• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 14
  • 12
  • 8
  • 7
  • Tagged with
  • 111
  • 111
  • 77
  • 46
  • 37
  • 28
  • 23
  • 21
  • 20
  • 19
  • 19
  • 16
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Two and Three-Dimensional Finite Element Analysis of Plasticity-Induced Fatigue Crack Closure: A Comprehensive Parametric Study

Solanki, Kiran N 13 December 2002 (has links)
Finite element analyses are frequently used to model growing fatigue cracks and the associated plasticity-induced crack closure. Two-dimensional, elastic-perfectly plastic finite element analyses of middle-crack tension (M(T)), bend (SEB), and compact tension (C(T)) geometries were conducted to study fatigue crack closure and to calculate the crack opening values under plane-strain and plane-stress conditions. The loading was selected to give the same maximum stress intensity factor in both geometries, and thus similar initial forward plastic zone sizes. Mesh refinement studies were performed on all geometries with various element types. For the C(T) geometry, negligible crack opening loads under plane-strain conditions were observed. In contrast, for the M(T) specimen, the plane-strain crack opening stresses were found to be significantly larger. This difference was shown to be a consequence of in-plane constraint. Under plane-stress conditions, it was found that the in-plane constraint has negligible effect, such that the opening values are approximately the same for the C(T), SEB, and M(T) specimens. Next, the crack opening values of the C(T), SEB and M(T) specimens were compared under various stress levels and load ratios. The effect of a highly refined mesh on crack opening values was noted and significantly lower crack opening values than those reported in literature were found. A new methodology is presented to calculate crack opening values in planar geometries using the crack surface nodal force distribution under minimum loading as determined from finite element analyses. The calculated crack opening values are compared with values obtained using finite element analysis and more conventional crack opening assessment methodologies. It is shown that the new method is independent of loading increment, integration method (normal and reduced integration), and crack opening assessment location. The compared opening values were in good agreement with strip-yield models.
102

Finite element modeling of electromagnetic radiation and induced heat transfer in the human body

Kim, Kyungjoo 24 September 2013 (has links)
This dissertation develops adaptive hp-Finite Element (FE) technology and a parallel sparse direct solver enabling the accurate modeling of the absorption of Electro-Magnetic (EM) energy in the human head. With a large and growing number of cell phone users, the adverse health effects of EM fields have raised public concerns. Most research that attempts to explain the relationship between exposure to EM fields and its harmful effects on the human body identifies temperature changes due to the EM energy as the dominant source of possible harm. The research presented here focuses on determining the temperature distribution within the human body exposed to EM fields with an emphasis on the human head. Major challenges in accurately determining the temperature changes lie in the dependence of EM material properties on the temperature. This leads to a formulation that couples the BioHeat Transfer (BHT) and Maxwell equations. The mathematical model is formed by the time-harmonic Maxwell equations weakly coupled with the transient BHT equation. This choice of equations reflects the relevant time scales. With a mobile device operating at a single frequency, EM fields arrive at a steady-state in the micro-second range. The heat sources induced by EM fields produce a transient temperature field converging to a steady-state distribution on a time scale ranging from seconds to minutes; this necessitates the transient formulation. Since the EM material properties depend upon the temperature, the equations are fully coupled; however, the coupling is realized weakly due to the different time scales for Maxwell and BHT equations. The BHT equation is discretized in time with a time step reflecting the thermal scales. After multiple time steps, the temperature field is used to determine the EM material properties and the time-harmonic Maxwell equations are solved. The resulting heat sources are recalculated and the process continued. Due to the weak coupling of the problems, the corresponding numerical models are established separately. The BHT equation is discretized with H¹ conforming elements, and Maxwell equations are discretized with H(curl) conforming elements. The complexity of the human head geometry naturally leads to the use of tetrahedral elements, which are commonly employed by unstructured mesh generators. The EM domain, including the head and a radiating source, is terminated by a Perfectly Matched Layer (PML), which is discretized with prismatic elements. The use of high order elements of different shapes and discretization types has motivated the development of a general 3D hp-FE code. In this work, we present new generic data structures and algorithms to perform adaptive local refinements on a hybrid mesh composed of different shaped elements. A variety of isotropic and anisotropic refinements that preserve conformity of discretization are designed. The refinement algorithms support one- irregular meshes with the constrained approximation technique. The algorithms are experimentally proven to be deadlock free. A second contribution of this dissertation lies with a new parallel sparse direct solver that targets linear systems arising from hp-FE methods. The new solver interfaces to the hierarchy of a locally refined mesh to build an elimination ordering for the factorization that reflects the h-refinements. By following mesh refinements, not only the computation of element matrices but also their factorization is restricted to new elements and their ancestors. The solver is parallelized by exploiting two-level task parallelism: tasks are first generated from a parallel post-order tree traversal on the assembly tree; next, those tasks are further refined by using algorithms-by-blocks to gain fine-grained parallelism. The resulting fine-grained tasks are asynchronously executed after their dependencies are analyzed. This approach effectively reduces scheduling overhead and increases flexibility to handle irregular tasks. The solver outperforms the conventional general sparse direct solver for a class of problems formulated by high order FEs. Finally, numerical results for a 3D coupled BHT with Maxwell equations are presented. The solutions of this Maxwell code have been verified using the analytic Mie series solutions. Starting with simple spherical geometry, parametric studies are conducted on realistic head models for a typical frequency band (900 MHz) of mobile phones. / text
103

Nouvelle technique de grilles imbriquées pour les équations de Saint-Venant 2D / New nested grids technique for 2D shallow water equations

Altaie, Huda 17 December 2018 (has links)
Les écoulements en eau peu profonde se rencontrent dans de nombreuses situations d’intérêts : écoulements de rivières et dans les lacs, mais aussi dans les mers et océans (courants de marée, tsunami, etc.). Ils sont modélisés par un système d’équations aux dérivées partielles, où les inconnues sont la vitesse de l’écoulement et la hauteur d’eau. On peut supposer que la composante verticale de la vitesse est petite devant les composantes horizontales et que ces dernières sont indépendantes de la profondeur. Le modèle est alors donné par les équations de shallow water (SWEs). Cette thèse se concentre sur la conception d’une nouvelle technique d’interaction de plusieurs grilles imbriquées pour modèle en eau peu profonde en utilisant des méthodes numériques. La première partie de cette thèse comprend, La dérivation complète de ces équations à partir des équations de Navier- Stokes est expliquée. Etudier le développement et l’évaluation des méthodes numériques en utilisant des méthodes de différences finies et plusieurs exemples numériques sont appliqués utilisant la condition initiale du niveau gaussien pour 2DSWEs. Dans la deuxième partie de la thèse, nous sommes intéressés à proposer une nouvelle technique d’interaction de plusieurs grilles imbriquées pour résoudre les modèles océaniques en utilisant quatre choix des opérateurs de restriction avec des résultats de haute précision. Notre travail s’est concentré sur la résolution numérique de SWE par grilles imbriquées. A chaque niveau de résolution, nous avons utilisé une méthode classique de différences finies sur une grille C d’Arakawa, avec un schéma de leapfrog complété par un filtre d’Asselin. Afin de pouvoir affiner les calculs dans les régions perturbées et de les alléger dans les zones calmes, nous avons considéré plusieurs niveaux de résolution en utilisant des grilles imbriquées. Ceci permet d’augmenter considérablement le rapport performance de la méthode, à condition de régler efficacement les interactions (spatiales et temporelles) entre les grilles. Dans la troisième partie de cette thèse, plusieurs exemples numéériques sont testés pour 2DSWE avec imbriqués 3:1 et 5:1. Finalement, la quatrième partie de ce travail, certaines applications de grilles imbriquées pour le modèle tsunami sont présentées. / Most flows in the rivers, seas, and ocean are shallow water flow in which the horizontal length andvelocity scales are much larger than the vertical ones. The mathematical formulation of these flows, so called shallow water equations (SWEs). These equations are a system of hyperbolic partial differentialequations and they are effective for many physical phenomena in the oceans, coastal regions, riversand canals. This thesis focuses on the design of a new two-way interaction technique for multiple nested grids 2DSWEs using the numerical methods. The first part of this thesis includes, proposing several ways to develop the derivation of shallow water model. The complete derivation of this system from Navier-Stokes equations is explained. Studying the development and evaluation of numerical methods by suggesting new spatial and temporal discretization techniques in a standard C-grid using an explicit finite difference method in space and leapfrog with Robert-Asselin filter in time which are effective for modeling in oceanic and atmospheric flows. Several numerical examples for this model using Gaussian level initial condition are implemented in order to validate the efficiency of the proposed method. In the second part of our work, we are interested to propose a new two-way interaction technique for multiple nested grids to solve ocean models using four choices of higher restriction operators (update schemes) for the free surface elevation and velocities with high accuracy results. Our work focused on the numerical resolution of SWEs by nested grids. At each level of resolution, we used explicit finite differences methods on Arakawa C-grid. In order to be able to refine the calculations in troubled regions and move them into quiet areas, we have considered several levels of resolution using nested grids. This makes it possible to considerably increase the performance ratio of the method, provided that the interactions (spatial and temporal) between the grids are effectively controlled. In the third part of this thesis, several numerical examples are tested to show and verify twoway interaction technique for multiple nested grids of shallow water models can works efficiently over different periods of time with nesting 3:1 and 5:1 at multiple levels. Some examples for multiple nested grids of the tsunami model with nesting 5:1 using moving boundary conditions are tested in the fourth part of this work.
104

Adaptive Netzverfeinerung in der Formoptimierung mit der Methode der Diskreten Adjungierten

Günnel, Andreas 22 January 2010 (has links)
Formoptimierung bezeichnet die Bestimmung der Geometrischen Gestalt eines Gebietes auf dem eine partielle Differentialgleichung (PDE) wirkt, sodass bestimmte gegebene Zielgrößen, welche von der Lösung der PDE abhängen, Extrema annehmen. Bei der Diskret Adjungierten Methode wird der Gradient einer Zielgröße bezüglich einer beliebigen Anzahl von Formparametern mit Hilfe der Lösung einer adjungierten Gleichung der diskretisierten PDE effizient ermittelt. Dieser Gradient wird dann in Verfahren der numerischen Optimierung verwendet um eine optimale Lösung zu suchen. Da sowohl die Zielgröße als auch der Gradient für die diskretisierte PDE ermittelt werden, sind beide zunächst vom verwendeten Netz abhängig. Bei groben Netzen sind sogar Unstetigkeiten der diskreten Zielfunktion zu erwarten, wenn bei Änderungen der Formparameter sich das Netz unstetig ändert (z.B. Änderung Anzahl Knoten, Umschalten der Konnektivität). Mit zunehmender Feinheit der Netze verschwinden jedoch diese Unstetigkeiten aufgrund der Konvergenz der Diskretisierung. Da im Zuge der Formoptimierung Zielgröße und Gradient für eine Vielzahl von Iterierten der Lösung bestimmt werden müssen, ist man bestrebt die Kosten einer einzelnen Auswertung möglichst gering zu halten, z.B. indem man mit nur moderat feinen oder adaptiv verfeinerten Netzen arbeitet. Aufgabe dieser Diplomarbeit ist es zu untersuchen, ob mit gängigen Methoden adaptiv verfeinerte Netze hinreichende Genauigkeit der Auswertung von Zielgröße und Gradient erlauben und ob eventuell Anpassungen der Optimierungsstrategie an die adaptive Vernetzung notwendig sind. Für die Untersuchungen sind geeignete Modellprobleme aus der Festigkeitslehre zu wählen und zu untersuchen. / Shape optimization describes the determination of the geometric shape of a domain with a partial differential equation (PDE) with the purpose that a specific given performance function is minimized, its values depending on the solution of the PDE. The Discrete Adjoint Method can be used to evaluate the gradient of a performance function with respect to an arbitrary number of shape parameters by solving an adjoint equation of the discretized PDE. This gradient is used in the numerical optimization algorithm to search for the optimal solution. As both function value and gradient are computed for the discretized PDE, they both fundamentally depend on the discretization. In using the coarse meshes, discontinuities in the discretized objective function can be expected if the changes in the shape parameters cause discontinuous changes in the mesh (e.g. change in the number of nodes, switching of connectivity). Due to the convergence of the discretization these discontinuities vanish with increasing fineness of the mesh. In the course of shape optimization, function value and gradient require evaluation for a large number of iterations of the solution, therefore minimizing the costs of a single computation is desirable (e.g. using moderately or adaptively refined meshes). Overall, the task of the diploma thesis is to investigate if adaptively refined meshes with established methods offer sufficient accuracy of the objective value and gradient, and if the optimization strategy requires readjustment to the adaptive mesh design. For the investigation, applicable model problems from the science of the strength of materials will be chosen and studied.
105

Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods

Hellwig, Friederike 12 June 2019 (has links)
Die vorliegende Arbeit "Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods" beweist optimale Konvergenzraten für vier diskontinuierliche Petrov-Galerkin (dPG) Finite-Elemente-Methoden für das Poisson-Modell-Problem für genügend feine Anfangstriangulierung. Sie zeigt dazu die Äquivalenz dieser vier Methoden zu zwei anderen Klassen von Methoden, den reduzierten gemischten Methoden und den verallgemeinerten Least-Squares-Methoden. Die erste Klasse benutzt ein gemischtes System aus konformen Courant- und nichtkonformen Crouzeix-Raviart-Finite-Elemente-Funktionen. Die zweite Klasse verallgemeinert die Standard-Least-Squares-Methoden durch eine Mittelpunktsquadratur und Gewichtsfunktionen. Diese Arbeit verallgemeinert ein Resultat aus [Carstensen, Bringmann, Hellwig, Wriggers 2018], indem die vier dPG-Methoden simultan als Spezialfälle dieser zwei Klassen charakterisiert werden. Sie entwickelt alternative Fehlerschätzer für beide Methoden und beweist deren Zuverlässigkeit und Effizienz. Ein Hauptresultat der Arbeit ist der Beweis optimaler Konvergenzraten der adaptiven Methoden durch Beweis der Axiome aus [Carstensen, Feischl, Page, Praetorius 2014]. Daraus folgen dann insbesondere die optimalen Konvergenzraten der vier dPG-Methoden. Numerische Experimente bestätigen diese optimalen Konvergenzraten für beide Klassen von Methoden. Außerdem ergänzen sie die Theorie durch ausführliche Vergleiche beider Methoden untereinander und mit den äquivalenten dPG-Methoden. / The thesis "Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods" proves optimal convergence rates for four lowest-order discontinuous Petrov-Galerkin methods for the Poisson model problem for a sufficiently small initial mesh-size in two different ways by equivalences to two other non-standard classes of finite element methods, the reduced mixed and the weighted Least-Squares method. The first is a mixed system of equations with first-order conforming Courant and nonconforming Crouzeix-Raviart functions. The second is a generalized Least-Squares formulation with a midpoint quadrature rule and weight functions. The thesis generalizes a result on the primal discontinuous Petrov-Galerkin method from [Carstensen, Bringmann, Hellwig, Wriggers 2018] and characterizes all four discontinuous Petrov-Galerkin methods simultaneously as particular instances of these methods. It establishes alternative reliable and efficient error estimators for both methods. A main accomplishment of this thesis is the proof of optimal convergence rates of the adaptive schemes in the axiomatic framework [Carstensen, Feischl, Page, Praetorius 2014]. The optimal convergence rates of the four discontinuous Petrov-Galerkin methods then follow as special cases from this rate-optimality. Numerical experiments verify the optimal convergence rates of both types of methods for different choices of parameters. Moreover, they complement the theory by a thorough comparison of both methods among each other and with their equivalent discontinuous Petrov-Galerkin schemes.
106

Modélisation et Simulation des Ecoulements Compressibles par la Méthode des Eléments Finis Galerkin Discontinus / Modeling and Simulation of Compressible Flows with Galerkin Finite Elements Methods

Gokpi, Kossivi 28 February 2013 (has links)
L’objectif de ce travail de thèse est de proposer la Méthodes des éléments finis de Galerkin discontinus (DGFEM) à la discrétisation des équations compressibles de Navier-Stokes. Plusieurs challenges font l’objet de ce travail. Le premier aspect a consisté à montrer l’ordre de convergence optimal de la méthode DGFEM en utilisant les polynômes d’interpolation d’ordre élevé. Le deuxième aspect concerne l’implémentation de méthodes de ‘‘shock-catpuring’’ comme les limiteurs de pentes et les méthodes de viscosité artificielle pour supprimer les oscillations numériques engendrées par l’ordre élevé (lorsque des polynômes d’interpolation de degré p>0 sont utilisés) dans les écoulements transsoniques et supersoniques. Ensuite nous avons implémenté des estimateurs d’erreur a posteriori et des procédures d ’adaptation de maillages qui permettent d’augmenter la précision de la solution et la vitesse de convergence afin d’obtenir un gain de temps considérable. Finalement, nous avons montré la capacité de la méthode DG à donner des résultats corrects à faibles nombres de Mach. Lorsque le nombre de Mach est petit pour les écoulements compressibles à la limite de l’incompressible, la solution souffre généralement de convergence et de précision. Pour pallier ce problème généralement on procède au préconditionnement qui modifie les équations d’Euler. Dans notre cas, les équations ne sont pas modifiées. Dans ce travail, nous montrons la précision et la robustesse de méthode DG proposée avec un schéma en temps implicite de second ordre et des conditions de bords adéquats. / The aim of this thesis is to deal with compressible Navier-Stokes flows discretized by Discontinuous Galerkin Finite Elements Methods. Several aspects has been considered. One is to show the optimal convergence of the DGFEM method when using high order polynomial. Second is to design shock-capturing methods such as slope limiters and artificial viscosity to suppress numerical oscillation occurring when p>0 schemes are used. Third aspect is to design an a posteriori error estimator for adaptive mesh refinement in order to optimize the mesh in the computational domain. And finally, we want to show the accuracy and the robustness of the DG method implemented when we reach very low mach numbers. Usually when simulating compressible flows at very low mach numbers at the limit of incompressible flows, there occurs many kind of problems such as accuracy and convergence of the solution. To be able to run low Mach number problems, there exists solution like preconditioning. This method usually modifies the Euler. Here the Euler equations are not modified and with a robust time scheme and good boundary conditions imposed one can have efficient and accurate results.
107

Direct guaranteed lower eigenvalue bounds with quasi-optimal adaptive mesh-refinement

Puttkammer, Sophie Louise 19 January 2024 (has links)
Garantierte untere Eigenwertschranken (GLB) für elliptische Eigenwertprobleme partieller Differentialgleichungen sind in der Theorie sowie in praktischen Anwendungen relevant. Auf Grund des Rayleigh-Ritz- (oder) min-max-Prinzips berechnen alle konformen Finite-Elemente-Methoden (FEM) garantierte obere Schranken. Ein Postprocessing nichtkonformer Methoden von Carstensen und Gedicke (Math. Comp., 83.290, 2014) sowie Carstensen und Gallistl (Numer. Math., 126.1, 2014) berechnet GLB. In diesen Schranken ist die maximale Netzweite ein globaler Parameter, das kann bei adaptiver Netzverfeinerung zu deutlichen Unterschätzungen führen. In einigen numerischen Beispielen versagt dieses Postprocessing für lokal verfeinerte Netze komplett. Diese Dissertation präsentiert, inspiriert von einer neuen skeletal-Methode von Carstensen, Zhai und Zhang (SIAM J. Numer. Anal., 58.1, 2020), einerseits eine modifizierte hybrid-high-order Methode (m=1) und andererseits ein allgemeines Framework für extra-stabilisierte nichtkonforme Crouzeix-Raviart (m=1) bzw. Morley (m=2) FEM. Diese neuen Methoden berechnen direkte GLB für den m-Laplace-Operator, bei denen eine leicht überprüfbare Bedingung an die maximale Netzweite garantiert, dass der k-te diskrete Eigenwert eine untere Schranke für den k-ten Dirichlet-Eigenwert ist. Diese GLB-Eigenschaft und a priori Konvergenzraten werden für jede Raumdimension etabliert. Der neu entwickelte Ansatz erlaubt adaptive Netzverfeinerung, die für optimale Konvergenzraten auch bei nichtglatten Eigenfunktionen erforderlich ist. Die Überlegenheit der neuen adaptiven FEM wird durch eine Vielzahl repräsentativer numerischer Beispiele illustriert. Für die extra-stabilisierte GLB wird bewiesen, dass sie mit optimalen Raten gegen einen einfachen Eigenwert konvergiert, indem die Axiome der Adaptivität von Carstensen, Feischl, Page und Praetorius (Comput. Math. Appl., 67.6, 2014) sowie Carstensen und Rabus (SIAM J. Numer. Anal., 55.6, 2017) verallgemeinert werden. / Guaranteed lower eigenvalue bounds (GLB) for elliptic eigenvalue problems of partial differential equation are of high relevance in theory and praxis. Due to the Rayleigh-Ritz (or) min-max principle all conforming finite element methods (FEM) provide guaranteed upper eigenvalue bounds. A post-processing for nonconforming FEM of Carstensen and Gedicke (Math. Comp., 83.290, 2014) as well as Carstensen and Gallistl (Numer. Math., 126.1,2014) computes GLB. However, the maximal mesh-size enters as a global parameter in the eigenvalue bound and may cause significant underestimation for adaptive mesh-refinement. There are numerical examples, where this post-processing on locally refined meshes fails completely. Inspired by a recent skeletal method from Carstensen, Zhai, and Zhang (SIAM J. Numer. Anal., 58.1, 2020) this thesis presents on the one hand a modified hybrid high-order method (m=1) and on the other hand a general framework for an extra-stabilized nonconforming Crouzeix-Raviart (m=1) or Morley (m=2) FEM. These novel methods compute direct GLB for the m-Laplace operator in that a specific smallness assumption on the maximal mesh-size guarantees that the computed k-th discrete eigenvalue is a lower bound for the k-th Dirichlet eigenvalue. This GLB property as well as a priori convergence rates are established in any space dimension. The novel ansatz allows for adaptive mesh-refinement necessary to recover optimal convergence rates for non-smooth eigenfunctions. Striking numerical evidence indicates the superiority of the new adaptive eigensolvers. For the extra-stabilized nonconforming methods (a generalization of) known abstract arguments entitled as the axioms of adaptivity from Carstensen, Feischl, Page, and Praetorius (Comput. Math. Appl., 67.6, 2014) as well as Carstensen and Rabus (SIAM J. Numer. Anal., 55.6, 2017) allow to prove the convergence of the GLB towards a simple eigenvalue with optimal rates.
108

Development of High-order CENO Finite-volume Schemes with Block-based Adaptive Mesh Refinement (AMR)

Ivan, Lucian 31 August 2011 (has links)
A high-order central essentially non-oscillatory (CENO) finite-volume scheme in combination with a block-based adaptive mesh refinement (AMR) algorithm is proposed for solution of hyperbolic and elliptic systems of conservation laws on body- fitted multi-block mesh. The spatial discretization of the hyperbolic (inviscid) terms is based on a hybrid solution reconstruction procedure that combines an unlimited high-order k-exact least-squares reconstruction technique following from a fixed central stencil with a monotonicity preserving limited piecewise linear reconstruction algorithm. The limited reconstruction is applied to computational cells with under-resolved solution content and the unlimited k-exact reconstruction procedure is used for cells in which the solution is fully resolved. Switching in the hybrid procedure is determined by a solution smoothness indicator. The hybrid approach avoids the complexity associated with other ENO schemes that require reconstruction on multiple stencils and therefore, would seem very well suited for extension to unstructured meshes. The high-order elliptic (viscous) fluxes are computed based on a k-order accurate average gradient derived from a (k+1)-order accurate reconstruction. A novel h-refinement criterion based on the solution smoothness indicator is used to direct the steady and unsteady refinement of the AMR mesh. The predictive capabilities of the proposed high-order AMR scheme are demonstrated for the Euler and Navier-Stokes equations governing two-dimensional compressible gaseous flows as well as for advection-diffusion problems characterized by the full range of Peclet numbers, Pe. The ability of the scheme to accurately represent solutions with smooth extrema and yet robustly handle under-resolved and/or non-smooth solution content (i.e., shocks and other discontinuities) is shown for a range of problems. Moreover, the ability to perform mesh refinement in regions of smooth but under-resolved and/or non-smooth solution content to achieve the desired resolution is also demonstrated.
109

Development of High-order CENO Finite-volume Schemes with Block-based Adaptive Mesh Refinement (AMR)

Ivan, Lucian 31 August 2011 (has links)
A high-order central essentially non-oscillatory (CENO) finite-volume scheme in combination with a block-based adaptive mesh refinement (AMR) algorithm is proposed for solution of hyperbolic and elliptic systems of conservation laws on body- fitted multi-block mesh. The spatial discretization of the hyperbolic (inviscid) terms is based on a hybrid solution reconstruction procedure that combines an unlimited high-order k-exact least-squares reconstruction technique following from a fixed central stencil with a monotonicity preserving limited piecewise linear reconstruction algorithm. The limited reconstruction is applied to computational cells with under-resolved solution content and the unlimited k-exact reconstruction procedure is used for cells in which the solution is fully resolved. Switching in the hybrid procedure is determined by a solution smoothness indicator. The hybrid approach avoids the complexity associated with other ENO schemes that require reconstruction on multiple stencils and therefore, would seem very well suited for extension to unstructured meshes. The high-order elliptic (viscous) fluxes are computed based on a k-order accurate average gradient derived from a (k+1)-order accurate reconstruction. A novel h-refinement criterion based on the solution smoothness indicator is used to direct the steady and unsteady refinement of the AMR mesh. The predictive capabilities of the proposed high-order AMR scheme are demonstrated for the Euler and Navier-Stokes equations governing two-dimensional compressible gaseous flows as well as for advection-diffusion problems characterized by the full range of Peclet numbers, Pe. The ability of the scheme to accurately represent solutions with smooth extrema and yet robustly handle under-resolved and/or non-smooth solution content (i.e., shocks and other discontinuities) is shown for a range of problems. Moreover, the ability to perform mesh refinement in regions of smooth but under-resolved and/or non-smooth solution content to achieve the desired resolution is also demonstrated.
110

Adaptive least-squares finite element method with optimal convergence rates

Bringmann, Philipp 29 January 2021 (has links)
Die Least-Squares Finite-Elemente-Methoden (LSFEMn) basieren auf der Minimierung des Least-Squares-Funktionals, das aus quadrierten Normen der Residuen eines Systems von partiellen Differentialgleichungen erster Ordnung besteht. Dieses Funktional liefert einen a posteriori Fehlerschätzer und ermöglicht die adaptive Verfeinerung des zugrundeliegenden Netzes. Aus zwei Gründen versagen die gängigen Methoden zum Beweis optimaler Konvergenzraten, wie sie in Carstensen, Feischl, Page und Praetorius (Comp. Math. Appl., 67(6), 2014) zusammengefasst werden. Erstens scheinen fehlende Vorfaktoren proportional zur Netzweite den Beweis einer schrittweisen Reduktion der Least-Squares-Schätzerterme zu verhindern. Zweitens kontrolliert das Least-Squares-Funktional den Fehler der Fluss- beziehungsweise Spannungsvariablen in der H(div)-Norm, wodurch ein Datenapproximationsfehler der rechten Seite f auftritt. Diese Schwierigkeiten führten zu einem zweifachen Paradigmenwechsel in der Konvergenzanalyse adaptiver LSFEMn in Carstensen und Park (SIAM J. Numer. Anal., 53(1), 2015) für das 2D-Poisson-Modellproblem mit Diskretisierung niedrigster Ordnung und homogenen Dirichlet-Randdaten. Ein neuartiger expliziter residuenbasierter Fehlerschätzer ermöglicht den Beweis der Reduktionseigenschaft. Durch separiertes Markieren im adaptiven Algorithmus wird zudem der Datenapproximationsfehler reduziert. Die vorliegende Arbeit verallgemeinert diese Techniken auf die drei linearen Modellprobleme das Poisson-Problem, die Stokes-Gleichungen und das lineare Elastizitätsproblem. Die Axiome der Adaptivität mit separiertem Markieren nach Carstensen und Rabus (SIAM J. Numer. Anal., 55(6), 2017) werden in drei Raumdimensionen nachgewiesen. Die Analysis umfasst Diskretisierungen mit beliebigem Polynomgrad sowie inhomogene Dirichlet- und Neumann-Randbedingungen. Abschließend bestätigen numerische Experimente mit dem h-adaptiven Algorithmus die theoretisch bewiesenen optimalen Konvergenzraten. / The least-squares finite element methods (LSFEMs) base on the minimisation of the least-squares functional consisting of the squared norms of the residuals of first-order systems of partial differential equations. This functional provides a reliable and efficient built-in a posteriori error estimator and allows for adaptive mesh-refinement. The established convergence analysis with rates for adaptive algorithms, as summarised in the axiomatic framework by Carstensen, Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6), 2014), fails for two reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size, what seemingly prevents a reduction under mesh-refinement. Second, the first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm and, thus, involve a data resolution error of the right-hand side f. These difficulties led to a twofold paradigm shift in the convergence analysis with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1), 2015) for the lowest-order discretisation of the 2D Poisson model problem with homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-based a posteriori error estimator accomplishes the reduction property. Furthermore, a separate marking strategy in the adaptive algorithm ensures the sufficient data resolution. This thesis presents the generalisation of these techniques to three linear model problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity problem. It verifies the axioms of adaptivity with separate marking by Carstensen and Rabus (SIAM J. Numer. Anal., 55(6), 2017) in three spatial dimensions. The analysis covers discretisations with arbitrary polynomial degree and inhomogeneous Dirichlet and Neumann boundary conditions. Numerical experiments confirm the theoretically proven optimal convergence rates of the h-adaptive algorithm.

Page generated in 0.0767 seconds