Spelling suggestions: "subject:"levy""
171 |
厚尾分配在財務與精算領域之應用 / Applications of Heavy-Tailed distributions in finance and actuarial science劉議謙, Liu, I Chien Unknown Date (has links)
本篇論文將厚尾分配(Heavy-Tailed Distribution)應用在財務及保險精算上。本研究主要有三個部分:第一部份是用厚尾分配來重新建構Lee-Carter模型(1992),發現改良後的Lee-Carter模型其配適與預測效果都較準確。第二部分是將厚尾分配建構於具有世代因子(Cohort Factor)的Renshaw and Haberman模型(2006)中,其配適及預測效果皆有顯著改善,此外,針對英格蘭及威爾斯(England and Wales)訂價長壽交換(Longevity Swaps),結果顯示此模型可以支付較少的長壽交換之保費以及避免低估損失準備金。第三部分是財務上的應用,利用Schmidt等人(2006)提出的多元仿射廣義雙曲線分配(Multivariate Affine Generalized Hyperbolic Distributions; MAGH)於Boyle等人(2003)提出的低偏差網狀法(Low Discrepancy Mesh; LDM)來定價多維度的百慕達選擇權。理論上,LDM法的數值會高於Longstaff and Schwartz(2001)提出的最小平方法(Least Square Method; LSM)的數值,而數值分析結果皆一致顯示此性質,藉由此特性,我們可知道多維度之百慕達選擇權的真值落於此範圍之間。 / The thesis focus on the application of heavy-tailed distributions in finance and actuarial science. We provide three applications in this thesis. The first application is that we refine the Lee-Carter model (1992) with heavy-tailed distributions. The results show that the Lee-Carter model with heavy-tailed distributions provide better fitting and prediction. The second application is that we also model the error term of Renshaw and Haberman model (2006) using heavy-tailed distributions and provide an iterative fitting algorithm to generate maximum likelihood estimates under the Cox regression model. Using the RH model with non-Gaussian innovations can pay lower premiums of longevity swaps and avoid the underestimation of loss reserves for England and Wales. The third application is that we use multivariate affine generalized hyperbolic (MAGH) distributions introduced by Schmidt et al. (2006) and low discrepancy mesh (LDM) method introduced by Boyle et al. (2003), to show how to price multidimensional Bermudan derivatives. In addition, the LDM estimates are higher than the corresponding estimates from the Least Square Method (LSM) of Longstaff and Schwartz (2001). This is consistent with the property that the LDM estimate is high bias while the LSM estimate is low bias. This property also ensures that the true option value will lie between these two bounds.
|
172 |
Modelagem de séries temporais financeiras multidimensionais via processos estocásticos e cópulas de Lévy / Multidimensional Financial Time Series Modelling via Lévy Stochastic Processes and CopulasEdson Bastos e Santos 16 December 2005 (has links)
O principal objetivo deste estudo é descrever modelos para séries temporais de ativos financeiros que sejam robustos às tradicionais hipóteses: distribuição gaussiana e continuidade. O primeiro capítulo está preocupado em apresentar, de uma maneira geral, os conceitos matemáticos mais importantes relacionadas a processos estocásticos e difusões. O segundo capítulo trata de processos de incrementos independentes e estacionários, i.e., processos de Lévy, suas trajetórias estocásticas, propriedades distribucionais e, a relação entre processos markovianos e martingales. Alguns dos resultados apresentados neste capítulo são: a estrutura e as propriedades dos processos compostos de Poisson, medida de Lévy, decomposição de Lévy-Itô e representação de Lévy-Khinchin. O terceiro capítulo mostra como construir processos de Lévy por meio de transformações lineares, inclinação da medida de Lévy e subordina ção. Uma atenção especial é dada aos processos subordinados, tais como os modelos variância gama, normal gaussiana invertida e hiperbólico generalizado. Neste capítulo também é apresentado um exemplo pragmático com dados brasileiros de estimação de parâmetros por meio do método de máxima Verossimilhança. O quarto capítulo é devotado aos modelos multidimensionais e, introduz os conceito de cópula ordinária e de Lévy. Mostra-se que é possível caracterizar a dependência entre os componentes de um processo de Lévy multidimensional por meio da cópula de Lévy. Entre os resultados apresentados estão as generalizações do teorema de Sklar e a família de cópulas de Arquimedes aos processos de Lévy. Este capítulo também apresenta alguns exemplos que utilizam métodos de Monte Carlo, para simular processos de Lévy bidimensionais. / The main objective of this study is to describe models for financial assets time series that are robust to the traditional hypothesis: gaussian distributed and continuity. The first chapter are devoted to introduce the most important mathematical tools related to difusions and stochastic processes in general. The second chapter is concerned in the study of independent and stationary increments, i.e., Lévy processes, their sample paths behavior, distributional properties, and the relation to Markov and martingales processes. Some of the results presented are the structure and properties of a compound Poisson processes, Lévy measure, Lévy-Itô decomposition and Lévy-Khinchin representation. The third chapter demonstrates how to construct Lévy processes via linear transformation, tempering the Lévy measure and subordination. A special attention is given to several types of subordinated processes, comprising the variance gamma, the normal inverse gaussian and the generalized hyperbolic models. A pragmatic example of parameter estimation for brazilian data using the method of maximum likelihood is also given. Chapter four is devoted to multidimensional models, which introduces the notion of ordinary and Lévy copulas. It is shown that modelling via Lévy copula it is possible to characterize the dependence among components of multidimensional Lévy processes. Some of the results presented are generalizations of the Sklars theorem and the Archmedian family of copulas for Lévy processes. This chapter also presents some examples using Monte Carlo methods for simulating bidimensional Lévy processes.
|
173 |
Problèmes de switching optimal, équations différentielles stochastiques rétrogrades et équations différentielles partielles intégrales. / Multi-modes switching problem, backward stochastic differential equations and partial differential equationsZhao, Xuzhe 30 September 2014 (has links)
Cette thèse est composée de trois parties. Dans la première nous montrons l'existence et l'unicité de la solution continue et à croissance polynomiale, au sensviscosité, du système non linéaire de m équations variationnelles de type intégro-différentiel à obstacles unilatéraux interconnectés. Ce système est lié au problème du switching optimal stochastique lorsque le bruit est dirigé par un processus de Lévy. Un cas particulier du système correspond en effet à l’équation d’Hamilton-Jacobi-Bellman associé au problème du switching et la solution de ce système n’est rien d’autre que la fonction valeur du problème. Ensuite, nous étudions un système d’équations intégro-différentielles à obstacles bilatéraux interconnectés. Nous montrons l’existence et l’unicité des solutions continus à croissance polynomiale, au sens viscosité, des systèmes min-max et max-min. La démarche conjugue les systèmes d’EDSR réfléchies ainsi que la méthode de Perron. Dans la dernière partie nous montrons l’égalité des solutions des systèmes max-min et min-max d’EDP lorsque le bruit est uniquement de type diffusion. Nous montrons que si les coûts de switching sont assez réguliers alors ces solutions coïncident. De plus elles sont caractérisées comme fonction valeur du jeu de switching de somme nulle. / There are three main results in this thesis. The first is existence and uniqueness of the solution in viscosity sense for a system of nonlinear m variational integral-partial differential equations with interconnected obstacles. From the probabilistic point of view, this system is related to optimal stochastic switching problem when the noise is driven by a Lévy process. As a by-product we obtain that the value function of the switching problem is continuous and unique solution of its associated Hamilton-Jacobi-Bellman system of equations. Next, we study a general class of min-max and max-min nonlinear second-order integral-partial variational inequalities with interconnected bilateralobstacles, related to a multiple modes zero-sum switching game with jumps. Using Perron’s method and by the help of systems of penalized unilateral reflected backward SDEs with jumps, we construct a continuous with polynomial growth viscosity solution, and a comparison result yields the uniqueness of the solution. At last, we deal with the solutions of systems of PDEs with bilateral inter-connected obstacles of min-max and max-min types in the Brownian framework. These systems arise naturally in stochastic switching zero-sum game problems. We show that when the switching costs of one side are smooth, the solutions of the min-max and max-min systems coincide. Furthermore, this solution is identified as the value function of the zero-sum switching game.
|
174 |
Lévy-Type Processes under Uncertainty and Related Nonlocal EquationsHollender, Julian 12 October 2016 (has links)
The theoretical study of nonlinear expectations is the focus of attention for applications in a variety of different fields — often with the objective to model systems under incomplete information. Especially in mathematical finance, advances in the theory of sublinear expectations (also referred to as coherent risk measures) lay the theoretical foundation for modern approaches to evaluations under the presence of Knightian uncertainty. In this book, we introduce and study a large class of jump-type processes for sublinear expectations, which can be interpreted as Lévy-type processes under uncertainty in their characteristics. Moreover, we establish an existence and uniqueness theory for related nonlinear, nonlocal Hamilton-Jacobi-Bellman equations with non-dominated jump terms.
|
175 |
Some Applications of Markov Additive Processes as Models in Insurance and Financial MathematicsBen Salah, Zied 07 1900 (has links)
No description available.
|
176 |
On the design of customized risk measures in insurance, the problem of capital allocation and the theory of fluctuations for Lévy processesOmidi Firouzi, Hassan 12 1900 (has links)
No description available.
|
177 |
Stochastic Control, Optimal Saving, and Job Search in Continuous TimeSennewald, Ken 13 November 2007 (has links)
Economic uncertainty may affect significantly people’s behavior and hence macroeconomic variables. It is thus important to understand how people behave in presence of different kinds of economic risk. The present dissertation focuses therefore on the impact of the uncertainty in capital and labor income on the individual saving behavior. The underlying uncertain variables are here modeled as stochastic processes that each obey a specific stochastic differential equation, where uncertainty stems either from Poisson or Lévy processes. The results on the optimal behavior are derived by maximizing the individual expected lifetime utility. The first chapter is concerned with the necessary mathematical tools, the change-of-variables formula and the Hamilton-Jacobi-Bellman equation under Poisson uncertainty. We extend their possible field of application in order make them appropriate for the analysis of the dynamic stochastic optimization problems occurring in the following chapters and elsewhere. The second chapter considers an optimum-saving problem with labor income, where capital risk stems from asset prices that follow geometric L´evy processes. Chapter 3, finally, studies the optimal saving behavior if agents face not only risk but also uncertain spells of unemployment. To this end, we turn back to Poisson processes, which here are used to model properly the separation and matching process.
|
178 |
Moments of the Ruin Time in a Lévy Risk ModelStrietzel, Philipp Lukas, Behme, Anita 08 April 2024 (has links)
We derive formulas for the moments of the ruin time in a Lévy risk model and use these to determine the asymptotic behavior of the moments of the ruin time as the initial capital tends to infinity. In the special case of the perturbed Cramér-Lundberg model with phase-type or even exponentially distributed claims, we explicitly compute the first two moments of the ruin time. All our considerations distinguish between the profitable and the unprofitable setting.
|
179 |
Drift estimation for jump diffusions / time-continuous and high-frequency observationsMai, Hilmar 08 October 2012 (has links)
Das Ziel dieser Arbeit ist die Entwicklung eines effizienten parametrischen Schätzverfahrens für den Drift einer durch einen Lévy-Prozess getriebenen Sprungdiffusion. Zunächst werden zeit-stetige Beobachtungen angenommen und auf dieser Basis eine Likelihoodtheorie entwickelt. Dieser Schritt umfasst die Frage nach lokaler Äquivalenz der zu verschiedenen Parametern auf dem Pfadraum induzierten Maße. Wir diskutieren in dieser Arbeit Schätzer für Prozesse vom Ornstein-Uhlenbeck-Typ, Cox-Ingersoll-Ross Prozesse und Lösungen linearer stochastischer Differentialgleichungen mit Gedächtnis im Detail und zeigen starke Konsistenz, asymptotische Normalität und Effizienz im Sinne von Hájek und Le Cam für den Likelihood-Schätzer. In Sprungdiffusionsmodellen ist die Likelihood-Funktion eine Funktion des stetigen Martingalanteils des beobachteten Prozesses, der im Allgemeinen nicht direkt beobachtet werden kann. Wenn nun nur Beobachtungen an endlich vielen Zeitpunkten gegeben sind, so lässt sich der stetige Anteil der Sprungdiffusion nur approximativ bestimmen. Diese Approximation des stetigen Anteils ist ein zentrales Thema dieser Arbeit und es wird uns auf das Filtern von Sprüngen führen. Der zweite Teil dieser Arbeit untersucht die Schätzung der Drifts, wenn nur diskrete Beobachtungen gegeben sind. Dabei benutzen wir die Likelihood-Schätzer aus dem ersten Teil und approximieren den stetigen Martingalanteil durch einen sogenannten Sprungfilter. Wir untersuchen zuerst den Fall endlicher Aktivität und zeigen, dass die Driftschätzer im Hochfrequenzlimes die effiziente asymptotische Verteilung erreichen. Darauf aufbauend beweisen wir dann im Falle unendlicher Sprungaktivität asymptotische Effizienz für den Driftschätzer im Ornstein-Uhlenbeck Modell. Im letzten Teil werden die theoretischen Ergebnisse für die Schätzer auf endlichen Stichproben aus simulierten Daten geprüft und es zeigt sich, dass das Sprungfiltern zu einem deutlichen Effizienzgewinn führen. / The problem of parametric drift estimation for a a Lévy-driven jump diffusion process is considered in two different settings: time-continuous and high-frequency observations. The goal is to develop explicit maximum likelihood estimators for both observation schemes that are efficient in the Hájek-Le Cam sense. The likelihood function based on time-continuous observations can be derived explicitly for jump diffusion models and leads to explicit maximum likelihood estimators for several popular model classes. We consider Ornstein-Uhlenbeck type, square-root and linear stochastic delay differential equations driven by Lévy processes in detail and prove strong consistency, asymptotic normality and efficiency of the likelihood estimators in these models. The appearance of the continuous martingale part of the observed process under the dominating measure in the likelihood function leads to a jump filtering problem in this context, since the continuous part is usually not directly observable and can only be approximated and the high-frequency limit. In the second part of this thesis the problem of drift estimation for discretely observed processes is considered. The estimators are constructed from discretizations of the time-continuous maximum likelihood estimators from the first part, where the continuous martingale part is approximated via a thresholding technique. We are able to proof that even in the case of infinite activity jumps of the driving Lévy process the estimator is asymptotically normal and efficient under weak assumptions on the jump behavior. Finally, the finite sample behavior of the estimators is investigated on simulated data. We find that the maximum likelihood approach clearly outperforms the least squares estimator when jumps are present and that the efficiency gap between both techniques becomes even more severe with growing jump intensity.
|
180 |
Stochastické modely ve finanční matematice / Stochastic Models in Financial MathematicsWaczulík, Oliver January 2016 (has links)
Title: Stochastic Models in Financial Mathematics Author: Bc. Oliver Waczulík Department: Department of Probability and Mathematical Statistics Supervisor: doc. RNDr. Jan Hurt, CSc., Department of Probability and Mathe- matical Statistics Abstract: This thesis looks into the problems of ordinary stochastic models used in financial mathematics, which are often influenced by unrealistic assumptions of Brownian motion. The thesis deals with and suggests more sophisticated alternatives to Brownian motion models. By applying the fractional Brownian motion we derive a modification of the Black-Scholes pricing formula for a mixed fractional Bro- wnian motion. We use Lévy processes to introduce subordinated stable process of Ornstein-Uhlenbeck type serving for modeling interest rates. We present the calibration procedures for these models along with a simulation study for estima- tion of Hurst parameter. To illustrate the practical use of the models introduced in the paper we have used real financial data and custom procedures program- med in the system Wolfram Mathematica. We have achieved almost 90% decline in the value of Kolmogorov-Smirnov statistics by the application of subordinated stable process of Ornstein-Uhlenbeck type for the historical values of the monthly PRIBOR (Prague Interbank Offered Rate) rates in...
|
Page generated in 0.0325 seconds