Spelling suggestions: "subject:"nonmathematical knowledge"" "subject:"inmathematical knowledge""
1 |
Mathematics According to Whom? Two Elementary Teachers and Their Encounters with the Mathematical HorizonBlackburn, Chantel Christine January 2014 (has links)
A longstanding problem in mathematics education has been to determine the knowledge that teachers need in order to teach mathematics effectively. It is generally agreed that teachers need a more advanced knowledge of the mathematical content that they are teaching. That is, teachers must know more about the content that they are teaching than their students and also know more than simply how to "do the math" at a particular grade level. At the same time, research does not clearly indicate what advanced mathematical knowledge (AMK) is useful in teaching or how it can be developed and identified in teachers. In particular, the potential AMK that is useful for teaching is too vast to be enumerated and may involve a great deal of tacit knowledge, which might be difficult to detect through observations of practice alone. In the last decade, researchers have identified that teaching practice entails a specialized knowledge of mathematics but the role of advanced mathematical knowledge in teaching practice remains unclear. However, the construct of horizon content knowledge (HCK) has emerged in the literature as a promising tool for characterizing AMK as it relates specifically to teaching practice. I propose an operationalization of HCK and then use that as a lens for analyzing the knowledge resources that a fourth and fifth grade teacher draw on in their encounters with the mathematical horizon. The analysis identifies what factors contribute to teachers' encounters with the horizon, characterizes the knowledge resources, or HCK, that teachers draw on to make sense of mathematics they engage with during their horizon encounters, and explores how HCK affords and constrains teachers' ability to navigate mathematical territory. My findings suggest that experienced teachers' HCK includes a situated, professional teaching knowledge that, while sometimes non-mathematical in nature, informs their understanding of mathematical content and teaching decisions. This professional teaching knowledge guides how teachers use and generate mathematical structures that sometimes align with established mathematical structures and in other cases do not. These findings have implications regarding the way in which the development of AMK is approached relative to teacher education, ongoing professional development, and curriculum design.
|
2 |
Investigando a ideia do possível em criançasNÓBREGA, Giselda Magalhães Moreno 11 February 2015 (has links)
Submitted by Isaac Francisco de Souza Dias (isaac.souzadias@ufpe.br) on 2016-02-29T18:35:41Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
TESE Giselda Magalhaes Moreno Nobrega.pdf: 801122 bytes, checksum: d01aa5909fdb53816240291d133f546c (MD5) / Made available in DSpace on 2016-02-29T18:35:41Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
TESE Giselda Magalhaes Moreno Nobrega.pdf: 801122 bytes, checksum: d01aa5909fdb53816240291d133f546c (MD5)
Previous issue date: 2015-02-11 / CNPQ / O pensamento sobre o possível (e consequentemente sobre o impossível e a certeza)
configura-se enquanto raciocínio abstrato, sendo esse um dos aspectos que caracteriza o
desenvolvimento cognitivo do sujeito. Isso porque conjecturar acerca de possíveis exige
habilidades hipotético-dedutivas, que permitem ao sujeito pensar sobre situações que
não constituem uma realidade imediata. Apesar da importância do tema, há na literatura
uma escassez de estudos acerca da concepção de possível. O estudo encontrado data de
1985, e consiste em um conjunto de experimentos realizados por Piaget e
colaboradores. Na visão piagetiana, as noções sobre o possível começam a emergir por
volta dos sete, oito anos. Porém, estudos recentes no campo da Psicologia da Educação
Matemática têm mostrado que crianças de cinco anos já são capazes de conjecturar
sobre o possível em situações que envolvem noções iniciais de probabilidade e análise
combinatória. Diante disso, este estudo teve por objetivo investigar a concepção do
possível em crianças no âmbito do conhecimento matemático e não-matemático.
Participaram deste estudo 180 crianças de ambos os sexos, alunas de duas escolas
particulares da cidade de Recife, igualmente divididas em seis grupos de participantes
em função da escolaridade, que variava do Infantil III ao 5º ano. Cada participante
respondeu a um conjunto de 36 perguntas acerca de ocorrência de três tipos de
situações: possíveis, impossíveis e certas de acontecer – tanto no domínio de
conhecimento matemático como não-matemático. Especificamente no domínio da
matemática, as questões eram referentes a probabilidade e análise combinatória. Os
dados foram analisados em função do desempenho (acertos) e das justificativas dadas
pelas crianças. Os resultados mostraram que aos cinco anos as crianças já são capazes
de pensar sobre a possibilidade (ou não) de ocorrência de situações hipotéticas a elas
apresentadas. Essa concepção de possível se desenvolve ao longo do tempo, de modo
que as crianças mais velhas não só apresentam um melhor desempenho como também
se tornam mais capazes de justificar suas respostas de maneira fundamentada. Os dados
mostraram também que com exceção das crianças do Infantil III (que evidenciam um
desempenho superior nas perguntas de conhecimento não-matemático), não houve
diferença significativa de desempenho entre as perguntas de conhecimento matemático
e não-matemático. Tal fato sugere que desde muito cedo as crianças já se mostram aptas
a conjecturar sobre o possível em diferentes contextos. No que se refere aos tipos de
questões (possibilidade, impossibilidade e certeza), constatou-se que as perguntas do
tipo possibilidade foram mais facilmente respondidas no âmbito do conhecimento
matemático do que no âmbito do conhecimento não-matemático. Já as perguntas do tipo
impossibilidade mostraram-se mais fáceis no conhecimento não-matemático. Nas
questões do tipo certeza o desempenho das crianças foi semelhante nesses dois
domínios de conhecimento. O fato das crianças apresentarem facilidade em pensar sobre
as possibilidades no âmbito do conhecimento matemático abre caminhos para
aprofundar a abordagem dos conteúdos de probabilidade e análise combinatória no
contexto escolar. Se crianças a partir do 3º ano do Ensino Fundamental já demonstram
ter o entendimento de situações probabilistas, talvez seja o momento de aprofundar mais
as noções de probabilidade trabalhadas em sala de aula. A partir do 3º ano as crianças
apresentaram um desempenho significativamente melhor em probabilidade do que em
combinatória, sugerindo a existência de um “freio” no desenvolvimento deste conceito,
que é essencialmente escolar. Ao que parece, os conteúdos de análise combinatória ou
não estão sendo trabalhados nas series iniciais, ou a maneira como se conduz esse trabalho não permite que as crianças se apropriem e desenvolvam o seu raciocínio
acerca dos princípios da combinatória. / The thought of the possible (and consequently of the impossible, as well as “ertainty) is
configured in the realm of abstract reasoning, being one of the aspects to characterize
the cognitive development of a subject. That can be justified by the fact that conjectures
about possibilities and outcomes, requires hypothetical-deductive skills that allow the
subject to think about situations that are not an immediate reality. Despite the
importance of the issue, there is a shortage, in the literature, of studies on the conception
of possible. The study found dates back to 1985 and consists of a set of experiments
conducted by Piaget and colleagues. According to their view, the notions about the
possible begin to emerge when the individual is about seven or eight years old.
However, recent studies in the field of Psychology of Mathematics Education have
shown that children under five years old are already able to conjecture about the
possible in situations involving basics of probability and combinatory analysis. This
study aimed to investigate the designation of possible in children under the
mathematical as well as non-mathematical knowledge. The study included 180 children
of both sexes, two private school students in the city of Recife, equally divided into six
groups of participants according to level of education, ranging from Childhood III to 5th
Grade. Each participant answered a set of 36 questions about occurrence of three types
of situations: possible, impossible and certain to happen - both in the mathematical and
non-mathematical knowledge domains. Specifically in the mathematical domain, the
questions concerned probability and combinatory analysis. Data were analyzed in terms
of performance (right/wrong) and the justifications given by subjects. The results
showed that at the age of five, children are capable of thinking about the possibility (or
not) of the occurrence of hypothetical situations presented to them. This design can
develop over time, in the sense that older children not only incur in a better performance
including well fundamented justifications to their responses. The data also showed that
with the exception of children from Childhood III (that show superior performance in
non-mathematical knowledge questions), there was no significant difference in
performance between the mathematical and non-mathematical knowledge questions.
This suggests that at early stages in life, children already show the ability to conjecture
about the possible in different contexts. With regard to the types of questions
(possibility and impossibility and certainty), it was found that the questions of the type
possibility were more easily answered in the context of the mathematical knowledge
that under the non-mathematical knowledge. Nonetheless the questions of impossibility
type proved to be better handled in the non-mathematical domain. In the certainty
questions the children's performance was similar regarding both domains of knowledge.
The fact that children presented their responses regarding possibility with ease within
the mathematical knowledge paves the way to deepen the approach of combinatorial
probability of content and analysis in the school context. If children from the 3rd year of
elementary school have already demonstrated understanding of probabilistic situations,
it may be time to deepen more the notions of probability explored in the classroom. Still
in this context, children from the 3rd year on, the subjects had significantly better
performance in probability than in combinatorial analysis, suggesting the existence of a
brake on the development of this concept, which is essentially established by school.
Apparently, the combinatorial contents are either not being developed in the early
school years, or the way that this work is conducted does not allow children to take
ownership and develop their own thinking about such principles.
|
3 |
Lärares introduktion av matematiklektioner : Vilka lärarkunskaper används och hur används dessa?Wallenström, Petra, Oreskovic, Johanna January 2018 (has links)
Syftet med föreliggande studie är att beskriva hur det matematiska innehållet beskrivs och förmedlas av lärare vid introduktion av matematiklektioner. Observationer av åtta grundskolelärare har genomförts. Balls, Thames och Phelps (2008) modell för MKT har använts för att sortera och analysera studiens empiri. Resultatet visar att lärarna kombinerar både ämnes- och pedagogiska kunskaper vid introduktion av matematiklektioner. Dock missar samtliga lärare att förklara och förmedla målet med matematiklektionen till eleverna. Resultatet diskuteras utifrån ett pragmatiskt perspektiv och en av slutsatserna som dras är att modellen för MKT kan användas av lärare som underlag vid planering och genomförande av matematiklektioner.
|
4 |
Mathematical Knowledge for Teaching in Elementary Pre-Service Teacher TrainingProctor, Jason 01 January 2019 (has links)
I
It was unclear how the teacher education curriculum at a regional university in the south central region of the United States developed mathematical knowledge for teaching (MKT) in prospective elementary teachers. Understanding how MKT develops during teacher training is important because MKT has been linked to student achievement. The purpose of this sequential explanatory mixed methods study was to examine how prospective elementary teachers' MKT developed while enrolled in a math and science strategies course. Guided by Ball et al.'s MKT framework and Silverman and Thompson's development of this framework, this study investigated changes in prospective teachers' MKT levels and teacher candidates' perceptions of instructional tasks that assisted in the development of MKT during the course. During the quantitative phase, teacher candidates (N = 30) completed the Number Concepts and Operations assessment as a pre- and posttest. Paired t test results showed no significant changes in candidates' MKT levels. During the qualitative phase, volunteers were interviewed about their perceptions of how the course influenced their development of MKT. Thematic analyses revealed that teacher candidates recognized instruction that developed MKT, perceived the strategies course to have little to no influence on MKT, and felt unprepared to teach math. Findings were used to develop a revised curriculum plan for developing prospective teachers' MKT. The findings may lead to positive social change in the form of curriculum revisions aimed at developing teacher candidates' MKT to improve future instruction. The project may be shared with other colleges to improve curriculum with the goal of improving the quality of math instruction statewide.
|
5 |
Vilket innehåll och hur ska det läras ut? : En kvalitativ intervjustudie om lärares kunskaper inom programmering i matematikämnet. / What content and how should it be taught? : A qualitative interview study about teachers' knowledge of programming in mathematics.Hultman, Sanna January 2023 (has links)
Programmering är ett relativt nytt innehåll i matematikämnet för årskurs 1–3 då det infördes i läroplanen 2018. Därmed finns ett intresse att undersöka hur lärare bedriver programmeringsundervisning. Denna studie genomfördes i syfte att bidra med kunskap om hur lärare i grundskolans tidiga år planerar och genomför undervisning omprogrammering. För att uppnå syftet användes frågeställningar kring hur lärare planerar undervisning om programmering, hur lärare arbetar med programmering i matematikundervisningen, samt vilka kunskaper lärare behöver för att undervisa om programmering. Fem semistrukturerade intervjuer har genomförts med verksamma lärare för att samla in data som analyserats utifrån det teoretiska ramverket Mathematical Knowledge for Teaching (MKT). Studiens resultat sammanställer vilka lärarkunskaper som framkommit inom programmering i relation till kunskapskategorierna knowledge of content and curriculum (KCC), knowledge of content and students (KCS), common content knowledge (CCK) samt knowledge of content and teaching (KCT) inom MKT. Resultatet visar att stegvisa instruktioner är ett centralt programmeringsinnehåll vid lärarnas planering, samt att både analoga och digitala arbetssätt används i matematikundervisningen. Vid analoga arbetssätt kan eleverna programmera varandra som robotar, och vid digitala arbetssätt kan eleverna arbeta i programmet ScratchJr.
|
6 |
Att undervisa i programmering utan programmeringsutbildning.En intervjustudie hur lärare utan utbildning i programmering implementerar programmering i sin undervisning.Bengtsson, Maja January 2021 (has links)
In the fall of 2018, programming was implemented in the swedish curriculum and then became a new element in mathematics education for grades 1-3. Teachers who took their degree before the implementation, lacks education in programming and there is interest in finding out how teaching about programming is conducted since it became part of the curriculum. The purpose of this study was to contribute with knowledge about how teachers have implemented programming in their teaching even though they lack education in it. Four semi-structured interviews have been conducted where the data from the interviews has been analyzed from Mathematical Knowledge for Teaching. The result shows that teachers without education in programming find it difficult to plan instruction in programming by themselves. In the teaching of programming the teachers focus on the central concepts in programming and that the programming should interest the students. It was difficult for teachers to assess the students in programming and the only assessment that teachers make is the formative assessment. / Hösten 2018 implementerades programmering i den svenska läroplanen och blev då ett nytt moment inom matematikundervisningen för årskurs 1-3. Lärare som innan detta tog sin lärarexamen saknar utbildning inom programmering och det finns intresse att ta reda på hur undervisningen kring programmering bedrivs sedan det blev en del av läroplanen. Syftet med denna studie var att bidra med kunskap om hur lärare har implementerat programmering i sin undervisning trots att de saknar utbildning inom det. Fyra stycken semistrukturerade intervjuer har gjorts där datan från intervjuerna har analyserats utifrån Mathematical Knowledge for Teaching. Resultatet visar på att lärare utan utbildning inom programmering har svårigheter att på egen hand planera undervisning i programmering. Under genomförandet av undervisningen fokuserar lärarna på att befästa centrala begrepp inom programmering och att väcka ett intresse hos eleverna. Det upplevdes svårt för lärarna att bedöma eleverna inom programmering och den enda bedömning som lärarna gör är den formativa bedömningen.
|
7 |
Att undervisa i programmering utan programmeringsutbildning.En intervjustudie hur lärare utan utbildning i programmering implementerar programmering i sin undervisning.Bengtsson, Maja January 2021 (has links)
In the fall of 2018, programming was implemented in the swedish curriculum and then became a new element in mathematics education for grades 1-3. Teachers who took their degree before the implementation, lacks education in programming and there is interest in finding out how teaching about programming is conducted since it became part of the curriculum. The purpose of this study was to contribute with knowledge about how teachers have implemented programming in their teaching even though they lack education in it. Four semi-structured interviews have been conducted where the data from the interviews has been analyzed from Mathematical Knowledge for Teaching. The result shows that teachers without education in programming find it difficult to plan instruction in programming by themselves. In the teaching of programming the teachers focus on the central concepts in programming and that the programming should interest the students. It was difficult for teachers to assess the students in programming and the only assessment that teachers make is the formative assessment. / Sammanfattning Hösten 2018 implementerades programmering i den svenska läroplanen och blev då ett nytt moment inom matematikundervisningen för årskurs 1-3. Lärare som innan detta tog sin lärarexamen saknar utbildning inom programmering och det finns intresse att ta reda på hur undervisningen kring programmering bedrivs sedan det blev en del av läroplanen. Syftet med denna studie var att bidra med kunskap om hur lärare har implementerat programmering i sin undervisning trots att de saknar utbildning inom det. Fyra stycken semistrukturerade intervjuer har gjorts där datan från intervjuerna har analyserats utifrån Mathematical Knowledge for Teaching. Resultatet visar på att lärare utan utbildning inom programmering har svårigheter att på egen hand planera undervisning i programmering. Under genomförandet av undervisningen fokuserar lärarna på att befästa centrala begrepp inom programmering och att väcka ett intresse hos eleverna. Det upplevdes svårt för lärarna att bedöma eleverna inom programmering och den enda bedömning som lärarna gör är den formativa bedömningen.
|
8 |
“1, 2, feijão com arroz...”: o conhecimento matemático na educação infantil / "1, 2, beans and rice ...": the mathematical knowledge in infantile educationGomes, Joana D’Arc dos Santos 28 August 2017 (has links)
Submitted by Liliane Ferreira (ljuvencia30@gmail.com) on 2018-03-12T11:49:00Z
No. of bitstreams: 2
Dissertação - Joana D'Arc dos Santos Gomes - 2017.pdf: 4274557 bytes, checksum: 79355cdc4aa4977721058571e98ed0bf (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-03-12T14:18:50Z (GMT) No. of bitstreams: 2
Dissertação - Joana D'Arc dos Santos Gomes - 2017.pdf: 4274557 bytes, checksum: 79355cdc4aa4977721058571e98ed0bf (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-03-12T14:18:50Z (GMT). No. of bitstreams: 2
Dissertação - Joana D'Arc dos Santos Gomes - 2017.pdf: 4274557 bytes, checksum: 79355cdc4aa4977721058571e98ed0bf (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-08-28 / The present research, entitled "1, 2, beans and rice ...": the mathematical knowledge in Infantile Education, is linked to the research line "Training, Teaching Professionalization and Educational Work", of the Graduate Program in Education, Faculty of Education of the Federal University of Goiás (FE/UFG). It also includes the project "Public Policies and Education of Children in Goiás: history, conceptions, projects and practices", developed by the Center for Studies and Research of Childhood and its Education in Different Contexts (Nepiec) of FE/UFG. It was understood that mathematics is a human and cultural production present in the life of children since its birth and also in the institutions of Infantile Education, which are configured as a privileged locus of human formation, enabling the insertion of children in culture through scientific instruments and knowledge. Based on these premises, the way mathematical knowledge is present in Infantile Education was investigated, in order to understand the conceptions around this knowledge, and the situations in which it is approached in the institutions. Based on historical-dialectical materialism, a theoretical and empirical research was carried out involving teachers, educational agents and children of the municipal education network of Senador Canedo/GO. For the empirical realization of the research, different methodological procedures were used, such as: questionnaires, observations, dialogues, records in photographic field journals and with recorders. It was observed that mathematics is present in the institutions of Infantile Education in various situations, passing through pedagogical practice, through the actions and interactions of children and teachers. However, it was considered that these situations did not involve children in significant moments of mathematical learning, limiting them to everyday experiences and actions with mathematics. It was understood that situations with mathematical knowledge in Infantile need to enable children to understand the relationships, uses and social functions of this knowledge, expanding and systematizing it. In this sense, mathematical knowledge, in the pedagogical practice of the first stage of Basic Education, must go beyond everyday experiences and contacts, considering that, limited to this, it can lead the child to the instrumental and utilitarian knowledge of mathematics. Thus, it is fundamental to involve children in situations that lead them to reflect theoretically on mathematics, so that they can form concepts. / A presente pesquisa, intitulada “1, 2, feijão com arroz...”: o conhecimento matemático na Educação Infantil, se vincula à linha de pesquisa “Formação, Profissionalização Docente e Trabalho Educativo”, do Programa de Pós-Graduação em Educação, da Faculdade de Educação da Universidade Federal de Goiás (FE/UFG). Compõe, ainda, o projeto “Políticas Públicas e Educação da Infância em Goiás: história, concepções, projetos e práticas”, desenvolvido pelo Núcleo de
Estudos e Pesquisas da Infância e sua Educação em Diferentes Contextos (Nepiec) da FE/UFG. Compreendeu-se que a matemática é uma produção humana e cultural presente na vida das crianças desde o seu nascimento e, também, nas instituições de Educação Infantil, que se configuram como lócus privilegiado de formação humana, possibilitando a inserção das crianças na cultura por meio dos instrumentos e conhecimentos científicos. Com base nessas premissas, investigou-se como o conhecimento matemático está presente na Educação Infantil, com o propósito de compreender as concepções em torno desse conhecimento, e as situações em que ele é abordado nas instituições. Baseado no materialismo histórico-dialético, realizou-se uma pesquisa teórica e empírica envolvendo professoras, agentes educativas e crianças da rede municipal de educação do município de Senador Canedo/GO. Para a realização da etapa empírica da pesquisa, utilizaram-se diferentes procedimentos metodológicos, tais como: questionários, observações, diálogos, registros em diários de campo fotográficos e com gravadores. Observou-se que a matemática está presente nas instituições de Educação Infantil em diversas situações, perpassando pela prática pedagógica, pelas ações e interações das crianças e professoras. Todavia, considerou-se que essas situações não envolveram as crianças em momentos significativos de aprendizagem matemática, limitando-as a experiências e ações cotidianas com a matemática. Entendeu-se que as situações com o conhecimento matemático na Educação Infantil necessitam possibilitar às crianças compreenderem as relações, os usos e as funções sociais deste conhecimento, ampliando-o e sistematizando-o. Neste sentido, o conhecimento matemático, na prática pedagógica da primeira etapa da Educação Básica, precisa ir além de experiências e contatos cotidianos, tendo em vista que, se limitando a isso, pode levar a criança ao conhecimento instrumental e utilitarista da matemática. Assim, faz-se fundamental envolver as crianças em situações que as levem a refletir teoricamente sobre a matemática, para que assim possam formar conceitos.
|
9 |
Pr?ticas educativas da Matem?tica e os impactos ambientais no sistema agroflorestal de um campus do Instituto Federal do Par? / Educational practices of Mathematics and environmental impacts on the agroforestry system of a campus of the Federal Institute of Par?RAMOS, Jos?lio Rodrigues 12 June 2017 (has links)
Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2018-02-27T17:45:04Z
No. of bitstreams: 1
2017 - Jos?lio Rodrigues Ramos.pdf: 3173266 bytes, checksum: 01a74160ed6c5964165f996d2c5b2d03 (MD5) / Made available in DSpace on 2018-02-27T17:45:16Z (GMT). No. of bitstreams: 1
2017 - Jos?lio Rodrigues Ramos.pdf: 3173266 bytes, checksum: 01a74160ed6c5964165f996d2c5b2d03 (MD5)
Previous issue date: 2017-06-12 / Agriculture is one of the activities that has impacted the environment more current day; Producing food in ways that reduce the impact of nature is a challenge to be overcome. The agroforestry system is an alternative of agricultural production associated to the cultivation of trees that reduce the devastation of nature. Through this research, possibilities of minimizing environmental impacts in agriculture were studied, based on the use of mathematical knowledge. This research has a qualitative approach, initially consisted of the application of questionnaires with open and closed questions to ten teachers and twenty students of a Technical Course in Agropecu?ria Integrated to High School in Par? Federal Institute of Education, Science and Technology, Marab? Rural Campus. During the development of the research several educational practices were carried out; In these activities, the students participated actively and in the end the action and its importance in the agricultural context was reassessed, always trying to enable those involved to perceive the importance of the knowledge built in the school in the daily activities. The objective was to investigate the view of both regarding the importance of educational practices developed in the agricultural context and the use of mathematical knowledge to reduce the damage caused to nature, particularly the agroforestry system. The results point to the importance of mathematics contents, articulated with the other areas of the curriculum, in the search for alternatives that reduce the environmental impacts on agricultural activity. / A agricultura ? uma das atividades que mais tem impactado o meio ambiente nos dias atuais. Produzir alimentos de forma que reduza o impacto causado a natureza ? um desafio a ser superado. O sistema agroflorestal, ? uma alternativa de produ??o agr?cola associada ao cultivo de ?rvores que reduzem a devasta??o da natureza. Atrav?s desta pesquisa, foram estudadas possibilidades de minimizar os impactos ambientais na agricultura, a partir do uso do conhecimento matem?tico. Esta pesquisa tem abordagem qualitativa, consistiu inicialmente na aplica??o de question?rios com perguntas abertas e fechadas a dez docentes e vinte discentes de um Curso T?cnico em Agropecu?ria Integrado ao Ensino M?dio do Instituto Federal de Educa??o, Ci?ncia e tecnologia do Par?, Campus Rural de Marab?. Durante o desenvolvimento da pesquisa v?rias pr?ticas educativas foram realizadas; nessas atividades os estudantes participavam ativamente e ao final foi reavaliada a a??o e a sua import?ncia no contexto agr?cola, procurando sempre possibilitar que os envolvidos percebessem a import?ncia dos conhecimentos constru?dos na escola nos afazeres do cotidiano. O objetivo foi investigar a vis?o de ambos em rela??o a import?ncia de pr?ticas educativas, desenvolvidas no contexto agr?cola, e o uso dos conhecimentos matem?ticos para a redu??o dos danos causados ? natureza, em particular ao sistema agroflorestal. Os resultados apontam para a import?ncia dos conte?dos de matem?tica, articulado com as demais ?reas do curr?culo, na busca de alternativas que reduzam os impactos ambientais na atividade agr?cola.
|
10 |
Saberes matem?ticos produzidos por agricultores: uma vis?o Etnomtem?tica na Educa??o Agr?cola / Mathematicians knowledge produced by farmers: A etnomtem?tica vision in agricultural educationBrito, Dejildo Roque de 16 November 2016 (has links)
Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2018-03-14T16:34:36Z
No. of bitstreams: 1
2016 - Dejildo Roque de Brito.pdf: 1304009 bytes, checksum: 003cb775c72bef034b53d252af97ad64 (MD5) / Made available in DSpace on 2018-03-14T16:34:36Z (GMT). No. of bitstreams: 1
2016 - Dejildo Roque de Brito.pdf: 1304009 bytes, checksum: 003cb775c72bef034b53d252af97ad64 (MD5)
Previous issue date: 2016-11-16 / This dissertation is a research work in a agricultural community in the municipality of Porto Grande, in the state of Amap? in Brazil. The research aimed to investigate the produced knowledge and practices and practiced by farmers in their working practice and the relationship of these with the educated knowledge. We propose the use of Ethnomathematics as a form of reflection on the activities of this social group. Data collected from visits in loci surveyed treat the mathematical methods used by these groups of workers and the application possibilities of these in the classroom. The methodology used for this research is a qualitative approach. We discuss the work of the farmers in that community. We interviewed farm workers in their working environment and analyzed the existing mathematical knowledge in their work activities. We present two schools of Macap? some of the problems dealt with farmers to analyze the content or not schooled students facing such problems. We realize that students have difficulties to solve problems because they can not relate them to the everyday agricultural activities. / Esta disserta??o ? um trabalho de pesquisa desenvolvido em uma Comunidade Agr?cola localizada no munic?pio de Porto Grande, no Estado do Amap?, no Brasil. A pesquisa teve como objetivo principal investigar os saberes e fazeres produzidos e praticados por agricultores em sua pr?tica laboral e a rela??o desses com os conhecimentos escolarizados. Propomos a utiliza??o da Etnomatem?tica como uma forma de reflex?o sobre as atividades desse grupo social. Os dados coletados nas visitas realizadas nos l?cus pesquisados tratam dos m?todos matem?ticos utilizados por esses grupos de trabalhadores e as possibilidades de aplica??o desses em sala de aula. A metodologia utilizada para a realiza??o desta pesquisa tem uma abordagem qualitativa. Discorremos sobre o trabalho desenvolvido pelos agricultores na referida comunidade. Entrevistamos trabalhadores agr?colas em seu ambiente de trabalho e analisamos os conhecimentos matem?ticos existentes em suas atividades laborais. Apresentamos em duas escolas de Macap? alguns dos problemas tratados com os agricultores para analisarmos os conte?dos escolarizados ou n?o dos alunos diante de tais problemas. Percebemos que os alunos t?m dificuldades para solucionar os problemas por n?o conseguirem relacionar os mesmos com as atividades agr?colas cotidianas
|
Page generated in 0.0607 seconds