstring theory in Anti de-Sitter spaces

Sundin, Per 19 April 2011 (has links)
Um das mikroskopische Verhalten der Gravitation zu beschreiben, ist es nötig, Quantenfeldtheorie und allgemeine Relativitätstheorie in einer vereinheitlichten Sprache zu formulieren. Eine Möglichkeit dieses Problem anzugehen ist es, die Punktteilchen der Quantenfeldtheorie durch fadenförmige Strings zu ersetzen. Allerdings erfordert die mathematische Konsistenz, dass sich die String in höherdimensionalen Raum-Zeiten bewegen; dies macht es jedoch sehr schwer, physikalische Konsequenzen zu extrahieren. Eine mögliche Lösung dieses Problems ist die Verwendung von String-Dualitäten, welche die Stringtheorie mittels holographischer Beschreibungen mit Eichtheorien auf dem Rand der Raum-Zeit verbinden. Die Dualitäten sind begründete Vermutungen, die die String- und Eichtheorie bei unterschiedlichen Werten der Kopplung gleichsetzen. Nicht zuletzt deshalb ist eine direkte Überprüfung der Dualitäten schwierig durchführbar. Hier hilft jedoch die sehr bemerkenswerte Tatsache, dass eine verborgene Eigenschaft der Vermutungen Integrabilität zu sein scheint, welche eine Extrapolation zwischen starker und schwacher Kopplung ermöglicht. Desweiteren kann das gesamte Spektrum, in gewissen vereinfachenden Grenzfällen, durch einen kompakten Satz von Bethe-Gleichungen ausgedrückt werden. Die Bethe-Gleichungen, welche aus Eichtheorierechnungen hergeleitet und geraten werden, bieten ein exzellentes Hilfsmittel, die vermuteten Dualitäten zu prüfen. Durch das Vergleichen der Vorhersagen der Gleichungen und expliziten Berechnungen in der Stringtheorie erhält man starke Argumente für die Gültigkeit der Vermutung und der angenommenen Integrabilität. / In this thesis we study superstring theory on AdS$_5\, \times\,$S$^5$, AdS$_3\,\times\,$S$^3$ and $\adsfour$. A shared feature of each theory is that their corresponding symmetry algebras allows for a decomposition under a $\mathbb{Z}_4$ grading. The grading can be realized through an automorphism which allows for a convenient construction of the string Lagrangians directly in terms of graded components. We adopt a uniform light-cone gauge and expand in a near plane wave limit, or equivalently, an expansion in transverse string coordinates. With a main focus on the two critical string theories, we perform a perturbative quantization up to quartic order in the number of fields. Each string theory is, through holographic descriptions, conjectured to be dual to lower dimensional gauge theories. The conjectures imply that the conformal dimensions of single trace operators in gauge theory should be equal to the energy of string states. What is more, through the use of integrable methods, one can write down a set of Bethe equations whose solutions encode the full spectral problem. One main theme of this thesis is to match the predictions of these equations, written in a language suitable for the light-cone gauge we employ, against explicit string theory calculations. We do this for a large class of string states and the perfect agreement we find lends strong support for the validity of the conjectures.
2

Symmetries of Super Wilson Loops and Fishnet Feynman Graphs

Müller, Dennis 19 April 2018 (has links)
Integrabilität hat sich als ein wichtiges Konzept erwiesen, um die Grenzen einer störungstheoretischen Beschreibung zu überwinden und ein tiefer gehendes Verständnis von speziellen vierdimensionalen Quantenfeldtheorien zu erlangen. Die der Integrabilität zugrunde liegende algebraische Struktur ist der Yangian, welchen man als eine unendlichdimensionale Erweiterung einer Lie-Algebra auffassen kann. In der vorliegenden Arbeit untersuchen wir die Yang’sche Symmetrie von super Wilson Schleifen und Fischnetz Feynman Graphen. Im ersten Teil dieser Arbeit diskutieren wir Maldacena–Wilson Schleifen in N=4 SYM Theorie. Unter Ausnutzung der nicht-chiralen Superraumbeschreibung des N=4 SYM Modells konstruieren wir den supersymmetrisch vervollständigten Schleifenoperator, welcher dual ist zu einer durch den vollen AdS5xS5 Superstring beschriebenen Minimalfläche. Wir zeigen, dass dieser Schleifenoperator sowohl globale superkonforme als auch lokale kappa Symmetrie besitzt, wobei wir letztere zur 1/2 BPS Eigenschaft der bosonischen Maldacena–Wilson Schleife in Beziehung setzen. Weiterhin berechnen wir den Einschleifenerwartungswert des Operators und beweisen dessen Endlichkeit. Anschließend beschäftigen wir uns detailliert mit der Yang’schen Symmetrie von glatten super Maldacena–Wilson Schleifen. Wir untersuchen anhand einer generischen Eichtheorie die verschiedenen Möglichkeiten, die Yang’schen Generatoren zu realisieren und begründen unsere Wahl einer Darstellung in Form von eichkovarianten Operatoreinsetzungen. Unter Verwendung dieser Darstellung beweisen wir nachfolgend die Yang’sche Invarianz des vollen Einschleifenerwartungswertes der super Maldacena– Wilson Schleife. Im zweiten Teil dieser Arbeit beschäftigen wir uns mit Fischnetz Feynman Graphen, welche aus viervalenten Vertizes bestehen, die durch skalare Propagatoren miteinander verbunden sind. Wir zeigen, dass diese Diagramme zu allen Schleifenordnungen eine konforme Yang’sche Symmetrie aufweisen und konstruieren explizit die Yang’schen Generatoren, die diese Diagramme vernichten. Für Vielschleifendiagramme gelingt uns Letzteres durch eine Umformulierung der Symmetrie in Form von Eigenwertgleichungen inhomogener Monodromiematrizen, aus deren Entwicklung sich die Generatoren ablesen lassen. Die Yang’sche Symmetrie impliziert, dass Fischnetz Integrale partielle Differenzialgleichungen erfüllen, deren Form wir anhand des Boxintegrals illustrieren. / Quantum integrability has turned out to be an important concept in overcoming the limitations of perturbation theory and reaching a more profound understanding of particular four-dimensional quantum field theories. The algebraic structure that underlies integrability in field and string theory is the Yangian, which can be understood as an infinite-dimensional extension of a Lie algebra. Here, we investigate the Yangian symmetry of super Maldacena–Wilson loops and fishnet Feynman graphs. In the first part of this thesis, we discuss Maldacena–Wilson loops in N=4 SYM theory. Utilizing the non-chiral superspace formulation of the N=4 SYM model, we construct the full supersymmetric completion of this operator, which is the natural object dual to a minimal surface described by the full AdS5xS5 superstring. We show that the super loop operator enjoys global superconformal as well as local kappa symmetry, the latter being related to the 1/2 BPS property of the bosonic Maldacena–Wilson loop. Using a convenient type of transversal gauge, we establish the operators one-loop expectation value and prove it to be finite. We then perform a detailed study of the Yangian symmetries of smooth super Maldacena–Wilson loops. Focusing on a generic gauge theory setup, we analyze in detail the different options for representing the Yangian generators and argue for a representation in terms of gauge-covariant operator insertions. Subsequently, we utilize this approach to prove the Yangian invariance of the full one-loop expectation value. The second part of this thesis is devoted to the study of four-dimensional fishnet Feynman graphs, which are built from four-valent vertices that are joined by scalar propagators. We show that these diagrams feature a conformal all-loop Yangian symmetry, which we phase in terms of generators annihilating these graphs as well as in terms of inhomogeneous monodromy eigenvalue relations. The Yangian symmetry results in novel differential equations for this family of largely unsolved Feynman integrals and we shall study their form by considering the box integral as an example.
3

Integrability in two-dimensional gravity

Katsimpouri, Despoina 07 September 2015 (has links)
In dieser Arbeit untersuchen wir Gravitations- und Supergravitationssysteme, die in zwei Dimensionen vollständig integrabel sind. Dies sind Theorien, zu denen auch die einsteinsche Gravitation zählt, die bei dimensionaler Reduktion auf drei Dimensionen, die Form eines nichtlinearen $\s$-Models für den Materieteil annehmen und als Zielmannigfaltigkeit den Cosetraum $\mathrm{G}/\mathrm{K}$ haben. Ausgehend von der einsteinschen Gravitation betrachten wir insbesondere die Klasse der stationären und axialsymmetrischen Lösungen. Dabei untersuchen wir das lineare System (Lax-Paar), das den nichtlinearen Feldgleichungen der Vakuumsgravitation entspricht, wie es von Belinski-Zakharov (BZ) und Breitenlohner-Maison (BM) formuliert wurde. Die Existenz des linearen Systems zeigt die Integrabilität des zweidimensionalen Systems und ist inversen Streumethoden zugänglich, wie in zwei unterschiedlichen Ansätzen von BZ und BM gezeigt. Aus der unendlich-dimensionalen Symmetrie, die mit den zweidimensionalen Gleichungen assoziiert ist, ergibt sich die sogenannte Gerochgruppe. Der BM-Ansatz ermöglicht eine direkte Implementierung der Gerochgruppe und der Erzeugung von physikalisch interessanten Lösungen im Solitonensektor auf manifest gruppentheoretischer Weise. Aus diesem Grund ist zu erwarten, dass es in einem breiteren Spektrum von Cosetmodellen angewendet werden kann. In dieser Arbeit konzentrieren wir uns auf diesen Ansatz und erweitern ihn um die STU-Supergravitation, wobei entsprechende technische Änderungen im BM-Lösungserzeugungsalgorithmus erforderlich werden. Basierend auf diesen Änderungen, diskutieren wir auch eine Verallgemeinerung auf andere Fälle. Wir testen die Anwendbarkeit der BM inversen Streumethode, indem wir explizit folgende Lösungen konstruieren: die Kerr-NUT Lösung der einsteinschen Gravitation, die Vier-Ladungs-Lösung eines schwarzen Lochs innerhalb der STU Supergravitation von Cvetic und Youm und die einfach rotierende JMaRT Lösung. / In this thesis, we study gravity and supergravity systems that become completely integrable in two dimensions. Including Einstein gravity, these systems are theories that upon dimensional reduction to three dimensions assume the form of a non-linear $\s$-model for the matter part, with target manifold a coset space $\mathrm{G}/\mathrm{K}$. Starting from Einstein gravity and focusing on the class of stationary axisymmetric solutions, we study the linear system (Lax pair) associated with the non-linear field equations of vacuum gravity as formulated by Belinski - Zakharov (BZ) and Breitenlohner-Maison (BM). The existence of the linear system exhibits the integrability of the two-dimensional system and is amenable to inverse scattering methods as shown in two different approaches by BZ and BM. The infinite dimensional symmetry associated with the two-dimensional equations gives rise to the so-called Geroch group. The BM approach allows for a direct implementation of the Geroch group and the generation of physically interesting solutions in the soliton sector in a manifestly group theoretic way. For this reason, it is expected to apply to a broader set of coset models. Throughout this work, we concentrate on this approach and extend it to STU supergravity, where appropriate technical modifications were required in the BM solution generation algorithm. Based on these modifications, we also discuss a generalization to other set-ups. We test the applicability of the BM inverse scattering method by explicitly constructing the Kerr-NUT solution of Einstein gravity and within STU supergravity, the four-charge black hole solution of Cvetic and Youm as well as the singly rotating JMaRT solution.
4

Symmetries of Maldacena - Wilson Loops from Integrable String Theory

Münkler, Hagen 09 October 2017 (has links)
In der vorliegenden Arbeit werden versteckte Symmetrien innnerhalb der N=4 supersymmetrischen Yang--Mills Theorie oder der nach der AdS/CFT Korrespondenz dualen Beschreibung durch eine String-Theorie in AdS5 x S5 besprochen. Dabei betrachten wir die Maldacena--Wilson Schleife, die sich für diese Untersuchungen besonders eignet, da ihr Vakuum-Erwartungswert für glatte Kurven nicht divergiert und die vermutete Dualität zu Streuamplituden wenigstens konzeptionell eine Möglichkeit bietet, etwaige Symmetrien zu anderen Observablen zu übertragen. Ihre Beschreibung durch Minimalflächen in AdS5 erlaubt es, Symmetrien mithilfe der Integrabilität der zugrunde liegenden klassischen String-Theorie zu konstruieren. Dieser Zugang wurde bereits in der Herleitung der Yang'schen Symmetrie der Maldacena--Wilson Schleife bei starker Kopplung sowie in der Beschreibung von Deformationen gleiches Flächeninhalts von Minimalflächen in AdS3 verwendet. Diese beiden Ergebnisse werden in der vorliegenden Arbeit miteinander verbunden und erweitert. Im Sinne einer systematischen Herangehensweise besprechen wir zunächst die Symmetriestruktur der zugrunde liegenden String-Theorie. Diese Diskussion lässt sich auf die Diskussion von String-Theorien in symmetrischen Räumen verallgemeinern. Dabei zeigt sich, dass die Symmetrie, welche die Deformationen gleiches Flächeninhalts in AdS3 erzeugt, in der Symmetriestruktur dieser Modelle eine zentrale Rolle einnimmt: Sie wirkt als Aufsteige-Operator auf den unendlich vielen erhalten Ladungen und generiert somit den Spektralparameter. Weiterhin lässt sie sich anwenden, um ausgehend von der globalen Symmetrie sämtliche Symmetrien des zugrunde liegenden Modells zu konstruieren. Sie wird daher als die Master-Symmetrie dieser Modelle bezeichnet. Zusätzlich wird die Algebra der Symmetrie-Variationen sowie der erhaltenen Ladungen ausgearbeitet. Für den konkreten Fall von Minimalflächen in AdS5 diskutieren wir die Deformation der Minimalflächenlösung für den Fall eines lichtartigen Vierecks. Diese liefert die duale Beschreibung der Streuamplitude für vier Gluonen. Damit unternehmen wir einen ersten Schritt zur Übertragung der Master-Symmetrie auf Streuamplituden. Weiterhin berechnen wir die Variation der Randkurven der Minimalflächen unter der Master- und Yang'schen Symmetrie für allgemeine, glatte Randkurven. Das Ergebnis dieser Rechnung führt auf eine Verallgemeinerung der Master-Symmetrie zu einer Variation, die von der Kopplungskonstanten abhängt und für beliebige Werte der Kopplungskonstanten eine Symmetrie der Maldacena--Wilson Schleife darstellt. Unsere Diskussion erklärt das Scheitern vorheriger Versuche, die entsprechende Symmetrie im Spezialfall von Minimalflächen in AdS3 zu schwacher Kopplung zu übertragen. Wir besprechen verschiedene Ansätze, die Yang'sche Symmetrie zu schwacher oder beliebiger Kopplung zu übertragen, schlussfolgern aber letztendlich, dass eine Yang'sche Symmetrie der Maldacena--Wilson Schleife nicht vorzuliegen scheint. Die Situation ändert sich, wenn wir Wilson Schleifen in Superräumen betrachten. Diese sind die natürlichen supersymmetrischen Erweiterungen der Maldacena--Wilson Schleife. Für die Yang'sche Invarianz ihres Vakuum-Erwartungswerts wurden wichtige Anhaltspunkte gefunden und sowohl die Beschreibung dieser Operatoren als auch der Beweis der Yang'schen Invarianz bei schwacher Kopplung wurden parallel zur Arbeit an der vorliegenden Dissertation vervollständigt. Wir diskutieren das Gegenstück zu diesem Ergebnis bei starker Kopplung. Dort wird die Wilson Schleife durch eine Minimalfläche beschrieben, welche im Superraum der Superstring-Theorie vom Typ IIB in AdS5 x S5 liegt. Der Vergleich der bei starken Kopplung etablierten Invarianz mit den entsprechenden Generatoren bei schwacher Kopplung zeigt, dass die Symmetrie-Generatoren einen lokalen Anteil enthalten, der auf nicht-triviale Weise vom Wert der Kopplungskonstanten abhängt. Zusätzlich finden wir sogenannte Bonus-Symmetrien. Diese sind die analogen Generatoren in den höheren Ordnungen zum Hyperladungs-Generator, der selbst keine Symmetrie darstellt. Wir zeigen, dass diese Symmetrien in allen höheren Ordnungen der Yang'schen Algebra vorliegen. / This thesis discusses hidden symmetries within N=4 supersymmetric Yang--Mills theory or its AdS/CFT dual, string theory in AdS5 x S5. Here, we focus on the Maldacena--Wilson loop, which is a suitable object for this study since its vacuum expectation value is finite for smooth contours and the conjectured duality to scattering amplitudes provides a conceptual path to transfer its symmetries to other observables. Its strong-coupling description via minimal surfaces in AdS5 allows to construct the symmetries from the integrability of the underlying classical string theory. This approach has been utilized before to derive a strong-coupling Yangian symmetry of the Maldacena--Wilson loop and describe equiareal deformations of minimal surfaces in AdS3. These two findings are connected and extended in the present thesis. In order to discuss the symmetries systematically, we first discuss the symmetry structure of the underlying string model. The discussion can be generalized to the discussion of generic symmetric space models. For these, we find that the symmetry which generates the equiareal deformations of minimal surfaces in AdS3 has a central role in the symmetry structure of the model: It acts as a raising operator on the infinite tower of conserved charges, thus generating the spectral parameter, and can be employed to construct all symmetry variations from the global symmetry of the model. It is thus referred to as the master symmetry of symmetric space models. Additionally, the algebra of the symmetry variations and the conserved charges is worked out. For the concrete case of minimal surfaces in AdS5, we discuss the deformation of the four-cusp solution, which provides the dual description of the four-gluon scattering amplitude. This marks the first step toward transferring the master symmetry to scattering amplitudes. Moreover, we compute the master and Yangian symmetry variations of generic, smooth boundary curves. The results leads to a coupling-dependent generalization of the master symmetry, which constitutes a symmetry of the Maldacena--Wilson loop at any value of the coupling constant. Our discussion clarifies why previous attempts to transfer the deformations of minimal surfaces in AdS3 to weak coupling were unsuccessful. We discuss several attempts to transfer the Yangian symmetry to weak or arbitrary coupling, but ultimately conclude that a Yangian symmetry of the Maldacena--Wilson loop seems not to be present. The situation changes when we consider Wilson loops in superspace, which are the natural supersymmetric generalizations of the Maldacena--Wilson loop. Substantial evidence for the Yangian invariance of their vacuum expectation value has been provided at weak coupling and the description of the operator as well as its weak-coupling Yangian invariance were subsequently established in parallel to the work on this thesis. We discuss the strong-coupling counterpart of this finding, where the Wilson loop in superspace is described by minimal surfaces in the superspace of type IIB superstring theory in AdS5 x S5. The comparison of the strong-coupling invariance derived here with the respective generators at weak coupling shows that the generators contain a local term, which depends on the coupling in a non-trivial way. Additionally, we find so-called bonus symmetry generators. These are the higher-level recurrences of the superconformal hypercharge generator, which does not provide a symmetry itself. We show that these symmetries are present in all higher levels of the Yangian.
5

Integrability and higher-Point Functions in AdS/CFT

le Plat, Dennis Max Dieter 27 November 2023 (has links)
Integrabilität hat sich als ein mächtiges Werkzeug zur Berechnung von Observablen in der AdS/CFT-Korrespondenz erwiesen. Zunächst für das planare Spektralproblem entdeckt, wurden auch Methoden zur Berechnung von Mehrpunktfunktionen entwickelt. In dieser Arbeit wird diese Korrespondenz für AdS5/CFT4 und AdS3/CFT2 betrachtet mit dem Ziel, den integrablen Formalismus zu erweitern. Teil I behandelt Integrabilität in der N=4 SYM-Theorie, wo der Hexagon-Formalismus die Berechnung von Dreipunktfunktionen ermöglicht. Dazu wird der Korrelator in zwei hexagonale Stücke zerlegt. Die lokalen Operatoren müssen im Spinkettenbild als Bethe-Zustand zerschnitten und ein verschränkter Zustand konstruiert werden. Der Hexagon-Formalismus wird hier auf Sektoren mit höherem Rang erweitert, wobei die operatorartige Struktur erhalten und nur minimale Informationen aus dem geschachtelten Bethe-Ansatz genutzt werden. Weiterhin erlaubt die Betrachtung von Doppelanregungen im Spinkettenbild die Realisierung aller Felder der N=4 SYM-Theorie. Der chirale Yang-Mills-Feldstärketensor wird aus vier Fermionen in führender Ordnung der Kopplung konstruiert, eine Methode zur Einsetzung des Lagrangeoperators im Hexagon-Formalismus wird vorgeschlagen und ein erster Test durchgeführt. Teil II behandelt den Hexagon-Formalismus für Superstrings auf AdS3xS3xT4 Hintergründen mit einer Mischung von Ramond-Ramond und Neveu-Schwarz-Neveu-Schwarz Flüssen. Der Formfaktor wird für Ein- und Zwei-Teilchen-Zustände konstruiert und lässt sich für viele Teilchen unter Nutzung der S Matrix verallgemeinern. Schließlich werden die thermodynamischen Bethe-Ansatz (TBA)-Gleichungen betrachtet, die von Frolov und Sfondrini für das Spektrum von Strings auf reinem Ramond-Ramond AdS3xS3xT4 Hintergrund konstruiert wurden. Bei schwacher Kopplung lassen sich die TBA-Gleichungen erheblich vereinfachen. Der Beitrag zu den anomalen Dimensionen in führender Ordnung ist auf masselose Anregungen zurückzuführen. / Integrability proved to be a powerful tool to calculate observables in the AdS/CFT correspondence. At first discovered in the planar spectral problem, methods have since been devised for calculating higher-point functions as well. In this thesis we will consider two instances of the correspondence, that is AdS5/CFT4 as well as AdS3/CFT2, aiming at extending the integrability framework. In Part I we focus on integrability in N=4 SYM theory, where the hexagon form factor provides a formalism to calculate three-point functions. For this, the correlator is cut into two hexagonal patches. Considering the local operators in the spin chain picture, the Bethe states also need to be cut, resulting in an entangled state. In this thesis, we extend the hexagon formalism to higher-rank sectors, while preserving its operator-like structure and importing a minimum of information from the nested Bethe ansatz. Moreover, considering double excitations in the spin chain picture allows us to accommodate for the full set of fields in N=4 SYM theory. We build the chiral Yang-Mills field strength tensor from four fermions at leading order in the coupling, put forward a Lagrangian insertion method in the hexagon formalism and perform a first test. In Part II we propose a hexagon formalism for superstrings in AdS3×S3×T4 backgrounds with an arbitrary mixture or Ramond-Ramond and Neveu-Schwarz-Neveu-Schwarz fluxes. We bootstrap the hexagon form factor for one- and two-particle states from symmetry and give a proposal for the evaluation of many particle states in terms of the theorie's S matrix. Finally, we consider the thermodynamic Bethe ansatz (TBA) equations constructed by Frolov and Sfondrini for the spectrum of strings on the pure-Ramond-Ramond AdS3×S3×T4 background. Here we study the small tension limit of the mirror TBA equations and find that the equations simplify considerably. We observe that the leading-order contribution to the anomalous dimensions is due to massless excitations.
6

The Yangian Bootstrap for Massive Feynman Diagrams

Miczajka, Julian 25 March 2022 (has links)
In dieser Dissertation erweitern wir die Ideen des Yangian-Bootstrap-Algorithmus auf Feynman-Diagramme mit massiven Teilchen. Ausgehend von der massiven dual-konformen Symmetrie der N = 4 Super-Yang-Mills Theorie auf dem Coulomb-Zweig konstruieren wir einen Satz von bilokalen Yangian Level-Eins Generatoren und zeigen, dass sie eine unendliche Anzahl von planaren ein- und zwei-Schleifen-Diagrammen vernichten. Wir beschreiben außerdem wie der dual-konforme Level-Eins Impuls-Operator auf eine massive Verallgemeinerung des gewöhnlichen spezial-konformen Generators im Impulsraum abgebildet wird. Als nächstes wenden wir den Yangian-Bootstrap-Algorithmus mit großem Erfolg auf eine Reihe von massiven Ein-Schleifen-Diagrammen mit verallgemeinerten Propagatorexponenten und in beliebiger Anzahl von Raumdimensionen an. Im Spezialfall der dual-konformen Integrale, deren Propagatorexponenten sich zur Raumdimension addieren, finden wir neue sehr einfache Darstellungen durch hypergeometrische Funktionen, die eine natürliche Verallgemeinerung für Diagramme mit beliebig vielen äußeren Punkten erlauben. Außerdem diskutieren wir Aspekte des Yangian-Bootstrap-Algorithmus in Minkowski-Raumzeit am Beispiel des masselosen Box-Integrals. Wir zeigen, dass dessen Yangian-Symmetrie gemeinsam mit seinen diskreten Permutationssymmetrien das Box-Integrals bis auf 12 unbestimmte Konstanten komplett festlegt. Schließlich schlagen wir vor, dass das Auftreten von Yangian-Symmetrie in massiven Fischnetz-Diagrammen mit deren Rolle als Ein-Spur-Streuamplituden in einer massiven Fischnetz-Theorie zusammenhängen könnte. In Analogie mit der masselosen Fischnetz-Theorie zeigen wir, wie diese Theorie als Deformation der N = 4 Super-Yang-Mills Theorie auf dem Coulomb-Zweig definiert werden kann. Wir diskutieren eine bestimmte Klasse von planaren Grenzfällen, in der die off-shell Streuamplituden der Theorie eine massive dual-konforme Symmetrie sowie Yangian-Symmetrie aufweisen. / In this dissertation, we extend the ideas of the Yangian bootstrap algorithm to massive Feynman diagrams. Based on the massive dual-conformal symmetry of Coulomb branch N = 4 super-Yang-Mills theory, we construct a set of bi-local Yangian level-one generators and show that they annihilate infinite classes of massive planar Feynman integrals at one and two loops. We also describe how the dual-conformal level-one momentum generator maps to a massive deformation of the ordinary momentum space special conformal generator. We then apply the Yangian bootstrap to a set of massive one-loop integrals with generalised propagator powers and in an arbitrary number of space dimensions to great success. In the special case of dual-conformal integrals, whose propagator powers sum to the space dimension, we find very simple novel hypergeometric structures, suggesting a natural generalisation to diagrams with an arbitrary number of external points. In the particular case of the massless box integral we also discuss elements of the Yangian bootstrap in Minkowski space. We show that its Yangian and discrete permutation symmetries constrain it up to 12 undetermined constants. We then derive the values of these constants via analytic continuation from the box integral in the Euclidean region. Finally, we provide evidence that the appearance of Yangian symmetry for massive fishnet diagrams is related to their role as colour-ordered scattering amplitudes in a massive fishnet theory. We show how to construct this theory from Coulomb branch N = 4 super-Yang-Mills theory, paralleling the original construction of the massless fishnet theory. We discuss how a particular class of planar limits leads to the emergence of massive dual-conformal symmetry as well as massive Yangian symmetry for the theory’s off-shell scattering amplitudes.
7

Conformal Feynman Integrals and Correlation Functions in Fishnet Theory

Corcoran, Luke 12 January 2023 (has links)
In dieser Dissertation untersuchen wir unterschiedliche Aspekte im Zusammenhang mit Korrelationsfunktionen in der Fischnetz-Theorie. Zunächst betrachten wir einen der einfachsten Korrelatoren der Fischnetz Theorie, das konforme Box-Integral, in Minkowski Signatur. Während dieses Integral in Euklidischer Signatur eine konforme Symmetrie aufweist, wird diese Symmetrie in Minkowski-Raumzeit subtil gebrochen. Wir beschreiben die Brechung der konformen Symmetrie quantitativ, indem wir die funktionale Form des Box-Integrals in allen kinematischen Regionen untersuchen. Ausserdem untersuchen wir das Ausmass zu dem das Box integral durch seine Yangian-Symmetrie festgelegt ist. Als nächstes widmen wir uns den Basso-Dixon-Graphen, die ebenfalls konforme Vier-Punkt-Integrale sind und Verallgemeinerungen des Box-Integrals zu höheren Schleifenordnungen darstellen. Wir leiten die Yangian-Ward-Identitäten ab, die diese Klasse von Integralen erfüllen. Die Ward-Identitäten sind einhomogene Erweiterungen der partiellen Differentialgleichungen, die im homogenen Fall durch Appell-Hypergeometrische Funktionen gelöst werden. Die Ward-Identitäten können natürlicherweise auf eine Ein-Parameter-Familie von D-dimensionalen Integralen erweitert werden, die Korrelatoren in der verallgemeinerten Fischnetz-Theorie von Kazakov und Olivucci darstellen. Schliesslich untersuchen wir den Dilatationsoperator in einem Drei-Skalar-Sektor der Fischnetztheorie, der auch als Eklektisches Modell bezeichnet wird. In diesem Sektor der Dilatationsoperator nimmt nicht--diagonalisierbare Form an. Das führt dazu, dass die Zwei-Punkt-Korrelationsfunktionen eine logarithmische Abhängigkeit von der Raumzeitseparierung der Operatoren annimmt. Unter Zuhilfenahme von kombinatorischen Argumenten führen wir eine generierende Funktion ein, die das Jordan-Block-Spektrum eines verwandten Modells, der hypereklektischen Spinkette, vollständig charakterisiert. / We study various aspects of correlation functions in fishnet theory. We begin with the study of the simplest correlator in theory theory, represented by the conformal box integral, in Minkowski space. While this integral is conformally invariant in Euclidean space, this symmetry is subtly broken in Minkowski space. We quantify the extent to which conformal symmetry is broken by analysing the functional form of the box in each kinematic region. We propose a new method to calculate the box integral directly in Minkowski space, by introducing a family of configurations with two points at infinity. Furthermore, we investigate the extent to which the box integral is constrained by Yangian symmetry. We constrain the functional form of the box integral in all kinematic regions up to twelve undetermined constants, which we fix by three separate analytic continuations from the Euclidean region. Next, we study the Basso-Dixon graphs, which represent higher-loop versions of the box integral. We derive and study Yangian Ward identities for this class of integrals. These take the form of inhomogeneous extensions of the partial differential equations defining the Appell hypergeometric functions. The Ward identities naturally generalise to a one-parameter family of D dimensional integrals representing correlators in a generalised fishnet theory. Finally, we study the dilatation operator in a particular three scalar sector of the fishnet theory, which has been dubbed the eclectic model. This dilatation operator is non-diagonalisable in this sector. This leads to logarithmic spacetime dependence in the corresponding two-point functions. Using combinatorial arguments, we introduce a generating function which fully characterises the Jordan block spectrum of a related model: the hypereclectic spin chain. This function is found by purely combinatorial means and can be expressed in terms of the q-binomial coefficient.
8

Umfassende klassische Analyse des geeichten SL(2,R)-U(1)-Wess-Zumino-Novikov-Witten-Modells

Müller, Uwe 30 October 1998 (has links)
Zusammenfassung In den letzten Jahren haben Schwarze Löcher viel Aufmerksamkeit auf sich gezogen, insbesondere wegen ihrer ungewöhlichen quantentheoretischen Eigenschaften. Ein in diesem Zusammenhang interessantes Modell ist das geeichte SL(2,R)/U(1)-Wess-Zumino-Novikov-Witten-Modell, das im Rahmen der Stringtheorie als Euklidisches zweidimensionales Schwarzes Loch interpretiert werden kann. Die vorliegende Arbeit analysiert die klassischen Eigenschaften dieses Modells, um so die Grundlage für quantentheoretische Untersuchungen zu schaffen. Ausgangspunkt ist eine allgemeine Betrachtung über geeichte Wess-Zumino-Novikov-Witten-Modelle (WZNW-Modelle). Herkömmlicherweise werden sie mit Hilfe von Eichfeldern formuliert, deren Bewegungsgleichungen rein algebraisch sind. In der vorliegenden Arbeit werden die Eichfelder aus den Modellen eliminiert. Dabei entsteht eine Klasse von nichtlinearen integrablen konformen Feldtheorien, für deren Bewegungsgleichung eine explizite Lax-Paar-Darstellung abgeleitet wird. Diese Ergebnisse werden auf das geeichte SL(2,R)/U(1)-WZNW-Modell spezialisiert. Zum Vergleich wird auch die Eliminierung des Eichfeldes durch explizite Pfadintegration untersucht, die jedoch aufgrund mathematischer Ambiguitäten nicht zu einem abschließenden Ergebnis geführt wird. Das klassische geeichte SL(2,R)/U(1)-WZNW-Modell wird sowohl in einem unendlich ausgedehnten Minkowski-Raum als auch mit räumlich periodischen Randbedingungen untersucht. Letzteres ist für die stringtheoretische Interpretation des Modells wichtig. Es werden die nichtlinearen Bewegungsgleichungen und ihre allgemeine Lösung angegeben. Diese enthält Parameterfunktionen. Es wird ein Verfahren abgeleitet, um die Parameterfunktionen aus vorgegebenen Anfangsbedingungen zu bestimmen. Mit Hilfe dieses Verfahrens werden die Poissonklammern der Parameterfunktionen aus den kanonischen Poissonklammern der physikalischen Felder berechnet. Es wird gezeigt, daß es eine nichtlokale kanonische Transformation der nichtlinearen physikalischen Felder auf freie Felder gibt. Die entsprechende Bäcklund-Transformation wird angegeben. / Abstract In recent years, Black Holes have attracted much attention, in particular, because of their unusual quantum-theoretical properties. An interesting model, in this context, is the SL(2,R)/U(1) gauged Wess-Zumino-Novikov-Witten model, which can be interpreted stringtheoretically as Euclidean two-dimensional Black Hole. The present dissertation analyzes the classical properties of this model, in order to prepare the basis for quantum-theoretical investigations. First, gauged Wess-Zumino-Novikov-Witten (WZNW) models are intoduced in general. Usually, they are formulated including gauge fields, whose equations of motion are purely algebraic. In the present dissertation, the gauge fields are eliminated from the models. A class of non-linear integrable field theories arises, whose equations of motion can be represented by Lax pairs explicitly. These results are specialized to the SL(2,R)/U(1) gauged WZNW model. For comparison, the elimination of the gauge field by explicit path integration is also investigated. But due to mathematical ambiguities, this investigation does not lead to a final result. The classical SL(2,R)/U(1) gauged WZNW model is investigated in an infinitely extended Minkowski space-time as well as with spatially periodic boundary conditions. The latter is important for the stringtheoretical interpretation of the model. The non-linear equations of motion and their general solution are given. A procedure is derived to determine the parameter functions of the general solution from given initial conditions of the equations of motion. By means of this procedure the Poisson brackets of the parameter functions are calculated from the canonical Poisson brackets of the physical fields. It is shown that there is a non-local canonical transformation of the non-linear physical fields onto free fields. The corresponding Backlund transformation is presented.
9

Form factors and the dilatation operator in N = 4 super Yang-Mills theory and its deformations

Wilhelm, Matthias Oliver 07 March 2016 (has links)
Im ersten Teil dieser Dissertation untersuchen wir Formfaktoren von allgemeinen eichinvarianten lokalen zusammengesetzten Operatoren in der N=4 Super-Yang-Mills-Theorie bei verschiedenen Schleifenordnungen und Anzahlen externer Felder. Wir zeigen, wie Masseschalen-Methoden zu ihrer Berechnung genutzt werden können, und extrahieren aus ihnen insbesondere den Dilatationsoperator. Wir untersuchen auch die Eigenschaften der zugehörigen Rückstandsfunktionen. Des Weiteren verallgemeinern wir Masseschalen-Diagramme, Graßmann-Integrale und die integrabilitätsinspirierte Technik der R-Operatoren zur Anwendung auf Formfaktoren, wobei wir uns auf das Beispiel des chiralen Teils des Energie-Impuls-Tensors konzentrieren. Im zweiten Teil untersuchen wir die Beta- und die Gamma-i-Deformation. Bei diesen handelt es sich um die allgemeinste supersymmetrische beziehungsweise nicht-supersymmetrische feldtheoretische Deformation von N=4 Super-Yang-Mills-Theorie, welche auf der Ebene des asymptotischen Bethe-Ansatzes integrabel sind. Hierbei tritt ein neuer Effekt der endlichen Systemgröße auf, der durch Doppelspurstrukturen in der deformierten Lagrange-Dichte hervorgerufen wird und den wir Vorwickeln nennen. Während die Beta-Deformation für sich an ihren nicht-verschwindenden IR-Fixpunkten befindliche Doppelspurkopplungen konform invariant ist, weist die Gamma-i-Deformation rennende Doppelspurkopplungen ohne Fixpunkte auf, was die konforme Invarianz selbst im planaren Limes bricht. Nichtsdestotrotz erlaubt die Gamma-i-Deformation hochgradig nicht-triviale Tests der Integrabilität bei beliebig hohen Schleifenordnungen. / In the first part of this thesis, we study form factors of general gauge-invariant local composite operators in N=4 super Yang-Mills theory at various loop orders and for various numbers of external legs. We show how to use on-shell methods for their calculation and in particular extract the dilatation operator from the result. We also investigate the properties of the corresponding remainder functions. Moreover, we extend on-shell diagrams, a Graßmannian integral formulation and an integrability-based construction via R-operators to form factors, focussing on the chiral part of the stress-tensor supermultiplet as an example. In the second part, we study the beta- and the gamma-i-deformation, which were respectively shown to be the most general supersymmetric and non-supersymmetric field-theory deformations of N=4 super Yang-Mills theory that are integrable at the level of the asymptotic Bethe ansatz. For these theories, a new kind of finite-size effect occurs, which we call prewrapping and which emerges from double-trace structures that are required in the deformed Lagrangians. While the beta-deformation is conformal when the double-trace couplings are at their non-trivial IR fixed points, the gamma-i-deformation has running double-trace couplings without fixed points, which break conformal invariance even in the planar theory. Nevertheless, the gamma-i-deformation allows for highly non-trivial field-theoretic tests of integrability at arbitrarily high loop orders.
10

Integrability in weakly coupled super Yang-Mills theory: form factors, on-shell methods and Q-operators

Meidinger, David 25 June 2018 (has links)
Diese Arbeit untersucht die N = 4 super-Yang-Mills-Theorie bei schwacher Kopplung, mit dem Ziel eines tieferen Verständnisses von Größen der Theorie als Zustände des integrablen Modells dass der planaren Theorie zu Grunde liegt. Wir leiten On-Shell-Diagramme für Formfaktoren des chiralen Energie-Impuls-Tensor-Multipletts aus der BCFW-Rekursion her, und untersuchen deren Eigenschaften. Dies erlaubt die Herleitung eines Graßmannschen Integrals. Für NMHV-Formfaktoren bestimmen wir die Integrationskontur. Dies erlaubt es das Integral mit einer Twistor-String-Formulierung in Beziehung zu setzen. Mit Hilfe dieser Methoden zeigen wir dass Formfaktoren des chiralen Energie-Impuls-Tensor-Multipletts und On-Shell-Funktionen mit Einfügungen beliebiger Operatoren Eigenzustände integrabler Transfermatrizen sind. Diese Identitäten verallgemeinern die Yangsche Invarianz der On-Shell-Funktionen von Amplituden. Wir zeigen weiterhin dass ein Teil der Yangschen Symmetrien erhalten bleibt. Wir erweitern unsere Untersuchung auf nichtplanare On-Shell-Funktionen und zeigen dass sie ebenfalls solche Symmetrien besitzen. Weitere Identitäten mit Transfermatrizen werden hergeleitet, und zeigen insbesondere dass Diagramme auf Zylindern als Intertwiner fungieren. Als Schritt hin zur Berechnung der Eigenzustände des integrablen Modells zu höheren Schleifenordnungen untersuchen wir Einspuroperatoren. Hier erlaubt die Quantum Spectral Curve die nichtperturbative Berechnung ihres Spektrums, liefert jedoch keine Information zu den Zustände. Die QSC kann als Q-System verstanden werden, welches durch Baxter Q-Operatoren formulierbar sein sollte. Um darauf hinzuarbeiten untersuchen wir die Q-Operatoren nichtkompakter Superspinketten und entwickeln ein effiziente Methode zur Berechnung ihrer Matrixelemente. Dies erlaubt es das gesamte Q-System durch Matrizen für jeden Anregungssektor zu realisieren, und liefert die Grundlage für perturbative Rechnungungen mit der QSC in Operatorform. / This thesis investigates weakly coupled N = 4 super Yang-Mills theory, aiming at a better understanding of various quantities as states of the integrable model underlying the planar theory. We use the BCFW recursion relations to develop on-shell diagrams for form factors of the chiral stress-tensor multiplet, and investigate their properties. The diagrams allow to derive a Graßmannian integral for these form factors. We devise the contour of this integral for NMHV form factors, and use this knowledge to relate the integral to a twistor string formulation. Based on these methods, we show that both form factors of the chiral stress-tensor multiplet as well as on-shell functions with insertions of arbitrary operators are eigenstates of integrable transfer matrices. These identities can be seen as symmetries generalizing the Yangian invariance of amplitude on-shell functions. In addition, a part of these Yangian symmetries are unbroken. We furthermore consider nonplanar on-shell functions and prove that they exhibit a partial Yangian invariance. We also derive identities with transfer matrices, and show that on-shell diagrams on cylinders can be understood as intertwiners. To make progress towards the calculation of the higher loop eigenstates of the integrable model, we consider single trace operators, for which the Quantum Spectral Curve determines their spectrum non-perturbatively. This formulation however carries no information about the states. The QSC is an algebraic Q-system, for which an operatorial form in terms of Baxter Q-operators should exist. To initiate the development such a formulation we investigate the Q-operators of non-compact super spin chains and devise efficient methods to evaluate their matrix elements. This allows to obtain the entire Q-system in terms of matrices for each magnon sector. These can be used as input data for perturbative calculations using the QSC in operatorial form.

Page generated in 0.0837 seconds