51 |
Pricing CPPI Capital Guarantees: A Lagrangian FrameworkMorley, Christopher Stephen Band January 2011 (has links)
A robust computational framework is presented for the risk-neutral valuation of capital
guarantees written on discretely-reallocated portfolios following the Constant Proportion
Portfolio Insurance (CPPI) strategy. Aiming to address the (arguably more realistic)
cases where analytical results are unavailable, this framework accommodates risky-asset
jumps, volatility surfaces, borrowing restrictions, nonuniform reallocation schedules and
autonomous CPPI floor trajectories. The two-asset state space representation developed
herein facilitates visualising the CPPI strategy, which in turn provides insight into grid
design and interpolation. It is demonstrated that given a deterministic process for the
risk-free rate, the pricing problem can be cast as solving cascading systems of 1D partial
integro-differential equations (PIDEs). This formulation’s stability and monotonicity are
studied. In addition to making more sense financially, the limited borrowing variant of
the CPPI strategy is found to be better suited than the classical (unlimited borrowing)
counterpart for bounded-domain calculations. Consequently, it is demonstrated how the
unlimited borrowing problem can be approximated by imposing an artificial borrowing limit.
For implementation validation, analytical solutions to special cases are derived. Numerical
tests are presented to demonstrate the versatility of this framework.
|
52 |
Stochastic Volatility And Stochastic Interest Rate Model With Jump And Its Application On General Electric DataCelep, Saziye Betul 01 May 2011 (has links) (PDF)
In this thesis, we present two different approaches for the stochastic volatility and stochastic interest rate model with jump and analyze the performance of four alternative models. In the first approach, suggested by Scott, the closed form solution for prices on European call stock options are developed by deriving characteristic functions with the help of martingale methods. Here, we study the asset price process and give in detail the derivation of the European call option price process. The second approach, suggested by Bashki-Cao-Chen, describes the closed form solution of European call option by deriving the partial integro-differential equation. In this one we g ive the derivations of both asset price dynamics and the European call option price process. Finally, in the application part of the thesis, we examine the performance of four alternative models using General Electric Stock Option Data. These models are constructed by using the theoretical results of the second approach.
|
53 |
The Role of First Order Surface Effects in Linear Elastic Fracture MechanicsKIM, CHUN IL Unknown Date
No description available.
|
54 |
Apie vieną, vaikus globojančios populiacijos modelį / On a population model with child carePralgauskaitė, Raminta 02 July 2014 (has links)
Darbe pateiktas populiacijos dinamikos modelis, kuriame atsižvelgiama į amžių, patelių nėštumą, vaikų priežiūrą, ekologinius veiksnius. Skirtingų lyčių poros sudaromos naudojant harmoninio vidurkio funkciją, ir laikoma, kad poros egzistuoja tik dauginimosi periodu. Daugumoje populiacijų jauniklius prižiūri tik motinos, todėl laikoma, kad jaunikliai miršta, jei žūva juos prižiūrinti patelė. Kiekvienas individas turi priešreproduktyvųjį, reproduktyvųjį ir poreproduktyvųjį amžiaus intervalus. Individai, esantys priešreproduktyviajame amžiaus intervale, skirstomi į jauniklius, kuriems reikalinga motinos priežiūra, bei paauglius, kurie jau yra savarankiški individai, tik dar nepasiruošę daugintis. Reproduktyvaus amžiaus individai skirstomi į patinus, neapvaisintas pateles, apvaisintas pateles ir jauniklius prižiūrinčias pateles. Modelį sudaro integrodiferencialinės lygtys dalinėmis išvestinėmis su integralinio tipo sąlygomis. Lygčių skaičius priklauso nuo biologiškai galimo maksimalaus skaičiaus palikuonių, ir jis yra baigtinis. Limituotos populiacijos atveju surandami separabilūs sprendiniai, nelimituotos populiacijos atveju įrodoma egzistavimo ir vienaties teorema. / A deterministic model for a sexual age-structured population with females pregnancy, maternal care of offspring, and an environmental pressure is presented. The model involves pairs that exist for period of mating only and uses mating function of simplified harmonic mean type. All adult males are treated as singles. Each sex has pre-reproductive, reproductive, and post-reproductive age intervals. All adult individuals (of reproductive age) are divided into males, single females, pregnant females, and females taking child care. All individuals of pre-reproductive age are divided into young and juvenile groups. All young individuals are under maternal care while juveniles can live without maternal care. The model consists of integro-differential equations. Separable solutions are studied for the limited nondispersing population. The existence and uniqueness theorem is proved in the case of unlimited population.
|
55 |
Pricing CPPI Capital Guarantees: A Lagrangian FrameworkMorley, Christopher Stephen Band January 2011 (has links)
A robust computational framework is presented for the risk-neutral valuation of capital
guarantees written on discretely-reallocated portfolios following the Constant Proportion
Portfolio Insurance (CPPI) strategy. Aiming to address the (arguably more realistic)
cases where analytical results are unavailable, this framework accommodates risky-asset
jumps, volatility surfaces, borrowing restrictions, nonuniform reallocation schedules and
autonomous CPPI floor trajectories. The two-asset state space representation developed
herein facilitates visualising the CPPI strategy, which in turn provides insight into grid
design and interpolation. It is demonstrated that given a deterministic process for the
risk-free rate, the pricing problem can be cast as solving cascading systems of 1D partial
integro-differential equations (PIDEs). This formulation’s stability and monotonicity are
studied. In addition to making more sense financially, the limited borrowing variant of
the CPPI strategy is found to be better suited than the classical (unlimited borrowing)
counterpart for bounded-domain calculations. Consequently, it is demonstrated how the
unlimited borrowing problem can be approximated by imposing an artificial borrowing limit.
For implementation validation, analytical solutions to special cases are derived. Numerical
tests are presented to demonstrate the versatility of this framework.
|
56 |
Sobre equações integro-diferenciais com retardo dependendo do estado e equações semilineares hiperbólicasGOUVEIA, Giovana Siracusa 31 January 2012 (has links)
Submitted by Etelvina Domingos (etelvina.domingos@ufpe.br) on 2015-03-06T17:43:17Z
No. of bitstreams: 2
Tese_Giovana_Biblioteca.pdf: 570974 bytes, checksum: 556af4597f7fa918ec146fa4a45ad342 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-06T17:43:17Z (GMT). No. of bitstreams: 2
Tese_Giovana_Biblioteca.pdf: 570974 bytes, checksum: 556af4597f7fa918ec146fa4a45ad342 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2012 / CNPq / Utilizando ferramentas topológicas podemos garantir que o conjunto solução de uma
equação integro-diferencial com retardo dependendo do estado é um conjunto não vazio,
compacto e conexo. Como aplicação de nossos resultados abstratos consideramos algumas
equações integro-diferenciais originadas da teoria de viscoelasticidade.
Além disso utilizamos teoria de semigrupo hiperbólico para garantir a existência de soluções
compactas quase automórficas de equações semilineares de evolução cujo semigrupo
associado não é exponencialmente assintoticamente estável.
|
57 |
Analytical properties of viscosity solutions for integro-differential equations : image visualization and restoration by curvature motions / Propriétés analytiques des solutions de viscosité des équations integro-différentielles : visualisation et restauration d'images par mouvements de courbureCiomaga, Adina 29 April 2011 (has links)
Le manuscrit est constitué de deux parties indépendantes.Propriétés des Solutions de Viscosité des Equations Integro-Différentielles.Nous considérons des équations intégro-différentielles elliptiques et paraboliques non-linéaires (EID), où les termes non-locaux sont associés à des processus de Lévy. Ce travail est motivé par l'étude du Comportement en temps long des solutions de viscosité des EID, dans le cas périodique. Le résultat classique nous dit que la solution u(¢, t ) du problème de Dirichlet pour EID se comporte comme ?t Åv(x)Åo(1) quand t !1, où v est la solution du problème ergodique stationaire qui correspond à une unique constante ergodique ?.En général, l'étude du comportement asymptotique est basé sur deux arguments: la régularité de solutions et le principe de maximumfort.Dans un premier temps, nous étudions le Principe de Maximum Fort pour les solutions de viscosité semicontinues des équations intégro-différentielles non-linéaires. Nous l'utilisons ensuite pour déduire un résultat de comparaison fort entre sous et sur-solutions des équations intégro-différentielles, qui va assurer l'unicité des solutions du problème ergodique à une constante additive près. De plus, pour des équationssuper-quadratiques le principe de maximum fort et en conséquence le comportement en temps grand exige la régularité Lipschitzienne.Dans une deuxième partie, nous établissons de nouvelles estimations Hölderiennes et Lipschitziennes pour les solutions de viscosité d'une large classe d'équations intégro-différentielles non-linéaires, par la méthode classique de Ishii-Lions. Les résultats de régularité aident de plus à la résolution du problème ergodique et sont utilisés pour fournir existence des solutions périodiques des EID.Nos résultats s'appliquent à une nouvelle classe d'équations non-locales que nous appelons équations intégro-différentielles mixtes. Ces équations sont particulièrement intéressantes, car elles sont dégénérées à la fois dans le terme local et non-local, mais leur comportement global est conduit par l'interaction locale - non-locale, par exemple la diffusion fractionnaire peut donner l'ellipticité dans une direction et la diffusion classique dans la direction orthogonale.Visualisation et Restauration d'Images par Mouvements de CourbureLe rôle de la courbure dans la perception visuelle remonte à 1954, et on le doit à Attneave. Des arguments neurologiques expliquent que le cerveau humain ne pourrait pas possiblement utiliser toutes les informations fournies par des états de simulation. Mais en réalité on enregistre des régions où la couleur change brusquement (des contours) et en outre les angles et les extremas de courbure. Pourtant, un calcul direct de courbures sur une image est impossible. Nous montrons comment les courbures peuvent être précisément évaluées, à résolution sous-pixelique par un calcul sur les lignes de niveau après leur lissage indépendant.Pour cela, nous construisons un algorithme que nous appelons Level Lines (Affine) Shortening, simulant une évolution sous-pixelique d'une image par mouvement de courbure moyenne ou affine. Aussi bien dans le cadre analytique que numérique, LLS (respectivement LLAS) extrait toutes les lignes de niveau d'une image, lisse indépendamment et simultanément toutes ces lignes de niveau par Curve Shortening(CS) (respectivement Affine Shortening (AS)) et reconstruit une nouvelle image. Nousmontrons que LL(A)S calcule explicitement une solution de viscosité pour le le Mouvement de Courbure Moyenne (respectivement Mouvement par Courbure Affine), ce qui donne une équivalence avec le mouvement géométrique.Basé sur le raccourcissement de lignes de niveau simultané, nous fournissons un outil de visualisation précis des courbures d'une image, que nous appelons un Microscope de Courbure d'Image. En tant que application, nous donnons quelques exemples explicatifs de visualisation et restauration d'image : du bruit, des artefacts JPEG, de l'aliasing seront atténués par un mouvement de courbure sous-pixelique / The present dissertation has two independent parts.Viscosity solutions theory for nonlinear Integro-Differential EquationsWe consider nonlinear elliptic and parabolic Partial Integro-Differential Equations (PIDES), where the nonlocal terms are associated to jump Lévy processes. The present work is motivated by the study of the Long Time Behavior of Viscosity Solutions for Nonlocal PDEs, in the periodic setting. The typical result states that the solution u(¢, t ) of the initial value problem for parabolic PIDEs behaves like ?t Å v(x) Å o(1) as t ! 1, where v is a solution of the stationary ergodic problem corresponding to the unique ergodic constant ?. In general, the study of the asymptotic behavior relies on two main ingredients: regularity of solutions and the strong maximum principle.We first establish Strong Maximum Principle results for semi-continuous viscosity solutions of fully nonlinear PIDEs. This will be used to derive Strong Comparison results of viscosity sub and super-solutions, which ensure the up to constants uniqueness of solutions of the ergodic problem, and subsequently, the convergence result. Moreover, for super-quadratic equations the strong maximum principle and accordingly the large time behavior require Lipschitz regularity.We then give Lipschitz estimates of viscosity solutions for a large class of nonlocal equations, by the classical Ishii-Lions's method. Regularity results help in addition solving the ergodic problem and are used to provide existence of periodic solutions of PIDEs. In both cases, we deal with a new class of nonlocal equations that we term mixed integrodifferential equations. These equations are particularly interesting, as they are degenerate both in the local and nonlocal term, but their overall behavior is driven by the local-nonlocal interaction, e.g. the fractional diffusion may give the ellipticity in one direction and the classical diffusion in the complementary one.Image Visualization and Restoration by CurvatureMotionsThe role of curvatures in visual perception goes back to 1954 and is due to Attneave. It can be argued on neurological grounds that the human brain could not possible use all the information provided by states of simulation. But actually human brain registers regions where color changes abruptly (contours), and furthermore angles and peaks of curvature. Yet, a direct computation of curvatures on a raw image is impossible. We show how curvatures can be accurately estimated, at subpixel resolution, by a direct computation on level lines after their independent smoothing.To performthis programme, we build an image processing algorithm, termed Level Lines (Affine) Shortening, simulating a sub-pixel evolution of an image by mean curvature motion or by affine curvature motion. Both in the analytical and numerical framework, LL(A)S first extracts all the level lines of an image, then independently and simultaneously smooths all of its level lines by curve shortening (CS) (respectively affine shortening (AS)) and eventually reconstructs, at each time, a new image from the evolved level lines.We justify that the Level Lines Shortening computes explicitly a viscosity solution for the Mean CurvatureMotion and hence is equivalent with the clasical, geometric Curve Shortening.Based on simultaneous level lines shortening, we provide an accurate visualization tool of image curvatures, that we call an Image CurvatureMicroscope. As an application we give some illustrative examples of image visualization and restoration: noise, JPEG artifacts, and aliasing will be shown to be nicely smoothed out by the subpixel curvature motion.
|
58 |
Equations de Hamilton-Jacobi sur des réseaux et applications à la modélisation du trafic routier / Hamilton-Jacobi equations on networks and application to traffic flow modelizationZaydan, Mamdouh 21 November 2017 (has links)
Cette thèse porte sur l’analyse et l’homogénéisation d’équations aux dérivées partielles (EDP) posées sur des réseaux avec des applications en trafic routier. Deux types de travaux ont été réalisés : le premier axe de travail consiste à considérer des modèles microscopiques de trafic routier et d’établir une connexion entre ces modèles et des modèles macroscopiques du genre de ceux introduit par Imbert et Monneau [1]. Une telle connexion va permettre de justifier rigoureusement les modèles macroscopiques du trafic routier. En effet, les modèles microscopiques décrivent la dynamique de chaque véhicule individuellement et sont donc plus faciles à justifier du point de vue modélisation. Par contre, ces modèles ne sont pas utilisables pour décrire le trafic à grande échelle (des villes par exemple). Les modèles macroscopiques font le jeu inverse : ils sont fort pour décrire le trafic à grande échelle mais du point de vue modélisation, ils sont compliqués à mettre en œuvre pour prédire toutes les situations du trafic (par exemple trafic libre ou congestionné). Le passage du microscopique au macroscopique est fait en s’appuyant sur la théorie des solutions de viscosité et en particulier les techniques d’homogénéisation. Le second axe consiste à considérer une équation d’Hamilton-Jacobi avec une jonction qui bouge en temps. Cette équation peut décrire la circulation des voitures sur une route avec la présence d’un véhicule particulier (plus lent que les voitures par exemple). On prouve l’existence et l’unicité (par un principe de comparaison) d’une solution de viscosité pour cette EDP. [1] Cyril Imbert and Régis Monneau. Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks. Annales Scientifiques de l’ENS, 50(2) :357–448, 2013. / This thesis deals with the analysis and homogenization of partial differential equations (PDE) posed on networks with application to traffic. Two types of work are done : the first line of work consists to consider microscopic traffic models in order to establish a connection between these models and macroscopic models like the one introduced by Imbert and Monneau [1]. Such connection allows to justify rigorously the macroscopic models of traffic. In fact, microscopic models describe the dynamic of each vehicle individually and so they are easy to justify from the modelization point of view. On the other hand, these models are complicated to implement in order to describe the traffic at large scales (cities for example). Macroscopic models do the opposite : they are effective for describing the traffic at large scales but from the modelization point of view, they are incapable to predict all traffic situations (for example free or congested flow). The passage from microscopic to macroscopic is done using the viscosity solutions theory and in particular homogenization technics. The second line of work consists to consider a Hamilton-Jacobi equation coupled by a junction condition which moves in time. This equation can describe the circulation of cars on a road with the presence of a particular vehicle (slower than the cars for example). We prove existence and uniqueness (by a comparison principle) of viscosity solution of this PDE. [1] Cyril Imbert and Régis Monneau. Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks. Annales Scientifiques de l’ENS, 50(2) :357–448, 2013.
|
59 |
Modélisations mathématiques de l’hématopoïèse et des maladies sanguines / Mathematical modelling of haematopoiesis and blood diseasesDemin, Ivan 11 December 2009 (has links)
Cette thèse est consacrée à la modélisation mathématique de l'hématopoïèse et des maladies sanguines. Plusieurs modèles traitant d'aspects différents et complémentaires de l'hématopoïèse y sont étudiés.Tout d'abord, un modèle multi-échelle de l'érythropoïèse est analysé, dans lequel sont décrits à la fois le réseau intracellulaire, qui détermine le comportement individuel des cellules, et la dynamique des populations de cellules. En utilisant des données expérimentales sur les souris, nous évaluons les rôles des divers mécanismes de retro-contrôle en réponse aux situations de stress.Ensuite, nous tenons compte de la distribution spatiale des cellules dans la moelle osseuse, question qui n'avait pas été étudiée auparavant. Nous décrivons l'hématopoïèse normale à l'aide d'un système d'équations de réaction-diffusion-convection et nous démontrons l'existence d'une distribution stationnaire des cellules. Puis, nous introduisons dans le modèle les cellules malignes. Pour certaines valeurs des paramètres, la solution "disease-free" devient instable et une autre solution, qui correspond à la leucémie, apparaît. Cela mène à la formation d'une tumeur qui se propage dans la moelle osseuse comme une onde progressive. La vitesse de cette propagation est étudiée analytiquement et numériquement. Les cellules de la moelle osseuse échangent des signaux qui régulent le comportement cellulaire. Nous étudions ensuite une équation integro-différentielle qui décrit la communication cellulaire et nous prouvons l'existence d'une solution du type onde progressive en utilisant la théorie du degré topologique et la méthode de Leray et Schauder. L'approche multi-agent est utilisée afin d'étudier la distribution des différents types de cellules dans la moelle osseuse.Finalement, nous étudions un modèle de type "Physiologically Based Pharmacokinetics-Pharmacodynamics" du traitement de la leucémie par l'AraC. L'AraC agit comme chimiothérapie et induit l'apoptose de toutes les cellules proliférantes, saines et malignes. La pharmacocinétique donne accès à la concentration intracellulaire d'AraC. Cette dernière, à son tour, détermine la dynamique des populations cellulaires et, par conséquent, l'efficacité de différents protocoles de traitement. / This PhD thesis is devoted to mathematical modelling of haematopoiesis and blood diseases. We investigate several models, which deal with different and complementary aspects of haematopoiesis.The first part of the thesis concerns a multi-scale model of erythropoiesis where intracellular regulatory networks, which determine cell choice between self-renewal, differentiation and apoptosis, are coupled with dynamics of cell populations. Using experimental data on anemia in mice, we evaluate the roles of different feedback mechanisms in response to stress situations. At the next stage of modelling, spatial cell distribution in the bone marrow is taken into account, the question which has not been studied before. We describe normal haematopoiesis with a system of reaction-diffusion-convection equations and prove existence of a stationary cell distribution. We then introduce malignant cells into the model. For some parameter values the disease free solution becomes unstable and another one, which corresponds to leukaemia, appears. This leads to the formation of tumour which spreads in the bone marrow as a travelling wave. The speed of its propagation is studied analytically and numerically. Bone marrow cells exchange different signals that regulate cell behaviour. We study, next, an integro-differential equation which describes cell communication and prove the existence of travelling wave solutions using topological degree and the Leray-Schauder method. Individual based approach is used to study distribution of different cell types in the bone marrow. Finally, we investigate a Physiologically Based Pharmacokinetics-Pharmacodynamics model of leukaemia treatment with AraC drug. AraC acts as chemotherapy, inducing apoptosis of all proliferating cells, normal and malignant. Pharmacokinetics provides the evolution of intracellular AraC. This, in turn, determines cell population dynamics and, consequently, efficacy of treatment with different protocols.
|
60 |
Software pro biometrické rozpoznávání duhovky lidského oka / Software for Biometric Recognition of a Human Eye IrisMaruniak, Lukáš January 2015 (has links)
In my thesis, I focus on the task of recognizing human iris from an image.In the beginning, the work deals with a question of biometrics, its importance and basic concepts, which are necessary for use in following text. Subsequently process of human Iris detection is described together with theory of evolution algorithms. In the implementation part, is described the design of implemented solution, which uses evolution algorithms, where is emphasis on correct pupil and iris boundary detection.
|
Page generated in 0.0358 seconds