41 |
Pemetrexed, A Modulator of AMP-activated Kinase Signaling and an Inhibitor of Wild type and Mutant p53Agarwal, Stuti 01 January 2015 (has links)
New drug discoveries and new approaches towards diagnosis and treatment have improved cancer therapeutics remarkably. One of the most influential and effective discoveries in the field of cancer therapeutics was antimetabolites, such as the antifolates. The interest in antifolates increased as some of the antifolates showed responses in cancers, such as mesothelioma, leukemia, and breast cancers. When pemetrexed (PTX) was discovered, our laboratory had established that the primary mechanism of action of pemetrexed is to inhibit thymidylate 22 synthase (TS) (E. Taylor et al., 1992). Preclinical studies have shown that PTX has a broad range of antitumor activity in human and murine models of cancer (Adjei, 2000; Adjei, 2004; S. Chattopadhyay, Moran, & Goldman, 2007; Miller et al., 2000). Accordingly, in February 2004, the FDA issued first-line treatment approval for pemetrexed in malignant pleural mesothelioma and in 2008 for first line treatment for locally advanced or metastatic NSCLC (reviewed in (Rollins & Lindley, 2005). As an antifolate this level of therapeutic activity of PTX against lung cancers was surprising and atypical (Hazarika, White, Johnson, & Pazdur, 2004). This led us to the question whether the effects of pemetrexed on other folate-dependent targets could explain the clinical activity of the drug. Our lab showed that, in addition to inhibiting thymidylate synthase, PTX also inhibits aminoimidazolecarboxamide ribonucleotide formyltransferase (AICART), the second folate-dependent enzyme of de novo purine synthesis. Inhibition of AICART leads to massive accumulation of its substrate 5-amino-4-imidazolecarboxamide ribonucleotide (ZMP), causing activation of AMP-dependent kinase (AMPK), which ultimately leads to suppression of mTORC1 signaling, a central regulator of cell growth and proliferation. This secondary mechanism could explain the unusual activity of PTX against mesothelioma and lung cancers. The large proportion of lung cancers are either null or mutant for p53 function. Therefore, this thesis focused on defining what the role of p53 is in the PTX-mediated AMPK activation and mTORC1 inhibition and how the loss of p53 affects mTORC1 signaling. These two questions proved to be interlinked. Chapter 2 investigates this relationship in detail. We found that, upon loss of p53, mTORC1 signaling is enhanced to a significant degree in colon carcinoma and lung cancer cell lines. Clearly, this observation required explanation. We found that the major factors responsible for these differences in mTORC1 activity upon loss of p53 23 were lower levels of two p53 target genes Tuberin (TSC2) and sestrin2. Immunoprecipitation studies of mTORC1 complexes from p53 wt and p53 null cells revealed quite interesting differences in the components of the mTORC1 complex. Immunoprecipitates from p53 null cells had higher levels of mTOR and lower levels of TSC2 and PRAS40 bound to raptor. This suggested that, in comparision to p53 competent cells, p53 null cells have more mTORC1 complex with enhanced activity due to decreased interaction of TSC2 and PRAS40, both of which are inhibitors of mTORC1. These observations explained the higher mTORC1 in p53 null cells and laid the foundation for determining the role of p53 in PTX-activated AMPK and mTORC1 inhibition. In the experiments described in Chapter 3, we found that PTX-mediated AMPK activation inhibited mTORC1 regardless of the p53 status in colon carcinoma cells. This suggested that mTORC1 inhibition by PTX was either independent of p53 mediated negative regulation of mTORC1 or was somewhere bypassing it. Therefore, we compared the effects of PTX with the classic AMPK activator aminoimidazolecarboxamide ribonucleoside (AICAR). In spite of a common mechanism of AMPK activation, namely, expansion of cellular ZMP levels, signaling from AMPK activated by PTX or AICAR were quite different. PTX-activated AMPK phosphorylated the mTORC1 component Raptor but not tuberin (TSC2), whereas AICARactivated AMPK phosphorylated both the targets. This differential behavior of two AMPK activators was due to differential behavior of p53 under these two treatments. Both, AICAR and PTX treatment led to increase in p53 levels but the p53 that accumulated after AICAR treatment was transcriptionally active while the p53 that accumulated after PTX treatment was not. Transcription of p53 targets, including TSC2 and sestrin2, was activated in AICAR- but not in PTX-treated cells. In the absence of p53 function, TSC2 was deficient and mTORC1 activity 24 enhanced, but Raptor phosphorylation by AMPK following PTX was robust and independent of both p53 and TSC2. Therefore we concluded that p53 deficiency suppresses TSC2 and upregulates mTORC1, but AMPK-phosphorylation of Raptor after pemetrexed treatment was sufficient to suppress mTORC1, even in TSC2 deficiency. This suggested pemetrexed as a drug for treatment of Tuberous Sclerosis, a genetic disease caused by functional inactivity of TSC1 or TSC2 due to point mutations in these genes. Mutation of p53 is one of the most common genetic alterations in human cancers and tumors. Cancers that express mutant p53 tend to be more aggressive, resistant to chemotherapy and show worse prognosis then p53-null tumors (Elledge et al., 1993; Olivier et al., 2006). This tumor-promoting activity of mutant p53 has been correlated with acquired and novel transcriptional activities of mutant p53. It has been shown that mutp53 can activate the transcription of cell growth promoting genes, such as, NFκB2, PCNA, MDR1, Axl, EGFR, hTERT, and HSP70, which are not usually transcriptional targets of wt p53. Interestingly, we found that whereas DNA damaging drugs enhance the acquired oncogenic transcriptional activities of mutp53, PTX interferes with this transcription activation. We also found in Chapter 4 that PTX can limit or block the DNA damaging drug-mediated increment of transcriptional activation of mutp53. This suggests that blockade of transcriptional activation of mutp53 by pemetrexed may provide an additional therapeutic benefit in mutp53 bearing cancers. As discussed in Chapter Three, although pemetrexed (with TdR) increases the levels of p53 and its binding to the promoter of its target gene, p21, this p53 is transcriptionally inactive. In order to understand the mechanism of the pemetrexed-mediated transcriptional defect of wt p53, we studied the PTX-mediated signaling towards ATM and ATR and their effects on their substrates Chk2 and Chk1, respectively. These studies suggested that the difference between 25 signaling under AICAR treatment and PTX treatment was that, unlike PTX, AICAR treatment was leading to DNA damage, followed by Chk2 phosphorylation at Thr68. We found there were three major differences between AICAR and pemetrexed (+ TdR) mediated signaling: AICAR caused DNA damage, followed by ATM mediated phosphorylation of Chk2 at Thr68 and phosphorylation of p53 at Ser15 all of which lead to activation of p53 transcriptional activity, events which do not take place under PTX treatment. Studies aimed at understanding the effects of PTX on wt and mutp53 transcriptional activities are discussed in detail in Chapters Three and Four of this dissertation. Overall, we concluded that PTX interferes with the transcription activity of wild type as well as gain-of-function mutant p53. The blockade of DNA damaging agent-mediated enhancement of mutp53 transcription activity by PTX, suggests the clinical relevance of PTX in carcinomas with mutp53. We suggest that this could be one of the contributing factors in the effects of PTX against human lung cancers.
|
42 |
Investigação dos efeitos moleculares e celulares de variantes no gene RELN identificadas em um paciente com Transtorno do Espectro Autista / Investigation of the cellular and molecular effects of RELN gene variants in one patient with Autism Spectrum DisorderSánchez, Sandra Mabel Sánchez 31 January 2018 (has links)
O transtorno do espectro do autismo (TEA) constitui um grupo heterogêneo e altamente prevalente de doenças do neurodesenvolvimento. Análises genômicas recentes têm revelado um grande número de variantes genéticas potencialmente deletérias nos pacientes com TEA, a maioria rara ou privada. Um enorme desafio atual é determinar quais dentre essas variantes são as que de fato estão envolvidas na etiologia do transtorno nos pacientes, e quantas variantes patogênicas são necessárias para a penetrância completa do TEA em cada paciente. Recentemente, por meio do sequenciamento completo do exoma de um subgrupo de pacientes com TEA não-sindrômico - nos quais observamos hiperfuncionamento da via de sinalização intracelular mTORC1 - identificamos que um dos pacientes (referido como F2688) é heterozigoto composto para variantes de substituição de aminoácidos raras e potencialmente deletérias no gene ELN. Este gene codifica Relina, uma grande glicoproteína de matriz extracelular que, por meio da ativação da proteína Dab1 e de diferentes vias de sinalização intracelular, controla a migração e o posicionamento dos neurônios, a arborização de neuritos, e o funcionamento das sinapses em várias regiões do encéfalo, tanto no desenvolvimento embrionário como na vida adulta. Estudos anteriores já haviam descrito variantes em heterozigose potencialmente de perda de função no gene RELN em pacientes com TEA; contudo, nenhum desses estudos investigou disfunção da sinalização Relina-Dab1 nos pacientes e, portanto, os efeitos moleculares e celulares de tais variantes sobre células neurais humanas ainda são poucos explorados. Neste trabalho, utilizando células neuroprogenitoras (NPCs) derivadas de células-tronco pluripotentes induzidas do paciente F2688, de outros pacientes com TEA sem mutação em RELN (n=5) e de indivíduos controles (n=5), nós descrevemos que as NPCs do paciente F2688 apresentam: i) disfunção da via de sinalização Relina-Dab1; ii) hiperfuncionamento da via de sinalização mTORC1; iii) crosstalk anormal entre as vias de sinalização Relina-Dab1 e mTORC1, o qual é atenuado com o uso da rapamicina, um inibidor específico de mTORC1. Portanto, nossos resultados sugerem, pela primeira vez, uma relação anormal entre as vias de sinalização Relina-Dab1 e mTORC1 em TEA não-sindrômico / Autism Spectrum Disorder (ASD) is a heterogeneous and highly prevalent group of neurodevelopmental disorders. Whole-genome-based approaches have generated catalogues of thousands of rare and potentially deleterious genetic variants in ASD patients. However, the challenge now is to identify genuine disease-causing/risk variants among the multitude of variants discovered in each exome/genome and how many variants are required to cause the disease. Recently, we performed whole-exome sequencing in a subgroup of ASD patients - in whom we found mTORC1 signaling hyperfunction - and identified rare and potentially deleterious compound heterozygous variants in the RELN gene in one patient (called as F2688). The RELN gene encodes Reelin, a large secreted glycoprotein that controls neuronal migration, layer formation, neurite outgrowth, and plasticity of synapses in both the developing and the adult brain. Evidence from previous studies suggests that certain potential loss-of-function variants in RELN gene can contribute to ASD susceptibility; however, few studies today have directly demonstrated impairment of the Reelin signal transduction cascade in ASD patients and therefore, the molecular and cellular effects of these variants in human neuronal cells are still poorly explored. Here, by using induced pluripotent stem cells derived neuronal progenitor cells from F2688 patient, from other ASD patients who do not carry RELN disrupting variants (n=5) and from control individuals (n=5), we have demonstrated that F2688-derived NPCs show: i) impaired Reelin-Dab1 signaling; ii) overactive mTORC1 signaling; iii) and abnormal crosstalk between mTORC1 and Reelin-Dab1 signaling pathways, which it attenuated by rapamycin (a specific mTORC1 inhibitor). Taken together, our results point to an abnormal interplay between mTORC1 and Reelin-Dab1 networks in nonsyndromic ASD
|
43 |
Adipocyte mTORC1 Signaling Separately Regulates Metabolic Homeostasis and Adipose Tissue Mass, Independent of RagGTPase ActivityLee, Peter L. 05 July 2018 (has links)
Metabolic disorders are commonly associated with obesity, a condition where excess caloric intake leads to massive adipose tissue (AT) expansion and eventual dysfunction. When adipose tissue loses its ability to store excess energy properly, lipids accumulate in non-adipose tissues such as liver, and muscle. This ectopic lipid deposition is a significant risk factor in the development of a collection of disorders described as metabolic syndrome. While metabolic syndrome is typically linked with obesity, patients who have an inability to develop adipose tissue depots (lipodystrophy) develop similar clinical outcomes. There is evidence that aberrant mTORC1 signaling may occur in both settings, and may be a factor that contributes to adipose dysfunction.
I find that adipocyte specific loss of Raptor, a key mTORC1 subunit, leads to progressive lipoatrophy, and associated metabolic dysfunction including AT inflammation, hepatosteatosis, and insulin resistance. Interestingly, inhibition of autophagy, a pathway upregulated during Raptordeletion, prevents lipoatrophy but does not protect from ectopic lipid deposition and AT inflammation. These results suggest that outputs of mTORC1 in adipocytes individually regulate adipocyte storage capacity, and AT health. Furthermore, ablation of the amino acid sensing RagGTPases, thought to be necessary for mTORC1 activity, does not phenocopy Raptor KO, suggesting RagGTPase independent functions of mTORC1 in adipocytes. RagA/B deletion, however, did consistently increase Ucp1 expression in WAT, indicating a possible noncanonical role of the Rags in regulating Ucp1.
Overall, these studies advance our understanding of regulation of adipose tissue metabolism, and shed light on previously unstudied nutrient specific signaling pathways in adipocytes.
|
44 |
Etude de l’intéraction entre les ros et la voie mtorc1 dans la régulation de la balance énergetique / Study of the interaction between Reactive Oxygen Species (ROS) and the mTORC1 pathway in the hypothalamic regulation of energy balanceHaissaguerre, Magali 15 December 2015 (has links)
La voie de signalisation mTORC1 hypothalamique (mammalian target of rapamycincomplexe 1) intègre les signaux hormonaux et nutritionnels. La disponibilité des nutrimentsmodule les espèces réactives derivées de l’oxygène (ROS) qui régulent l’activité des neuronesà propiomélanocortine (POMC). La modulation de la prise alimentaire induite par les ROSpourrait impliquer mTORC1.Des souris C57Bl6J et wild-type (WT) ou invalidées pour S6K1 (S6K1-KO), principaleprotéine cible de mTORC1, ou invalidées pour raptor, protéine clé de mTORC1,sélectivement au niveau des neurones anorexigènes POMC (POMC-raptor-KO) ont ététraitées par injections intracérébroventriculaires (ICV) d’H2O2 ou d’honokiol (piégeur deROS), uniques ou combinées avec un inhibiteur de mTOR (rapamycine) ou un activateur demTOR (leptine).L’H2O2 ICV induit une augmentation de l’activité hypothalamique mTORC1, de l’activationneuronale du noyau arqué, de l’expression des ROS dans les neurones POMC, associée à unediminution de la prise alimentaire et du poids. Cet effet anorexigène est diminué chez lessouris S6K1-KO, chez les C57Bl6J après administration de rapamycine, et chez les POMCraptor-KO.L’honokiol ICV bloque l’effet anorexigène de la leptine, suggérant que cet effet soitdépendant des ROS. La leptine ICV entraine une augmentation des ROS dans les neuronesPOMC des souris C57Bl6J et POMC-raptor-WT, mais pas chez les POMC-raptor-KO.Nos résultats montrent que la régulation de la prise alimentaire induite par les ROS nécessiteune voie mTORC1 fonctionnelle et que l’effet anorexigène de la leptine nécessite uneaugmentation de ROS, mTORC1 dépendante, au niveau des neurones POMC. / The mechanistic target of rapamycin complex 1 (mTORC1) pathway is an importanthypothalamic integrator of nutrients and hormones. Nutrient availability also affects thereactive oxygen species (ROS) in propiomelanocortin (POMC) neurons and regulatesneuronal activity. We hypothesize that modulation of mTORC1 activity mediates ROS effectson food intake.To this purpose, C57Bl6J mice or WT mice and their KO littermates either deficient for themTORC1 downstream target S6K1 or for the mTORC1 component raptor specifically inPOMC neurons (POMC-raptor-KO) were treated with an intracerebroventricular (ICV)injection of the ROS producer H2O2 or the ROS scavenger honokiol, alone or in combinationwith the mTOR inhibitor rapamycin or the mTOR activator leptin.ICV H2O2 induced phosphorylation of S6K1 within the hypothalamus, increased expressionof c-fos, a marker of neuronal activity, in the arcuate nucleus and increased ROS in POMCneurons. These effects were associated with a significant decrease in food intake. Theanorexigenic effect of ICV H2O2 was not seen in S6K1-KO mice, in C57Bl6J mice cotreatedwith rapamycin (an mTOR inhibitor) and in POMC-raptor-KO mice.Similarly, ICV honokiol administration combined with a leptin injection blunted theanorexigenic effect of leptin, suggesting that leptin requires ROS formation to reduce FI. ICVadministration of leptin increased ROS in POMC neurons in C57Bl6J and POMC-raptor-WTmice, but not in POMC-raptor-KO mice.Our results demonstrate that ROS modulators require a functional mTORC1 pathway toregulate food intake and that leptin needs an mTORC1-dependent increase in ROS levels inPOMC neurons to decrease food intake.
|
45 |
Régulation du réseau hippocampique par la plasticité synaptique mTORC1-dépendante des interneurones somatostatinergiquesJordan, Alexander 12 1900 (has links)
No description available.
|
46 |
Etanol e suas associações : efeitos comportamentais e cardiovascularesEngi, Sheila Antonagi 26 September 2016 (has links)
Submitted by Alison Vanceto (alison-vanceto@hotmail.com) on 2017-02-21T14:02:56Z
No. of bitstreams: 1
TeseSAE.pdf: 2944434 bytes, checksum: c48c547f6e06b2382c67e21bb3af8401 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-03-14T13:40:38Z (GMT) No. of bitstreams: 1
TeseSAE.pdf: 2944434 bytes, checksum: c48c547f6e06b2382c67e21bb3af8401 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-03-14T13:40:48Z (GMT) No. of bitstreams: 1
TeseSAE.pdf: 2944434 bytes, checksum: c48c547f6e06b2382c67e21bb3af8401 (MD5) / Made available in DSpace on 2017-03-14T13:52:35Z (GMT). No. of bitstreams: 1
TeseSAE.pdf: 2944434 bytes, checksum: c48c547f6e06b2382c67e21bb3af8401 (MD5)
Previous issue date: 2016-09-26 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Alcohol abuse is a worldwide problem with concomitant medical, social
and economic costs. In Brazil, epidemiological data show an increase in the
abuse of illicit and licit drugs, such as ethanol and steroids. Studies indicate that
physical exercise influences ethanol consumption and preference and is
positively correlated with steroids abuse. Despite many evidences, there is no
study about the association between ethanol consumption, physical exercise
and steroids abuse. In the present study, we investigated 1) the effects of
physical exercise associated to testosterone treatment in ethanol intermittent
access drinking; 2) consequences of the association between physical exercise,
ethanol intermittent access and chronic testosterone treatment upon the
cardiovascular system of rats. Many studies suggest that the mTORC1-
mammalian target of rapamycin complex participates in the mechanisms related
to ethanol abuse. In this way, we investigated the mTORC1 role in the ethanol
intermittent access consumption maintenance. Our results showed that a)
physical exercise improved treadmill performance in rats and did not change
ethanol consumption; b) ethanol voluntary consumption was not affected either
by physical exercise or by testosterone treatment; c) ethanol voluntary
intermittent access did not change basal arterial pressure and heart rate; d)
testosterone treatment caused rest bradycardia; e) ethanol consumption and
testosterone treatment altered vascular reactivity to vasoactive agents, that was
also altered by physical exercise. These results show the first evidence of
ethanol intermittent access and testosterone treatment on cardiovascular
functions in trained rats. Our results also suggest that the downstream
mTORC1 pathway is related to excessive and abusive ethanol consumption. / O abuso de drogas é considerado um problema de saúde pública
mundial. No Brasil, dados epidemiológicos têm mostrado um crescimento no
consumo de drogas ilícitas e lícitas, dentre elas destacam-se o etanol e os
esteroides anabólicos. Vários estudos demonstram que exercício físico pode
influenciar o consumo e a preferência por etanol, além disso, a prática de
exercício físico é positivamente relacionada ao uso abusivo de esteroides
anabolizantes. Contudo nenhum estudo investigou as consequências da
associação desses três fatores. No presente estudo investigamos: 1) os efeitos
da prática diária de exercício físico associada ao tratamento com testosterona
no consumo intermitente livre de etanol; 2) as consequências da associação
entre prática de exercício físico moderado de esteira, consumo crônico
intermitente livre de etanol e tratamento crônico de testosterona sobre o
sistema cardiovascular de ratos. Vários estudos sugerem que o complexo 1 da
proteína alvo da rapamicina de mamíferos (mTORC1- “mammalian target of
rapamycin complex”) participa dos mecanismos associados ao uso de etanol.
Assim, adicionalmente, investigamos o papel da mTORC1 na manutenção do
consumo de etanol de livre escolha. Nossos resultados demonstraram que a) o
exercício físico melhorou a performance de corrida em esteira e não modificou
o consumo de etanol; b) o consumo voluntário de etanol não foi afetado nem
pelo treinamento físico e nem pelo tratamento com testosterona; c) consumo
voluntário intermitente de etanol não afetou os parâmetros basais de pressão
arterial média e frequência cardíaca; d) o tratamento com testosterona causou
bradicardia de repouso; e) consumo de etanol e tratamento com testosterona
alteraram a reatividade vascular a agentes vasoativos, que também foi influenciada pelo treinamento físico. Esses resultados mostram a primeira evidência do efeito do consumo voluntário de etanol combinado com o
tratamento de testosterona nas funções cardiovasculares de ratos treinados.
Para finalizar, nossos resultados sugerem que a cascata “downstream” da
mTORC1 parece estar relacionada com o consumo excessivo e abusivo de
etanol. / FAPESP: 2012/14723-1 / FAPESP: 2014/23231-0
|
47 |
The influence of cell size on cytokinesis in situ and genomic interrogation of human cell size regulationGauvin Bourdages, Karine 12 1900 (has links)
La cellule est l’élément fondamental de la vie. Plus d’une vingtaine de trillions de cellules forment les organes et tissus de notre corps. Ces cellules sont de taille spécifique puisqu’elles ont des fonctions précises au sein de leur tissu respectif. Dans la plupart des cas, les cellules doivent proliférer en se divisant pour se renouveler et ainsi assurer le bon fonctionnement d’un organisme. La dernière étape de la division cellulaire, la cytokinèse, est exécutée par la contraction d’un anneau contractile d’actomyosine, nécessaire pour effectuer la séparation physique de la cellule en deux cellules filles. La première partie des travaux décrits dans cet ouvrage portent sur la caractérisation de la cytokinèse en utilisant, comme modèle in vivo, les cellules précurseur de la vulve (VPCs) du nématode C. elegans. Notre étude révèle que plusieurs aspects de l’anneau d’actomyosine s’ajustent en fonction de la taille de la cellule. Entre autres, la largeur de l’anneau contractile, juste avant sa constriction, s’ajuste en fonction de la longueur des VPCs. De plus, la rapidité avec laquelle l’anneau se contracte dépend de la circonférence de la cellule. Ces découvertes nous ont amené à nous demander comment la cellule régule sa taille? Les cellules en prolifération maintiennent leur taille en homéostasie en équilibrant leur taux de croissance et de division cellulaire. Afin d’interroger les gènes impliqués dans le maintien de la taille cellulaire du mammifère, nous avons utilisé la technologie CRISPR/Cas9, afin d’éliminer par délétion tous les gènes humains, à raison d’un par cellule, pour identifier ceux qui causent une augmentation ou une diminution de la taille cellulaire. Cette étude nous a permis d’identifier plusieurs gènes déjà connus régulant la croissance cellulaire. De plus, nous avons identifié un groupe de gènes, incluant TLE4 un corépresseur de la transcription que nous avons caractérisé, n’ayant jamais été associé avec une fonction de contrôle de la taille cellulaire chez les mammifères. En somme, nos travaux ont contribué à l’approfondissement des connaissances sur la division cellulaire, plus précisément la cytokinèse, et des gènes impliqués dans le maintien de la taille cellulaire. Une meilleure connaissance du fonctionnement de ces deux évènements cellulaires est essentielle puisque leur dérégulation peut entrainer plusieurs pathologies, incluant le cancer. / Cells are the fundamental building blocks of life. The human body contains over twenty trillion cells that make up the different tissues and organs of our bodies. Cells within organs are of specific sizes to perform their specialized functions. In most cases, these cells must divide to proliferate and replenish the population of cells essential for proper organism function. The final stage of cellular division, termed cytokinesis, entails the assembly and constriction of a contractile ring that drives the dramatic cell shape changes required to physically partition the cell into two daughter cells. The first part of the work presented in this thesis addresses the characterization of cytokinesis in the epithelial vulval precursor cells (VPCs) of the nematode worm C. elegans. This study principally revealed that several aspects of cytokinesis scale with cell size. For instance, I observed that the breadth of the actomyosin ring scaled with VPC length. In addition, the speed of contractile ring constriction scaled with the circumference of VPCs. These scaling events raised the more general question as to how cells regulate their size. Proliferating cells attain cell size homeostasis by balancing cell growth and cell division. In order to define the molecular regulators of size in human cells a genome-wide approach was taken. Recently developed CRISPR/Cas9 technology was used to perform the first pooled knockout screens for human cell size regulators in the NALM-6 pre-B lymphocytic cell line. These screens revealed many genes that affect the size of NALM-6 cells, a number of which were previously known to be involved in growth regulation. In addition, these screens revealed the identity of many genes with no previously established functions associated with cell size regulation. Amongst the previously unknown regulators, I characterized the function of a co-repressor of transcription, TLE4, which I showed functions as a regulator of the B-cell lineage. This work contributes to the knowledge of the mechanics of cytokinesis in C. elegans epithelial cells and of the genes that coordinate cell size in humans. These results provide insights into cell growth and division in normal cells and how these processes may be perturbed in cancer and other diseases.
|
48 |
Investigation of the Mesenchymal Manifestations of Tuberous Sclerosis Complex using Tissue-Engineered Disease ModelsPietrobon, Adam Derrick 09 November 2021 (has links)
Tuberous sclerosis complex (TSC) is a multisystem tumor-forming disorder caused by biallelic inactivation of TSC1 or TSC2. The primary cause of mortality arises from mesenchymal manifestations in the lung and kidney: pulmonary lymphangioleiomyomatosis (LAM) and renal angiomyolipomas (RAMLs). Despite a well-described monogenic etiology, there remains an incomplete understanding of disease pathogenesis. Consequentially, tractable models which fully recapitulate disease characteristics are lacking. Here, I develop and study novel tissue-engineered models of TSC lung and kidney disease. In my first chapter, I demonstrate that lung-mimetic hydrogel culture of pluripotent stem cell-derived diseased cells more faithfully recapitulates human LAM biology compared to conventional culture on two-dimensional plastic. Leveraging this culture system, I conducted a three-dimensional drug screen using a custom 800-compound library, tracking cytotoxicity and invasion modulation phenotypes at the single cell level. I identified histone deacetylase (HDAC) inhibitors as a group of anti-invasive agents that are also selectively cytotoxic towards TSC2-/- cells. HDAC inhibitor therapeutic effects remained consistent in vivo upon xenotransplantation of LAM cellular models into zebrafish. In my second chapter, I develop a genetically-engineered human renal organoid model which recapitulates pleiotropic features of RAMLs in vitro and upon orthotopic xenotransplantation. I find that loss of TSC1/2 affects multiple developmental processes in the renal epithelial, stromal, and glial compartments. First, loss of TSC1/2 leads to an expanded stroma by favouring stromal cell fate acquisition and alters terminal stromal cell identity. Second, epithelial cells in the TSC1/2-/- organoids exhibit a rapamycin-insensitive epithelial-to-mesenchymal transition. Third, a melanocytic population forms exclusively in TSC1/2-/- organoids, branching from MITF+ Schwann cell precursors of a bona fide neural crest-to-Schwann cell differentiation trajectory. Through these two thesis chapters, I realize the power of tissue-engineered models for the study of TSC. This work offers novel insights into the pathogenesis of RAMLs and identifies a new class of therapeutics suitable for trialing in patients with pulmonary LAM.
|
49 |
Na+/K+ Pump and Cl--coupled Na+ and K+ co-transporters in Mouse Embryonic Fibroblasts lacking the Tuberous Sclerosis Complex TSC1 and TSC2 genes.Alzhrani, Jasser Ali S. 28 August 2015 (has links)
No description available.
|
50 |
Rôle de la plasticité synaptique des interneurones somatostatinergiques dans l’apprentissage et la mémoire dépendants de l’hippocampeLa Fontaine, Alexandre 06 1900 (has links)
La plasticité synaptique activité-dépendante forme la base physiologique de l’apprentissage et de la mémoire dépendants de l’hippocampe. Le rôle joué par les différents sous-types d’interneurones dans l’apprentissage et la mémoire hippocampiques reste inconnu, mais repose probablement sur des mécanismes de la plasticité spécifique aux synapses de certains sous-types d’interneurones. Les synapses excitatrices établies sur les interneurones de l’oriens-alveus dans l’aire CA1 exhibent une forme persistante de potentialisation à long terme induite par la stimulation chimique des récepteurs métabotropiques du glutamate de type 1 (mGluR1) [mGluR1-mediated chemical late long-term potentiation (cL-LTPmGluR1)]. Le présent projet de recherche avait pour objectifs d’identifier les sous-types d’interneurones de l’oriens-alveus exprimant la cL-LTPmGluR1 et d’examiner les mécanismes d’induction et d’expression de celle-ci. Nous avons déterminé que la stimulation répétée des mGluR1 induit de la cL-LTPmGluR1 aux synapses excitatrices établies sur le sous-type d’interneurones exprimant le peptide somatostatine (SOM-INs). Des enregistrements électrophysiologiques couplés à des inhibiteurs pharmacologiques et à un knock-out fonctionnel de mammalian target of rapamycin complexe 1 (mTORC1) ont montré que l’induction de la cL-LTPmGluR1 (qui consiste en trois applications de l’agoniste des mGluR1/5, le (S)-3,5-dihydroxyphénylglycine (DHPG) en présence de l’antagoniste des récepteurs métabotropiques du glutamate de type 5 (mGluR5), le 2-méthyl-6-(phényléthynyl)-pyridine (MPEP)) des SOM-INs requiert les voies de signalisation des mGluR1, de extracellular signal-regulated protein kinase (ERK) et de mTORC1. L’ensemble de nos résultats montre qu’une forme persistante de plasticité synaptique sous-tendue par mTORC1 est induite par la stimulation répétée des mGluR1 dans les interneurones hippocampiques exprimant le peptide somatostatine. La connaissance des mécanismes sous-tendant la cL-LTPmGluR1, couplée à l’utilisation de modèles animal in vivo, rendront maintenant possible le blocage de la cL-LTPmGluR1 dans les SOM-INs et l’examen de son rôle dans l’apprentissage et la mémoire dépendants de l’hippocampe. / Hippocampus-dependent learning and memory are mediated by activity-dependent synaptic plasticity. The role that different subtypes of interneurons play in hippocampal learning and memory remains largely unknown, but likely relies on cell type-specific plasticity mechanisms at interneuron synapses. Excitatory synapses onto CA1 oriens-alveus interneurons show persistent long-term potentiation induced by chemical stimulation of metabotropic glutamate receptor 1 (mGluR1) [mGluR1-mediated chemical late long-term potentiation (cL-LTPmGluR1)]. The objectives of this project were to identify the oriens-alveus interneuron subtypes expressing cL-LTPmGluR1 and examine its induction and expression mechanisms. We determined that repeated mGluR1 stimulation induces cL-LTPmGluR1 at excitatory synapses onto the somatostatin-expressing interneuron subtype (SOM-INs). Electrophysiological recordings coupled to pharmacological inhibitors and a functional knock-out of mammalian target of rapamycin complex 1 (mTORC1) showed that SOM-INs cL-LTPmGluR1 induction (which consisted of three applications of the mGluR1/5 agonist (S)-3,5-dihydroxyphenylglycine (DHPG) in the presence of metabotropic glutamate receptor 5 (mGluR5) antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP)) requires mGluR1, extracellular signal-regulated protein kinase (ERK) and mTORC1 signaling pathways. Collectively, our results show that persistent synaptic plasticity mediated by mTORC1 is induced by repeated mGluR1 stimulation in somatostatin-expressing hippocampal interneurons. Knowledge of cL-LTPmGluR1’s underlying mechanisms, coupled to in vivo models, will now make it possible to interfere with SOM-INs cL-LTPmGluR1 and examine its role in hippocampal-dependent learning and memory.
|
Page generated in 0.0366 seconds