• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 47
  • 27
  • 14
  • 14
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 280
  • 74
  • 63
  • 36
  • 34
  • 34
  • 25
  • 23
  • 23
  • 21
  • 21
  • 19
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Restauration de la symétrie de parité intrinsèque dans les noyaux atomiques à partir d'approches de type champ moyen plus corrélations

Tran, Viet Nhan Hao 07 April 2010 (has links)
Nous nous sommes intéressés à la restauration de la symétrie de réflexion droite-gauche brisée dans certains calculs effectués en utilisant l'approche HTDA (Higher Tamm-Dancoff Approximation). Cette approche a été proposée par le groupe de Bordeaux pour traiter de façon microscopique les corrélations en conservant explicitement les nombres de nucléons. La projection sur la parité par la méthode PAV (projection après variation) utilisant une généralisation du théorème de Wick de type Löwdin s'est avérée être très bien adaptée dans le cadre d'un modèle simplifié pour ce type de calcul et a permis de tourner certaines difficultés propres aux calculs qui utilisent la théorie de la fonctionnelle de la densité déduite par exemple de l'interaction de Skyrme. Les résultats obtenus pour des noyaux lourds manifestant une déformation octupôlaire ou à tout le moins une grande déformabilité pour ce mode, sont en gros tout à fait cohérents avec les calculs antérieurs effectués dans une approche HFB ou HF+BCS. D'autre part nos résultats montrent qu'on peut abaisser par projection sur la parité positive la hauteur de la seconde barrière de fission par une quantité de l'ordre de 1 MeV. / This thesis has been concerned with the restoration of the left-right symmetry broken in some instances. This has been achieved in the framework of the Higher Tamm-Dancoff Approximation (HTDA) proposed by the Bordeaux group to treat correlations in an explicitly particle-number conserving microscopic approach. The parity-projected calculations performed within a PAV (projection after variation) method using a generalized Wick's theorem due to Löwdin has appeared to be a very well-suited frame. It has been implemented within a simple model approach. This has been proposed to clear out some difficulties appearing when one uses an Energy Density Functional approach with an energy density functional issued from an underlying Skyrme interaction. As a result we obtain a fairly good global agreement of our results with previous ones issuing from an HFB approach or its HF+BCS limit, for some heavy nuclei exhibiting a stable octupole deformation or at least a remarkable smoothness for this collective mode. As another result, we have shown that the projection on a positive parity solution is able to reduce the second fission barrier height by about 1 MeV.
272

Морфолошка анализа нервних и глијалних ћелија главног маслинастог једра човека / Morfološka analiza nervnih i glijalnih ćelija glavnog maslinastog jedra čoveka / A morphological analysis of the neuronal and glial cells in the human principal olivary nucleus

Radošević Dragana 01 November 2019 (has links)
<p>Главно маслинасто једро је највећи део доњег маслинастог комплекса. На пресеку главно маслинасто једро има изглед наборане врећице са дном које гледа ка спољашњој површини продужене мождине и отвором који је окренут унутра и дорзално. Главно маслинасто једро је укључено у просторну и временску организацију покрета и моторног учења, учења које је повезано са вежбањем, просуђивања времена интервала и брзине покретних стимулуса и когнитивних операција у простору. Популацију неурона главног маслинастог једра чине мултиполарни (90%) и интернеурони (10%). Дендритска арборизација неурона главног маслинастог једра је веома комплексна и различитог је облика (сферична или асиметрична), а правац пружања дендрита може да буде радијалан или кружан. Структурну и функционалну потпору неуронима пружају глијалне ћелије (астроцити, олигодендроцити и микроглија). Глијалне ћелије окружују неуроне и окупирају међунеуронске просторе где одржавају микросредину погодну за активност и виталност неурона. Старење представља природан и временски зависан процес који је карактерисан прогресивном појавом иреверзибилних промена у ћелијама, што резултира опадањем саморегулаторних способности јединке. У току старења, долази до нарушавања природног окружења неурона и глијалних ћелија што се одражава на њихов број, величину и изглед тела, дендритску крошњу и синаптичку организацију. Циљеви: Циљеви истраживања су да се утврди да ли се параметри морфологије неурона и глијалних ћелија разликују између старосних група, као и да се квантитативном анализом провери могућност класификације неурона и глијалних ћелија према квалитативном опису. Материјал и методе: Узорак студије је чинило 30 обостраних исечака главног маслинастог једра подељених у три старосне групе (други период сазревања (36-60 год.), рани период старења (61-75 год.) и касни период старења (76-90 год.)). Извршена је хистолошка обрада узорака Голџијевом методом импрегнације а микроскопске слике резова су дигитализоване а затим трансформисане у бинарне и скелетонизоване слике. Квалитативно су процењиване особине слика неурона (259) и глијалних ћелија (419) а квантитативна анализа величине, облика, гранања, дужине и сложености испитиваних ћелија спроведена је израчунавањем 22 (геометријска, компјутациона и фрактална) параметра. Резултати: Квалитативном проценом уочене су разлике у изгледу тела и неуронског поља, дендритске крошње, правца пружања дендрита, и распореда неурона у главном маслинастом једру. Квалитативна процена глијалних ћелија омогућила је њихов опис према врстама (астроцити, олигодендроцити и микроглија). Квантитативно испитивање геометријских параметара је показало да се неурони и глијалне ћелије не могу класификовати према величини. Неурони треће старосне групе имају мање вредности параметара који квантификују сложеност тела, неуронског поља и дендритске крошње, као и параметре дужине неурона. Површина тела, параметри дужине глијалне ћелије и сложеност глијалне крошње астроцита, значајно су мањи у узорку треће старосне групе, у поређењу са првом и другом. Олигодендроцити прве и друге старосне групе имају веће параметре који дефинишу величину и дужину ћелија, а мање вредности фракталне димензије сложености (тела, глијалног поља и глијалне крошње), од треће старосне групе. Закључци: Касни период старења нервног система резултирао је појавом регресивних промена на неуронима. Астроцити већ у раном периоду старења подлежу атрофичним променама на нивоу тела, глијалног поља и наставака, док олигодендроцити у касном периоду старења задржавају сложеност у грађи.</p> / <p>Glavno maslinasto jedro je najveći deo donjeg maslinastog kompleksa. Na preseku glavno maslinasto jedro ima izgled naborane vrećice sa dnom koje gleda ka spoljašnjoj površini produžene moždine i otvorom koji je okrenut unutra i dorzalno. Glavno maslinasto jedro je uključeno u prostornu i vremensku organizaciju pokreta i motornog učenja, učenja koje je povezano sa vežbanjem, prosuđivanja vremena intervala i brzine pokretnih stimulusa i kognitivnih operacija u prostoru. Populaciju neurona glavnog maslinastog jedra čine multipolarni (90%) i interneuroni (10%). Dendritska arborizacija neurona glavnog maslinastog jedra je veoma kompleksna i različitog je oblika (sferična ili asimetrična), a pravac pružanja dendrita može da bude radijalan ili kružan. Strukturnu i funkcionalnu potporu neuronima pružaju glijalne ćelije (astrociti, oligodendrociti i mikroglija). Glijalne ćelije okružuju neurone i okupiraju međuneuronske prostore gde održavaju mikrosredinu pogodnu za aktivnost i vitalnost neurona. Starenje predstavlja prirodan i vremenski zavisan proces koji je karakterisan progresivnom pojavom ireverzibilnih promena u ćelijama, što rezultira opadanjem samoregulatornih sposobnosti jedinke. U toku starenja, dolazi do narušavanja prirodnog okruženja neurona i glijalnih ćelija što se odražava na njihov broj, veličinu i izgled tela, dendritsku krošnju i sinaptičku organizaciju. Ciljevi: Ciljevi istraživanja su da se utvrdi da li se parametri morfologije neurona i glijalnih ćelija razlikuju između starosnih grupa, kao i da se kvantitativnom analizom proveri mogućnost klasifikacije neurona i glijalnih ćelija prema kvalitativnom opisu. Materijal i metode: Uzorak studije je činilo 30 obostranih isečaka glavnog maslinastog jedra podeljenih u tri starosne grupe (drugi period sazrevanja (36-60 god.), rani period starenja (61-75 god.) i kasni period starenja (76-90 god.)). Izvršena je histološka obrada uzoraka Goldžijevom metodom impregnacije a mikroskopske slike rezova su digitalizovane a zatim transformisane u binarne i skeletonizovane slike. Kvalitativno su procenjivane osobine slika neurona (259) i glijalnih ćelija (419) a kvantitativna analiza veličine, oblika, grananja, dužine i složenosti ispitivanih ćelija sprovedena je izračunavanjem 22 (geometrijska, kompjutaciona i fraktalna) parametra. Rezultati: Kvalitativnom procenom uočene su razlike u izgledu tela i neuronskog polja, dendritske krošnje, pravca pružanja dendrita, i rasporeda neurona u glavnom maslinastom jedru. Kvalitativna procena glijalnih ćelija omogućila je njihov opis prema vrstama (astrociti, oligodendrociti i mikroglija). Kvantitativno ispitivanje geometrijskih parametara je pokazalo da se neuroni i glijalne ćelije ne mogu klasifikovati prema veličini. Neuroni treće starosne grupe imaju manje vrednosti parametara koji kvantifikuju složenost tela, neuronskog polja i dendritske krošnje, kao i parametre dužine neurona. Površina tela, parametri dužine glijalne ćelije i složenost glijalne krošnje astrocita, značajno su manji u uzorku treće starosne grupe, u poređenju sa prvom i drugom. Oligodendrociti prve i druge starosne grupe imaju veće parametre koji definišu veličinu i dužinu ćelija, a manje vrednosti fraktalne dimenzije složenosti (tela, glijalnog polja i glijalne krošnje), od treće starosne grupe. Zaključci: Kasni period starenja nervnog sistema rezultirao je pojavom regresivnih promena na neuronima. Astrociti već u ranom periodu starenja podležu atrofičnim promenama na nivou tela, glijalnog polja i nastavaka, dok oligodendrociti u kasnom periodu starenja zadržavaju složenost u građi.</p> / <p>The principal olivary nucleus is the largest part of the inferior olivary complex. On the cross-section, the principal olivary nucleus has the appearance of a folded bag with a bottom looking to the outer surface of the medulla oblongata and hilum that is turned inward and dorsally. The principal olivary nucleus is involved in spatial and temporal organization of movement and motor learning, learning which is related to exercise, coordination of interval time with speed of stimuli and cognitive operations. Neuronal population of principal olivary nucleus is consists of multipolar neurons (90%) and interneurons (10%). Dendritic arborization of olivary neurons is very complex with a spherical and asymmetrical shape and radial or circular dendrites. Structural and functional support for neurons is provided by the glial cells (astrocytes, oligodendrocytes and microglia). Glial cells surround neurons and occupy interneuronal spaces where they maintain a suitable microenvironment for the neuronal activity and vitality. Aging is a physiological and time-dependent process characterized by the progressive irreversible changes of the cells, resulting in a decrease in self-regulatory capabilities. During aging, the natural environment of neurons and glial cells is affected, which reflects on their number, size and body structure, the dendritic arborization, and synaptic organization. Aims: The aims of the research were to determine whether the morphology of neurons and glial cells differ between age groups and to quantitatively analyze the possibility of classification of neurons and glial cells according to their qualitative description. Material and methods: The study sample consisted of 30 two-sided sections of the principal olivary nucleus divided into a three age groups (the second period of maturation (36-60 years), early aging (61-75 years) and late aging (76-90 years)). Histological preparation of samples (by Golgi&#39;s method of impregnation) was performed and the microscopic images were digitized and then transformed into a binary and skeletonized forms. Neurons (259) and glial cells (419) were qualitatively evaluated and the quantitative analysis of the size, shape, branching, length and complexity was carried out by calculating 22 (geometric, computer and fractal) parameters. Results: Qualitative estimation revealed the differences in the appearance of the neuronal body and neuronal field, dendritic arborisation, direction of dendrites and position of neurons inside the principal olivary neucleus. A qualitative evaluation of glial cells enabled description of their types (astrocytes, oligodendrocytes and microglia). Quantitative testing of geometric parameters has shown that neurons and glial cells cannot be classified according to their size. Neurons from third age group have lesser values of parameters that quantify the body complexity, the neuronal field, and the dendritic arborization, as well as parameters of the neuronal length. The body area, parameters of the astrocytes length and the astrocyte arborization complexity, are significantly lower in the sample of the third age group, in compared with the first and the second. Oligodendrocytes of the first and second age group have larger parameters that define the cell length, and lower values of the fractal dimension of body, glial field and glial arborization complexity, from the third age group. Conclusions: Late aging period of the nervous system resulted in a regressive changes on neurons. During the early aging period astrocytes undergo to atrophic changes of body, glial filed and processes, while the oligodendrocytes in the late period of aging retain their structure complexity.</p>
273

Mikroskopische Theorie der optischen Eigenschaften indirekter Halbleiter-Quantenfilme: Mikroskopische Theorie der optischen Eigenschaftenindirekter Halbleiter-Quantenfilme

Imhof, Sebastian 19 December 2011 (has links)
Indirekte Halbleiter, wie beispielsweise Silizium, zählen bei technischen Anwendungen zu den wichtigsten halbleitenden Materialien. Die indirekte Bandstruktur führt jedoch dazu, dass diese Materialien schlechte Lichtemitter sind. Die theoretische Beschreibung der optischen Eigenschaften dieser Materialien wurde in früheren Betrachtungen über phänomenologische Ansätze verfolgt. In dieser Arbeit wird eine mikroskopische Theorie, basierend auf den Heisenberg-Bewegungsgleichungen, entwickelt, um die Prozesse im Bereich der indirekten Energielücke zu beschreiben. Nach Herleitung der relevanten Gleichungen wird im ersten Anwendungskapitel die Absorption und optische Verstärkung im thermischen Gleichgewicht diskutiert. Bei der Diskussion wird insbesondere auf den Unterschied zu direkten Halbleitern eingegangen. Es zeigt sich, dass sich die optische Verstärkung in indirekten Halbleitern fundamental von denen in direkten unterscheidet. Im Gegensatz zum direkten Halbleiter kann die maximale optische Verstärkung eines indirekten Übergangs die maximale Absorption um Größenordnungen übertreffen. Im zweiten Anwendungsteil werden Nichtgleichgewichtsphänomene diskutiert. Durch starke optische Anregung kann eine hohe Elektronenkonzentration am Gamma-Punkt erzeugt werden. Da das globale Bandstrukturminimum aber am Rand der Brillouinzone liegt, verweilen die Elektronen nicht lange dort, sondern streuen in das Leitungsbandminimum. Dieser Prozess der sogenannten Intervalley-Streuung wird im Hinblick auf Gedächtniseffekte diskutiert. Nach dem Streuprozess der Elektronen besitzt das System eine Überschussenergie, die sich in einem Aufheizen der Ladungsträger zeigt. Das zweite Nichtgleichgewichtsphänomen ist das Abkühlen des Lochsystems, welches aufgrund der Trennung der Elektronen und Löcher in indirekten Halbleiter auch im Experiment getrennt untersucht werden kann. Mithilfe eines Experiment-Theorie-Vergleichs wird ein schneller Elektron-Loch-Streuprozess nachgewiesen, der dazu führt, dass in indirekten Halbleitern das Thermalisieren und Equilibrieren der Elektronen und Löcher auf der gleichen Zeitskala stattfindet.
274

Microscopic Modeling of Human and Automated Driving: Towards Traffic-Adaptive Cruise Control

Kesting, Arne 22 January 2008 (has links)
The thesis is composed of two main parts. The first part deals with a microscopic traffic flow theory. Models describing the individual acceleration, deceleration and lane-changing behavior are formulated and the emerging collective traffic dynamics are investigated by means of numerical simulations. The models and simulation tools presented provide the methodical prerequisites for the second part of the thesis in which a novel concept of a traffic-adaptive control strategy for ACC systems is presented. The impact of such systems on the traffic dynamics can solely be investigated and assessed by traffic simulations. The focus is on future adaptive cruise control (ACC) systems and their potential applications in the context of vehicle-based intelligent transportation systems. In order to ensure that ACC systems are implemented in ways that improve rather than degrade traffic conditions, the thesis proposes an extension of ACC systems towards traffic-adaptive cruise control by means of implementing an actively jam-avoiding driving strategy. The newly developed traffic assistance system introduces a driving strategy layer which modifies the driver's individual settings of the ACC driving parameters depending on the local traffic situation. Whilst the conventional operational control layer of an ACC system calculates the response to the input sensor data in terms of accelerations and decelerations on a short time scale, the automated adaptation of the ACC driving parameters happens on a somewhat longer time scale of, typically, minutes. By changing only temporarily the comfortable parameter settings of the ACC system in specific traffic situations, the driving strategy is capable of improving the traffic flow efficiency whilst retaining the comfort for the driver. The traffic-adaptive modifications are specified relative to the driver settings in order to maintain the individual preferences. The proposed system requires an autonomous real-time detection of the five traffic states by each ACC-equipped vehicle. The formulated algorithm is based on the evaluation of the locally available data such as the vehicle's velocity time series and its geo-referenced position (GPS) in conjunction with a digital map. It is assumed that the digital map is complemented by information about stationary bottlenecks as most of the observed traffic flow breakdowns occur at these fixed locations. By means of a heuristic, the algorithm determines which of the five traffic states mentioned above applies best to the actual traffic situation. Optionally, inter-vehicle and infrastructure-to-car communication technologies can be used to further improve the accuracy of determining the respective traffic state by providing non-local information. By means of simulation, we found that the automatic traffic-adaptive driving strategy improves traffic stability and increases the effective road capacity. Depending on the fraction of ACC vehicles, the driving strategy &amp;quot;passing a bottleneck&amp;quot; effects a reduction of the bottleneck strength and therefore delays (or even prevents) the breakdown of traffic flow. Changing to the driving mode &amp;quot;leaving the traffic jam&amp;quot; increases the outflow from congestion resulting in reduced queue lengths in congested traffic and, consequently, a faster recovery to free flow conditions. The current travel time (as most important criterion for road users) and the cumulated travel time (as an indicator of the system performance) are used to evaluate the impact on the quality of service. While traffic congestion in the reference scenario was completely eliminated when simulating a proportion of 25% ACC vehicles, travel times were significantly reduced even with much lower penetration rates. Moreover, the cumulated travel times decreased consistently with the increase in the proportion of ACC vehicles. / In der Arbeit wird ein neues verkehrstelematisches Konzept für ein verkehrseffizientes Fahrverhalten entwickelt und als dezentrale Strategie zur Vermeidung und Auflösung von Verkehrsstaus auf Richtungsfahrbahnen vorgestellt. Die operative Umsetzung erfolgt durch ein ACC-System, das um eine, auf Informationen über die lokale Verkehrssituation basierende, automatisierte Fahrstrategie erweitert wird. Die Herausforderung bei einem Eingriff in das individuelle Fahrverhalten besteht - unter Berücksichtigung von Sicherheits-, Akzeptanz- und rechtlichen Aspekten - im Ausgleich der Gegensätze Fahrkomfort und Verkehrseffizienz. Während sich ein komfortables Fahren durch große Abstände bei geringen Fahrzeugbeschleunigungen auszeichnet, erfordert ein verkehrsoptimierendes Verhalten kleinere Abstände und eine schnellere Anpassung an Geschwindigkeitsänderungen der umgebenden Fahrzeuge. Als allgemeiner Lösungsansatz wird eine verkehrsadaptive Fahrstrategie vorgeschlagen, die ein ACC-System mittels Anpassung der das Fahrverhalten charakterisierenden Parameter umsetzt. Die Wahl der Parameter erfolgt in Abhängigkeit von der lokalen Verkehrssituation, die auf der Basis der im Fahrzeug zur Verfügung stehenden Informationen automatisch detektiert wird. Durch die Unterscheidung verschiedener Verkehrssituationen wird ein temporärer Wechsel in ein verkehrseffizientes Fahrregime (zum Beispiel beim Herausfahren aus einem Stau) ermöglicht. Machbarkeit und Wirkungspotenzial der verkehrsadaptiven Fahrstrategie werden im Rahmen eines mikroskopischen Modellierungsansatzes simuliert und hinsichtlich der kollektiven Verkehrsdynamik, insbesondere der Stauentstehung und Stauauflösung, auf mehrspurigen Richtungsfahrbahnen bewertet. Die durchgeführte Modellbildung, insbesondere die Formulierung eines komplexen Modells des menschlichen Fahrverhaltens, ermöglicht eine detaillierte Analyse der im Verkehr relevanten kollektiven Stabilität und einer von der Stabilität abhängigen stochastischen Streckenkapazität. Ein tieferes Verständnis der Stauentstehung und -ausbildung wird durch das allgemeine Konzept der Engstelle erreicht. Dieses findet auch bei der Entwicklung der Strategie für ein stauvermeidendes Fahrverhalten Anwendung. In der Arbeit wird die stauvermeidende und stauauflösende Wirkung eines individuellen, verkehrsadaptiven Fahrverhaltens bereits für geringe Ausstattungsgrade nachgewiesen. Vor dem Hintergrund einer zu erwartenden Verbreitung von ACC-Systemen ergibt sich damit eine vielversprechende Option für die Steigerung der Verkehrsleistung durch ein teilautomatisiertes Fahren. Der entwickelte Ansatz einer verkehrsadaptiven Fahrstrategie ist unabhängig vom ACC-System. Er erweitert dessen Funktionalität im Hinblick auf zukünftige, informationsbasierte Fahrerassistenzsysteme um eine neue fahrstrategische Dimension. Die lokale Interpretation der Verkehrssituation kann neben einer verkehrsadaptiven ACC-Regelung auch der Entwicklung zukünftiger Fahrerinformationssysteme dienen.
275

Microscopic description of magnetic model compounds

Schmitt, Miriam 24 June 2013 (has links) (PDF)
Solid state physics comprises many interesting physical phenomena driven by the complex interplay of the crystal structure, magnetic and orbital degrees of freedom, quantum fluctuations and correlation. The discovery of materials which exhibit exotic phenomena like low dimensional magnetism, superconductivity, thermoelectricity or multiferroic behavior leads to various applications which even directly influence our daily live. For such technical applications and the purposive modification of materials, the understanding of the underlying mechanisms in solids is a precondition. Nowadays DFT based band structure programs become broadly available with the possibility to calculate systems with several hundreds of atoms in reasonable time scales and high accuracy using standard computers due to the rapid technical and conceptional development in the last decades. These improvements allow to study physical properties of solids from their crystal structure and support the search for underlying mechanisms of different phenomena from microscopic grounds. This thesis focuses on the theoretical description of low dimensional magnets and intermetallic compounds. We combine DFT based electronic structure and model calculations to develop the magnetic properties of the compounds from microscopic grounds. The developed, intuitive pictures were challenged by model simulations with various experiments, probing microscopic and macroscopic properties, such as thermodynamic measurements, high field magnetization, nuclear magnetic resonance or electron spin resonance experiments. This combined approach allows to investigate the close interplay of the crystal structure and the magnetic properties of complex materials in close collaboration with experimentalists. In turn, the systematic variation of intrinsic parameters by substitution or of extrinsic factors, like magnetic field, temperature or pressure is an efficient way to probe the derived models. Especially pressure allows a continuous change of the crystal structure on a rather large energy scale without the chemical complexity of substitution, thus being an ideal tool to consistently alter the electronic structure in a controlled way. Our theoretical results not only provide reliable descriptions of real materials, exhibiting disorder, partial site occupation and/or strong correlations, but also predict fascinating phenomena upon extreme conditions. In parts this theoretical predictions were already confirmed by own experiments on large scale facilities. Whereas in the first part of this work the main purpose was to develop reliable magnetic models of low dimensional magnets, in the second part we unraveled the underlying mechanism for different phase transitions upon pressure. In more detail, the first part of this thesis is focused on the magnetic ground states of spin 1/2 transition metal compounds which show fascinating phase diagrams with many unusual ground states, including various types of magnetic order, like helical states exhibiting different pitch angles, driven by the intimate interplay of structural details and quantum fluctuations. The exact arrangement and the connection of the magnetically active building blocks within these materials determine the hybridization, orbital occupation, and orbital orientation, this way altering the exchange paths and strengths of magnetic interaction within the system and consequently being crucial for the formation of the respective ground states. The spin 1/2 transition metal compounds, which have been investigated in this work, illustrate the great variety of exciting phenomena fueling the huge interest in this class of materials. We focused on cuprates with magnetically active CuO4 plaquettes, mainly arranged into edge sharing geometries. The influence of structural peculiarities, as distortion, folding, changed bonding angles, substitution or exchanged ligands has been studied with respect to their relevance for the magnetic ground state. Besides the detailed description of the magnetic ground states of selected compounds, we attempted to unravel the origin for the formation of a particular magnetic ground state by deriving general trends and relations for this class of compounds. The details of the treatment of the correlation and influence of structural peculiarities like distortion or the bond angles are evaluated carefully. In the second part of this work we presented the results of joint theoretical and experimental studies for intermetallic compounds, all exhibiting an isostructural phase transition upon pressure. Many different driving forces for such phase transitions are known like quantum fluctuations, valence instabilities or magnetic ordering. The combination of extensive computational studies and high pressure XRD, XAS and XMCD experiments using synchrotron radiation reveals completely different underlying mechanism for the onset of the phase transitions in YCo5, SrFe2As2 and EuPd3Bx. This thesis demonstrates on a series of complex compounds that the combination of ab-initio electronic structure calculations with numerical simulations and with various experimental techniques is an extremely powerful tool for a successful description of the intriguing quantum phenomena in solids. This approach is able to reduce the complex behavior of real materials to simple but appropriate models, this way providing a deep understanding for the underlying mechanisms and an intuitive picture for many phenomena. In addition, the close interaction of theory and experiment stimulates the improvement and refinement of the methods in both areas, pioneering the grounds for more and more precise descriptions. Further pushing the limits of these mighty techniques will not only be a precondition for the success of fundamental research at the frontier between physics and chemistry, but also enables an advanced material design on computational grounds.
276

DFT-based microscopic magnetic modeling for low-dimensional spin systems

Janson, Oleg 26 September 2012 (has links) (PDF)
In the vast realm of inorganic materials, the Cu2+-containing cuprates form one of the richest classes. Due to the combined effect of crystal-field, covalency and strong correlations, all undoped cuprates are magnetic insulators with well-localized spins S=1/2, whereas the charge and orbital degrees of freedom are frozen out. The combination of the spin-only nature of their magnetism with the unique structural diversity renders cuprates as excellent model systems. The experimental studies, boosted by the discovery of high-temperature superconductivity in doped La2CuO4, revealed a fascinating variety of magnetic behaviors observed in cuprates. A digest of prominent examples should include the spin-Peierls transition in CuGeO3, the Bose-Einstein condensation of magnons in BaCuSi2O6, and the quantum critical behavior of Li2ZrCuO4. The magnetism of cuprates originates from short-range (typically, well below 1 nm) exchange interactions between pairs of spins Si and Sj, localized on Cu atoms i and j. Especially in low-dimensional compounds, these interactions are strongly anisotropic: even for similar interatomic distances |Rij|, the respective magnetic couplings Jij can vary by several orders of magnitude. On the other hand, there is an empirical evidence for the isotropic nature of this interaction in the spin space: different components of Si are coupled equally strong. Thus, the magnetism of cuprates is mostly described by a Heisenberg model, comprised of Jij(Si*Sj) terms. Although the applicability of this approach to cuprates is settled, the model parameters Jij are specific to a certain material, or more precisely, to a particular arrangement of the constituent atoms, i.e. the crystal structure. Typically, among the infinite number of Jij terms, only several are physically relevant. These leading exchange couplings constitute the (minimal) microscopic magnetic model. Already at the early stages of real material studies, it became gradually evident that the assignment of model parameters is a highly nontrivial task. In general, the problem can be solved experimentally, using elaborate measurements, such as inelastic neutron scattering on large single crystals, yielding the magnetic excitation spectrum. The measured dispersion is fitted using theoretical models, and in this way, the model parameters are refined. Despite excellent accuracy of this method, the measurements require high-quality samples and can be carried out only at special large-scale facilities. Therefore, less demanding (especially, regarding the sample requirements), yet reliable and accurate procedures are desirable. An alternative way to conjecture a magnetic model is the empirical approach, which typically relies on the Goodenough-Kanamori rules. This approach links the magnetic exchange couplings to the relevant structural parameters, such as bond angles. Despite the unbeatable performance of this approach, it is not universally applicable. Moreover, in certain cases the resulting tentative models are erroneous. The recent developments of computational facilities and techniques, especially for strongly correlated systems, turned density-functional theory (DFT) band structure calculations into an appealing alternative, complementary to the experiment. At present, the state-of-the-art computational methods yield accurate numerical estimates for the leading microscopic exchange couplings Jij (error bars typically do not exceed 10-15%). Although this computational approach is often regarded as ab initio, the actual procedure is not parameter-free. Moreover, the numerical results are dependent on the parameterization of the exchange and correlation potential, the type of the double-counting correction, the Hubbard repulsion U etc., thus an accurate choice of these crucial parameters is a prerequisite. In this work, the optimal parameters for cuprates are carefully evaluated based on extensive band structure calculations and subsequent model simulations. Considering the diversity of crystal structures, and consequently, magnetic behaviors, the evaluation of a microscopic model should be carried out in a systematic way. To this end, a multi-step computational approach is developed. The starting point of this procedure is a consideration of the experimental structural data, used as an input for DFT calculations. Next, a minimal DFT-based microscopic magnetic model is evaluated. This part of the study comprises band structure calculations, the analysis of the relevant bands, supercell calculations, and finally, the evaluation of a microscopic magnetic model. The ground state and the magnetic excitation spectrum of the evaluated model are analyzed using various simulation techniques, such as quantum Monte Carlo, exact diagonalization and density-matrix renormalization groups, while the choice of a particular technique is governed by the dimensionality of the model, and the presence or absence of magnetic frustration. To illustrate the performance of the approach and tune the free parameters, the computational scheme is applied to cuprates featuring rather simple, yet diverse magnetic behaviors: spin chains in CuSe2O5, [NO]Cu(NO3)3, and CaCu2(SeO3)2Cl2; quasi-two-dimensional lattices with dimer-like couplings in alpha-Cu2P2O7 and CdCu2(BO3)2, as well as the 3D magnetic model with pronounced 1D correlations in Cu6Si6O18*6H2O. Finally, the approach is applied to spin liquid candidates --- intricate materials featuring kagome-lattice arrangement of the constituent spins. Based on the DFT calculations, microscopic magnetic models are evaluated for herbertsmithite Cu3(Zn0.85Cu0.15)(OH)6Cl2, kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2, as well as for volborthite Cu3[V2O7](OH)2*2H2O. The results of the DFT calculations and model simulations are compared to and challenged with the available experimental data. The advantages of the developed approach should be briefly discussed. First, it allows to distinguish between different microscopic models that yield similar macroscopic behavior. One of the most remarkable example is volborthite Cu3[V2O7](OH)2*2H2O, initially described as an anisotropic kagome lattice. The DFT calculations reveal that this compound features strongly coupled frustrated spin chains, thus a completely different type of magnetic frustration is realized. Second, the developed approach is capable of providing accurate estimates for the leading magnetic couplings, and consequently, reliably parameterize the microscopic Hamiltonian. Dioptase Cu6Si6O18*6H2O is an instructive example showing that the microscopic theoretical approach eliminates possible ambiguity and reliably yields the correct parameterization. Third, DFT calculations yield even better accuracy for the ratios of magnetic exchange couplings. This holds also for small interchain or interplane couplings that can be substantially smaller than the leading exchange. Hence, band structure calculations provide a unique possibility to address the interchain or interplane coupling regime, essential for the magnetic ground state, but hardly perceptible in the experiment due to the different energy scales. Finally, an important advantage specific to magnetically frustrated systems should be mentioned. Numerous theoretical and numerical studies evidence that low-dimensionality and frustration effects are typically entwined, and their disentanglement in the experiment is at best challenging. In contrast, the computational procedure allows to distinguish between these two effects, as demonstrated by studying the long-range magnetic ordering transition in quasi-1D spin chain systems. The computational approach presented in the thesis is a powerful tool that can be directly applied to numerous S=1/2 Heisenberg materials. Moreover, with minor modifications, it can be largely extended to other metallates with higher value of spin. Besides the excellent performance of the computational approach, its relevance should be underscored: for all the systems investigated in this work, the DFT-based studies not only reproduced the experimental data, but instead delivered new valuable information on the magnetic properties for each particular compound. Beyond any doubt, further computational studies will yield new surprising results for known as well as for new, yet unexplored compounds. Such "surprising" outcomes can involve the ferromagnetic nature of the couplings that were previously considered antiferromagnetic, unexpected long-range couplings, or the subtle balance of antiferromagnetic and ferromagnetic contributions that "switches off" the respective magnetic exchange. In this way, dozens of potentially interesting systems can acquire quantitative microscopic magnetic models. The results of this work evidence that elaborate experimental methods and the DFT-based modeling are of comparable reliability and complement each other. In this way, the advantageous combination of theory and experiment can largely advance the research in the field of low-dimensional quantum magnetism. For practical applications, the excellent predictive power of the computational approach can largely alleviate designing materials with specific properties.
277

Structural and magnetic properties of ultrathin Fe3O4 films: cation- and lattice-site-selective studies by synchrotron radiation-based techniques

Pohlmann, Tobias 19 August 2021 (has links)
This work investigates the growth dynamic of the reactive molecular beam epitaxy of Fe3O4 films, and its impact on the cation distribution as well as on the magnetic and structural properties at the surface and the interfaces. In order to study the structure and composition of Fe3O4 films during growth, time-resolved high-energy x-ray diffraction (tr-HEXRD) and time-resolved hard x-ray photoelectron spectroscopy (tr-HAXPES) measurements are used to monitor the deposition process of Fe3O4 ultrathin films on SrTiO3(001), MgO(001) and NiO/MgO(001). For Fe3O4\SrTiO3(001) is found that the film first grows in a disordered island structure, between thicknesses of 1.5nm to 3nm in FeO islands and finally in the inverse spinel structure of Fe3O4, displaying (111) nanofacets on the surface. The films on MgO(001) and NiO/MgO(001) show a similar result, with the exception that the films are not disordered in the early growth stage, but form islands which immediately exhibit a crystalline FeO phase up to a thickness of 1nm. After that, the films grown in the inverse spinel structure on both MgO(001) and NiO/MgO(001). Additionally, the tr-HAXPES measurements of Fe3O4/SrTiO3(001) demonstrate that the FeO phase is only stable during the deposition process, but turns into a Fe3O4 phase when the deposition is interrupted. This suggests that this FeO layer is a strictly dynamic property of the growth process, and might not be retained in the as-grown films. In order to characterize the as-grown films, a technique is introduced to extract the cation depth distribution of Fe3O4 films from magnetooptical depth profiles obtained by fitting x-ray resonant magnetic reflectivity (XRMR) curves. To this end, x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra are recorded as well as XRMR curves to obtain magnetooptical depth profiles. To attribute these magnetooptical depth profiles to the depth distribution of the cations, multiplet calculations are fitted to the XMCD data. From these calculations, the cation contributions at the three resonant energies of the XMCD spectrum can be evaluated. Recording XRMR curves at those energies allows to resolve the magnetooptical depth profiles of the three iron cation species in Fe3O4. This technique is used to resolve the cation stoichiometry at the surface of Fe3O4/MgO(001) films and at the interfaces of Fe3O4/MgO(001) and Fe3O4/NiO. The first unit cell of the Fe3O4(001) surface shows an excess of Fe3+ cations, likely related to a subsurface cation-vacancy reconstruction of the Fe3O4(001) surface, but the magnetic order of the different cation species appears to be not disturbed in this reconstructed layer. Beyond this layer, the magnetic order of all three iron cation species in Fe3O4/MgO(001) is stable for the entire film with no interlayer or magnetic dead layer at the interface. For Fe3O4/NiO films, we unexpectedly observe a magnetooptical absorption at the Ni L3 edge in the NiO film corresponding to a ferromagnetic order throughout the entire NiO film, which is antiferromagnetic in the bulk. Additionally, the magnetooptical profiles indicate a single intermixed layer containing both Fe2+ and Ni2+ cations.
278

DFT-based microscopic magnetic modeling for low-dimensional spin systems

Janson, Oleg 29 June 2012 (has links)
In the vast realm of inorganic materials, the Cu2+-containing cuprates form one of the richest classes. Due to the combined effect of crystal-field, covalency and strong correlations, all undoped cuprates are magnetic insulators with well-localized spins S=1/2, whereas the charge and orbital degrees of freedom are frozen out. The combination of the spin-only nature of their magnetism with the unique structural diversity renders cuprates as excellent model systems. The experimental studies, boosted by the discovery of high-temperature superconductivity in doped La2CuO4, revealed a fascinating variety of magnetic behaviors observed in cuprates. A digest of prominent examples should include the spin-Peierls transition in CuGeO3, the Bose-Einstein condensation of magnons in BaCuSi2O6, and the quantum critical behavior of Li2ZrCuO4. The magnetism of cuprates originates from short-range (typically, well below 1 nm) exchange interactions between pairs of spins Si and Sj, localized on Cu atoms i and j. Especially in low-dimensional compounds, these interactions are strongly anisotropic: even for similar interatomic distances |Rij|, the respective magnetic couplings Jij can vary by several orders of magnitude. On the other hand, there is an empirical evidence for the isotropic nature of this interaction in the spin space: different components of Si are coupled equally strong. Thus, the magnetism of cuprates is mostly described by a Heisenberg model, comprised of Jij(Si*Sj) terms. Although the applicability of this approach to cuprates is settled, the model parameters Jij are specific to a certain material, or more precisely, to a particular arrangement of the constituent atoms, i.e. the crystal structure. Typically, among the infinite number of Jij terms, only several are physically relevant. These leading exchange couplings constitute the (minimal) microscopic magnetic model. Already at the early stages of real material studies, it became gradually evident that the assignment of model parameters is a highly nontrivial task. In general, the problem can be solved experimentally, using elaborate measurements, such as inelastic neutron scattering on large single crystals, yielding the magnetic excitation spectrum. The measured dispersion is fitted using theoretical models, and in this way, the model parameters are refined. Despite excellent accuracy of this method, the measurements require high-quality samples and can be carried out only at special large-scale facilities. Therefore, less demanding (especially, regarding the sample requirements), yet reliable and accurate procedures are desirable. An alternative way to conjecture a magnetic model is the empirical approach, which typically relies on the Goodenough-Kanamori rules. This approach links the magnetic exchange couplings to the relevant structural parameters, such as bond angles. Despite the unbeatable performance of this approach, it is not universally applicable. Moreover, in certain cases the resulting tentative models are erroneous. The recent developments of computational facilities and techniques, especially for strongly correlated systems, turned density-functional theory (DFT) band structure calculations into an appealing alternative, complementary to the experiment. At present, the state-of-the-art computational methods yield accurate numerical estimates for the leading microscopic exchange couplings Jij (error bars typically do not exceed 10-15%). Although this computational approach is often regarded as ab initio, the actual procedure is not parameter-free. Moreover, the numerical results are dependent on the parameterization of the exchange and correlation potential, the type of the double-counting correction, the Hubbard repulsion U etc., thus an accurate choice of these crucial parameters is a prerequisite. In this work, the optimal parameters for cuprates are carefully evaluated based on extensive band structure calculations and subsequent model simulations. Considering the diversity of crystal structures, and consequently, magnetic behaviors, the evaluation of a microscopic model should be carried out in a systematic way. To this end, a multi-step computational approach is developed. The starting point of this procedure is a consideration of the experimental structural data, used as an input for DFT calculations. Next, a minimal DFT-based microscopic magnetic model is evaluated. This part of the study comprises band structure calculations, the analysis of the relevant bands, supercell calculations, and finally, the evaluation of a microscopic magnetic model. The ground state and the magnetic excitation spectrum of the evaluated model are analyzed using various simulation techniques, such as quantum Monte Carlo, exact diagonalization and density-matrix renormalization groups, while the choice of a particular technique is governed by the dimensionality of the model, and the presence or absence of magnetic frustration. To illustrate the performance of the approach and tune the free parameters, the computational scheme is applied to cuprates featuring rather simple, yet diverse magnetic behaviors: spin chains in CuSe2O5, [NO]Cu(NO3)3, and CaCu2(SeO3)2Cl2; quasi-two-dimensional lattices with dimer-like couplings in alpha-Cu2P2O7 and CdCu2(BO3)2, as well as the 3D magnetic model with pronounced 1D correlations in Cu6Si6O18*6H2O. Finally, the approach is applied to spin liquid candidates --- intricate materials featuring kagome-lattice arrangement of the constituent spins. Based on the DFT calculations, microscopic magnetic models are evaluated for herbertsmithite Cu3(Zn0.85Cu0.15)(OH)6Cl2, kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2, as well as for volborthite Cu3[V2O7](OH)2*2H2O. The results of the DFT calculations and model simulations are compared to and challenged with the available experimental data. The advantages of the developed approach should be briefly discussed. First, it allows to distinguish between different microscopic models that yield similar macroscopic behavior. One of the most remarkable example is volborthite Cu3[V2O7](OH)2*2H2O, initially described as an anisotropic kagome lattice. The DFT calculations reveal that this compound features strongly coupled frustrated spin chains, thus a completely different type of magnetic frustration is realized. Second, the developed approach is capable of providing accurate estimates for the leading magnetic couplings, and consequently, reliably parameterize the microscopic Hamiltonian. Dioptase Cu6Si6O18*6H2O is an instructive example showing that the microscopic theoretical approach eliminates possible ambiguity and reliably yields the correct parameterization. Third, DFT calculations yield even better accuracy for the ratios of magnetic exchange couplings. This holds also for small interchain or interplane couplings that can be substantially smaller than the leading exchange. Hence, band structure calculations provide a unique possibility to address the interchain or interplane coupling regime, essential for the magnetic ground state, but hardly perceptible in the experiment due to the different energy scales. Finally, an important advantage specific to magnetically frustrated systems should be mentioned. Numerous theoretical and numerical studies evidence that low-dimensionality and frustration effects are typically entwined, and their disentanglement in the experiment is at best challenging. In contrast, the computational procedure allows to distinguish between these two effects, as demonstrated by studying the long-range magnetic ordering transition in quasi-1D spin chain systems. The computational approach presented in the thesis is a powerful tool that can be directly applied to numerous S=1/2 Heisenberg materials. Moreover, with minor modifications, it can be largely extended to other metallates with higher value of spin. Besides the excellent performance of the computational approach, its relevance should be underscored: for all the systems investigated in this work, the DFT-based studies not only reproduced the experimental data, but instead delivered new valuable information on the magnetic properties for each particular compound. Beyond any doubt, further computational studies will yield new surprising results for known as well as for new, yet unexplored compounds. Such "surprising" outcomes can involve the ferromagnetic nature of the couplings that were previously considered antiferromagnetic, unexpected long-range couplings, or the subtle balance of antiferromagnetic and ferromagnetic contributions that "switches off" the respective magnetic exchange. In this way, dozens of potentially interesting systems can acquire quantitative microscopic magnetic models. The results of this work evidence that elaborate experimental methods and the DFT-based modeling are of comparable reliability and complement each other. In this way, the advantageous combination of theory and experiment can largely advance the research in the field of low-dimensional quantum magnetism. For practical applications, the excellent predictive power of the computational approach can largely alleviate designing materials with specific properties.:List of Figures List of Tables List of Abbreviations 1. Introduction 2. Magnetism of cuprates 3. Experimental methods 4. DFT-based microscopic modeling 5. Simulations of a magnetic model 6. Model spin systems: challenging the computational approach 7. Kagome lattice compounds 8. Summary and outlook Appendix Bibliography List of publications Acknowledgments
279

Microscopic description of magnetic model compounds: from one-dimensional magnetic insulators to three-dimensional itinerant metals

Schmitt, Miriam 22 November 2012 (has links)
Solid state physics comprises many interesting physical phenomena driven by the complex interplay of the crystal structure, magnetic and orbital degrees of freedom, quantum fluctuations and correlation. The discovery of materials which exhibit exotic phenomena like low dimensional magnetism, superconductivity, thermoelectricity or multiferroic behavior leads to various applications which even directly influence our daily live. For such technical applications and the purposive modification of materials, the understanding of the underlying mechanisms in solids is a precondition. Nowadays DFT based band structure programs become broadly available with the possibility to calculate systems with several hundreds of atoms in reasonable time scales and high accuracy using standard computers due to the rapid technical and conceptional development in the last decades. These improvements allow to study physical properties of solids from their crystal structure and support the search for underlying mechanisms of different phenomena from microscopic grounds. This thesis focuses on the theoretical description of low dimensional magnets and intermetallic compounds. We combine DFT based electronic structure and model calculations to develop the magnetic properties of the compounds from microscopic grounds. The developed, intuitive pictures were challenged by model simulations with various experiments, probing microscopic and macroscopic properties, such as thermodynamic measurements, high field magnetization, nuclear magnetic resonance or electron spin resonance experiments. This combined approach allows to investigate the close interplay of the crystal structure and the magnetic properties of complex materials in close collaboration with experimentalists. In turn, the systematic variation of intrinsic parameters by substitution or of extrinsic factors, like magnetic field, temperature or pressure is an efficient way to probe the derived models. Especially pressure allows a continuous change of the crystal structure on a rather large energy scale without the chemical complexity of substitution, thus being an ideal tool to consistently alter the electronic structure in a controlled way. Our theoretical results not only provide reliable descriptions of real materials, exhibiting disorder, partial site occupation and/or strong correlations, but also predict fascinating phenomena upon extreme conditions. In parts this theoretical predictions were already confirmed by own experiments on large scale facilities. Whereas in the first part of this work the main purpose was to develop reliable magnetic models of low dimensional magnets, in the second part we unraveled the underlying mechanism for different phase transitions upon pressure. In more detail, the first part of this thesis is focused on the magnetic ground states of spin 1/2 transition metal compounds which show fascinating phase diagrams with many unusual ground states, including various types of magnetic order, like helical states exhibiting different pitch angles, driven by the intimate interplay of structural details and quantum fluctuations. The exact arrangement and the connection of the magnetically active building blocks within these materials determine the hybridization, orbital occupation, and orbital orientation, this way altering the exchange paths and strengths of magnetic interaction within the system and consequently being crucial for the formation of the respective ground states. The spin 1/2 transition metal compounds, which have been investigated in this work, illustrate the great variety of exciting phenomena fueling the huge interest in this class of materials. We focused on cuprates with magnetically active CuO4 plaquettes, mainly arranged into edge sharing geometries. The influence of structural peculiarities, as distortion, folding, changed bonding angles, substitution or exchanged ligands has been studied with respect to their relevance for the magnetic ground state. Besides the detailed description of the magnetic ground states of selected compounds, we attempted to unravel the origin for the formation of a particular magnetic ground state by deriving general trends and relations for this class of compounds. The details of the treatment of the correlation and influence of structural peculiarities like distortion or the bond angles are evaluated carefully. In the second part of this work we presented the results of joint theoretical and experimental studies for intermetallic compounds, all exhibiting an isostructural phase transition upon pressure. Many different driving forces for such phase transitions are known like quantum fluctuations, valence instabilities or magnetic ordering. The combination of extensive computational studies and high pressure XRD, XAS and XMCD experiments using synchrotron radiation reveals completely different underlying mechanism for the onset of the phase transitions in YCo5, SrFe2As2 and EuPd3Bx. This thesis demonstrates on a series of complex compounds that the combination of ab-initio electronic structure calculations with numerical simulations and with various experimental techniques is an extremely powerful tool for a successful description of the intriguing quantum phenomena in solids. This approach is able to reduce the complex behavior of real materials to simple but appropriate models, this way providing a deep understanding for the underlying mechanisms and an intuitive picture for many phenomena. In addition, the close interaction of theory and experiment stimulates the improvement and refinement of the methods in both areas, pioneering the grounds for more and more precise descriptions. Further pushing the limits of these mighty techniques will not only be a precondition for the success of fundamental research at the frontier between physics and chemistry, but also enables an advanced material design on computational grounds.:Contents List of abbreviations 1. Introduction 2. Methods 2.1. Electronic structure and magnetic models for real compounds 2.1.1. Describing a solid 2.1.2. Basic exchange and correlation functionals 2.1.3. Strong correlations 2.1.4. Band structure codes 2.1.5. Disorder and vacancies 2.1.6. Models on top of DFT 2.2. X-ray diffraction and x-ray absorption at extreme conditions 2.2.1. Diamond anvil cells 2.2.2. ID09 - XRD under pressure 2.2.3. ID24 - XAS and XMCD under pressure 3. Low dimensional magnets 3.1. Materials 3.1.1 AgCuVO4 - a model compound between two archetypes of Cu-O chains 3.1.2 Li2ZrCuO4 - in close vicinity to a quantum critical point 3.1.3 PbCuSO4(OH)2 -magnetic exchange ruled by H 3.1.4 CuCl2 and CuBr2 - flipping magnetic orbitals by crystal water 3.1.5 Na3Cu2SbO6 and Na2Cu2TeO6 - alternating chain systems 3.1.6 Cu2(PO3)2CH2 - magnetic vs. structural dimers 3.1.7 Cu2PO4OH - orbital order between dimers and chains 3.1.8 A2CuEO6 - an new family of spin 1/2 square lattice compounds 3.2. General trends and relations 3.2.1. Approximation for the treatment of strong correlation 3.2.2. Structural elements 4. Magnetic intermetallic compounds under extreme conditions 115 4.1. Itinerant magnets 4.1.1. YCo5 - a direct proof for a magneto elastic transition by XMCD 4.1.2. SrFe2As2 - symmetry-preserving lattice collapse 4.2. Localized magnets 4.2.1. EuPd3Bx - valence transition under doping and pressure 5. Summary and outlook A. Technical details B. Crystal Structures C. Supporting Material Bibliography List of Publications Acknowledgments
280

Faktory ovlivňující kvalitu červeného vína / Factors influencing the quality of red wine

Zechmeisterová, Lucie January 2008 (has links)
In my thesis, I focused on monitoring of microorganisms in the sample of red grape juice and on the interactions between yeasts, bacteria and filamentous fungi. Three different media were applied for the cultivation of microorganisms; firstly for monitoring of total volume of microorganisms, secondly for yeasts and third time for lactic acid bacteria. The indirect method was used for the determination of the amount of viable cells. This method consists in enumerating of visible macroscopic colonies grown up on agar plates. When the cells grew up, the forms of colonies were analyzed visually and the morphology of microorganisms was detected microscopically. The operating time of enzymes in grape juice in the production of red wine was monitored after application of commercial enzymatic preparation. The enzym action in grape juice was observed on the basis of the process of degradation of high – molecular substrate by enzymes through the use of Ubbelohd´s viscometer. The research findings provided a lot of knowledge about the occurance of microflora in the process of production of red wine. The commercial preparations added to grape juice played a significant role.

Page generated in 0.049 seconds