• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • Tagged with
  • 10
  • 10
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Die parasitophore Vakuolenmembran der Mikrosporidienspezies Encephalitozoon cuniculi enthält keine endophagosomalen Markerproteine / The parasitophorous vacuole membrane of Encephalitozoon cuniculi lacks host cell membrane proteins

Fasshauer, Verena 11 December 2009 (has links)
No description available.
2

Caracterização da infecção de células musculares esqueléticas por Leishmania (L.) amazonensis. / Characterization of skeletal muscle cell infection by Leishmania (L.) amazonensis.

Arango, Natalia Fiesco 04 November 2016 (has links)
A leishmaniose é um grupo de doenças causadas por parasitos do gênero Leishmania com três manifestações clínicas principais: cutânea, mucocutânea e visceral. No Brasil, a leishmaniose é um importante problema de saúde pública pela alta incidência. O ciclo de vida da Leishmania envolve dois estágios principais de desenvolvimento, o promastigota que está presente no vetor, e o amastigota que é intracelular obrigatório do hospedeiro vertebrado. Este protozoário apresenta um alto grau de promiscuidade em quanto ao tipo de célula hospedeira, já que consegue infectar várias células do sistema imune como neutrófilos, macrófagos e células dendríticas, e também células não fagocíticas profissionais. Além disso, Leishmania pode infectar fibras musculares, como tem sido reportado em trabalhos prévios por meio de analises histológicas. Porém, as características da infecção por Leishmania no músculo têm sido pouco estudadas, o que permitiria estabelecer a importância destas células durante a infecção. O objetivo deste projeto foi avaliar as características biológicas da infecção por promastigotas de L. (L.) amazonensis em células musculares esqueléticas (SkMCs). Para atingir isso, camundongos C57BL/6 e BALB/c foram infectados nas patas traseiras, o musculo Flexor Digitorum Brevis (FDB) foi extraído e processado para coloração com hematoxilina/eosina ou imunohistoquímica. Culturas de SkMCs como mioblastos e miotubos foram infectadas com promastigotas metacíclicos de L. (L.) amazonensis por 72h. As infecções foram caracterizadas por meio de imunofluorescência indireta e microscopia confocal. As culturas de SkMCs foram caracterizadas e padronizadas por médio das proteínas Caveolina-1 e Caveolina-3, também foi medido o Ph dos vacúolos parasitóforos de mioblastos e miotubos com laranja de acridina (AO). Adicionalmente, culturas de SkMCs como miotubos foram pré-tratadas com Streptolisina O (SLO) e/ou infectadas com promastigotas metacíclicos de L. (L.) amazonensis por 72h, com o intuito de esclarecer como ocorre a entrada do parasito nas células musculares. Neste caso foi avaliada a produção de IL-1&#946;, IL-6, IL-10 e NO. Além disso, foi quantificado o mRNA de IL1&#946;, IL-6, iNOS, Ama2, UbH e Lyst. A infecção de células mostrou que L. (L.) amazonensis consegue infectar as fibras musculares in vivo, e também as células musculares esqueléticas (mioblastos e miotubos) in vitro. Além disso, o teste de viabilidade mostrou que L. (L.) amazonensis permanece viável dentro do vacúolo parasitóforo após 72h de infecção. Finalmente, foi observado que o tratamento com SLO pode favorecer a entrada do parasito nas SkMCs, como foi evidenciado pelas diferencias no nível de mRNA entre as células infectadas ou infectadas e tratadas com SLO. Os dados em conjunto sugerem que L. (L.) amazonensis tem a capacidade de infectar as células musculares esqueléticas, dado que consegue entrar nestas células, e permanecer viável dentro do vacúolo parasitóforo. A presença do parasito dentro das células induz uma resposta imune no músculo que pode estar relacionada com os processos de reparo do tecido. A entrada de L. (L.) amazonensis nas células musculares esqueléticas durante a infecção no hospedeiro mamífero é importante devido a sua capacidade de manter o parasito viável. / Leishmaniasis is a group of diseases caused by parasites from genus Leishmania. The main clinical manifestations are cutaneous, mucocutaneus and visceral leishmaniasis. In Brazil, leishmaniasis is an important public health problem because of the high incidence. The Leishmania life cycle has two principal developing stages: promastigote inside the insect vector, and amastigote, an obligate intracellular parasite of vertebrate-host cells. This protozoan is highly promiscuous in host cell type, because it infects different immune cells like neutrophils, macrophages and dendritic cells, and also non-professional phagocytes. Besides, Leishmania might infect muscle fibers, as previous studies suggested from histological analysis. However, the characteristics of Leishmania infection in muscle cells is poorly understood, which is important to understand the role of these cells during the infection. The aim of this study was to characterize the infection process by promastigotes of <i.>L. (L.) amazonensis in skeletal muscle cells (SkMCs). C57BL/6 and BALB/c mice were infected in hind footpads, the Flexor Digitorum Brevis (FDB) muscle was extracted and process to dyed with hematoxylin/eosin or immunohistochemistry. SkMCs as myoblasts and myotubes were infected with metaciclic promastigotes of L. (L.) amazonensis during 72h. The infections were characterized using indirect immunofluorescence and confocal microscopy. SkMCs culture were characterized and standardized through Caveolin-1 and Caveolin-3 proteins, and the pH of parasitophorous vacuoles both in myoblasts and myotubes was measured through acridine orange staining. In order to assess how the parasite invades the cells, myotubes were pretreated with SLO and/or infected with metaciclic promastigotes of L. (L.) amazonensis for 72h. The production of IL-1&#946;, IL-6, IL-10 and NO was quantified, and the mRNA levels of IL-1&#946;, IL-6, iNOS, Ama2, UbH and Lyst. The cell infection showed that L. (L.) amazonensis can infect muscle fibers in vivo, and skeletal muscle cells in vitro. Moreover, viability test showed the parasite remains viable inside the parasitophorous vacuole until 72h of infection. Finally, the SLO treatment can favor parasite entrance in SkMCs, as evidenced by differences in mRNA levels between infected cells or infected and treated with SLO. All data suggest that L. (L.) amazonensis can infect skeletal muscle cells, by entering into the cells, and remaining viable inside the parasitophorous vacuole. The parasite presence inside the muscle cells triggers an immune response that may be related with muscle repair processes. The entrance of L. (L.) amazonensis into SkMCs during infection in a mammal host is important because it contribute with parasite proliferation.
3

Caracterização da infecção de células musculares esqueléticas por Leishmania (L.) amazonensis. / Characterization of skeletal muscle cell infection by Leishmania (L.) amazonensis.

Natalia Fiesco Arango 04 November 2016 (has links)
A leishmaniose é um grupo de doenças causadas por parasitos do gênero Leishmania com três manifestações clínicas principais: cutânea, mucocutânea e visceral. No Brasil, a leishmaniose é um importante problema de saúde pública pela alta incidência. O ciclo de vida da Leishmania envolve dois estágios principais de desenvolvimento, o promastigota que está presente no vetor, e o amastigota que é intracelular obrigatório do hospedeiro vertebrado. Este protozoário apresenta um alto grau de promiscuidade em quanto ao tipo de célula hospedeira, já que consegue infectar várias células do sistema imune como neutrófilos, macrófagos e células dendríticas, e também células não fagocíticas profissionais. Além disso, Leishmania pode infectar fibras musculares, como tem sido reportado em trabalhos prévios por meio de analises histológicas. Porém, as características da infecção por Leishmania no músculo têm sido pouco estudadas, o que permitiria estabelecer a importância destas células durante a infecção. O objetivo deste projeto foi avaliar as características biológicas da infecção por promastigotas de L. (L.) amazonensis em células musculares esqueléticas (SkMCs). Para atingir isso, camundongos C57BL/6 e BALB/c foram infectados nas patas traseiras, o musculo Flexor Digitorum Brevis (FDB) foi extraído e processado para coloração com hematoxilina/eosina ou imunohistoquímica. Culturas de SkMCs como mioblastos e miotubos foram infectadas com promastigotas metacíclicos de L. (L.) amazonensis por 72h. As infecções foram caracterizadas por meio de imunofluorescência indireta e microscopia confocal. As culturas de SkMCs foram caracterizadas e padronizadas por médio das proteínas Caveolina-1 e Caveolina-3, também foi medido o Ph dos vacúolos parasitóforos de mioblastos e miotubos com laranja de acridina (AO). Adicionalmente, culturas de SkMCs como miotubos foram pré-tratadas com Streptolisina O (SLO) e/ou infectadas com promastigotas metacíclicos de L. (L.) amazonensis por 72h, com o intuito de esclarecer como ocorre a entrada do parasito nas células musculares. Neste caso foi avaliada a produção de IL-1&#946;, IL-6, IL-10 e NO. Além disso, foi quantificado o mRNA de IL1&#946;, IL-6, iNOS, Ama2, UbH e Lyst. A infecção de células mostrou que L. (L.) amazonensis consegue infectar as fibras musculares in vivo, e também as células musculares esqueléticas (mioblastos e miotubos) in vitro. Além disso, o teste de viabilidade mostrou que L. (L.) amazonensis permanece viável dentro do vacúolo parasitóforo após 72h de infecção. Finalmente, foi observado que o tratamento com SLO pode favorecer a entrada do parasito nas SkMCs, como foi evidenciado pelas diferencias no nível de mRNA entre as células infectadas ou infectadas e tratadas com SLO. Os dados em conjunto sugerem que L. (L.) amazonensis tem a capacidade de infectar as células musculares esqueléticas, dado que consegue entrar nestas células, e permanecer viável dentro do vacúolo parasitóforo. A presença do parasito dentro das células induz uma resposta imune no músculo que pode estar relacionada com os processos de reparo do tecido. A entrada de L. (L.) amazonensis nas células musculares esqueléticas durante a infecção no hospedeiro mamífero é importante devido a sua capacidade de manter o parasito viável. / Leishmaniasis is a group of diseases caused by parasites from genus Leishmania. The main clinical manifestations are cutaneous, mucocutaneus and visceral leishmaniasis. In Brazil, leishmaniasis is an important public health problem because of the high incidence. The Leishmania life cycle has two principal developing stages: promastigote inside the insect vector, and amastigote, an obligate intracellular parasite of vertebrate-host cells. This protozoan is highly promiscuous in host cell type, because it infects different immune cells like neutrophils, macrophages and dendritic cells, and also non-professional phagocytes. Besides, Leishmania might infect muscle fibers, as previous studies suggested from histological analysis. However, the characteristics of Leishmania infection in muscle cells is poorly understood, which is important to understand the role of these cells during the infection. The aim of this study was to characterize the infection process by promastigotes of <i.>L. (L.) amazonensis in skeletal muscle cells (SkMCs). C57BL/6 and BALB/c mice were infected in hind footpads, the Flexor Digitorum Brevis (FDB) muscle was extracted and process to dyed with hematoxylin/eosin or immunohistochemistry. SkMCs as myoblasts and myotubes were infected with metaciclic promastigotes of L. (L.) amazonensis during 72h. The infections were characterized using indirect immunofluorescence and confocal microscopy. SkMCs culture were characterized and standardized through Caveolin-1 and Caveolin-3 proteins, and the pH of parasitophorous vacuoles both in myoblasts and myotubes was measured through acridine orange staining. In order to assess how the parasite invades the cells, myotubes were pretreated with SLO and/or infected with metaciclic promastigotes of L. (L.) amazonensis for 72h. The production of IL-1&#946;, IL-6, IL-10 and NO was quantified, and the mRNA levels of IL-1&#946;, IL-6, iNOS, Ama2, UbH and Lyst. The cell infection showed that L. (L.) amazonensis can infect muscle fibers in vivo, and skeletal muscle cells in vitro. Moreover, viability test showed the parasite remains viable inside the parasitophorous vacuole until 72h of infection. Finally, the SLO treatment can favor parasite entrance in SkMCs, as evidenced by differences in mRNA levels between infected cells or infected and treated with SLO. All data suggest that L. (L.) amazonensis can infect skeletal muscle cells, by entering into the cells, and remaining viable inside the parasitophorous vacuole. The parasite presence inside the muscle cells triggers an immune response that may be related with muscle repair processes. The entrance of L. (L.) amazonensis into SkMCs during infection in a mammal host is important because it contribute with parasite proliferation.
4

Vacúolos parasitóforos induzidos porLeishmania amazonensis e Leishmania major interagem de forma distintacom a via autofágica

Dias, Beatriz Rocha Simões January 2014 (has links)
Submitted by Ana Maria Fiscina Sampaio (fiscina@bahia.fiocruz.br) on 2014-10-29T13:31:11Z No. of bitstreams: 1 Beatriz Rocha Simone Dias Vacúolos....pdf: 43303992 bytes, checksum: 310fce5b6b7557207067a51be3ca3c64 (MD5) / Made available in DSpace on 2014-10-29T13:31:11Z (GMT). No. of bitstreams: 1 Beatriz Rocha Simone Dias Vacúolos....pdf: 43303992 bytes, checksum: 310fce5b6b7557207067a51be3ca3c64 (MD5) Previous issue date: 2014 / Fundação Oswaldo Cruz. Centro de Pesquisa Gonçalo Moniz. Salvador, BA, Brasil / A Leishmania é um parasito intracelular obrigatório que vive e se multiplic adentro dos vacúolos parasitóforos em macrófagos no hospedeiro vertebrado. Apesar dos vacúolos induzidos por diferentes espécies de Leishmania apresentarem semelhanças bioquímicas, esses compartimentos apresentam diferenças significativas nos seus tamanhos. Os vacúolos parasitóforos induzidos por Leishmania mexicana e Leishmania amazonensis apresentam grandes dimensões e contêm uma grande quantidade de amastigotas, enquanto que os induzidos por Leishmania major e Leishmania donovani são pequenos e com pouco espaço ao redor das amastigotas. Estudos recentes demonstraram que compartimentos induzidos por microrganismos intracelulares são capazes de interagir com a via autofágica e esta pode controlar ou promover o estabelecimento da infecção a depender da natureza do microrganismo. Até o momento, poucos estudos foram realizados para avaliar o papel da autofagia na biogênese e maturação dos vacúolos parasitóforos induzidos por Leishmania. Recentemente, foi demonstrado que em macrófagos de camundongos BALB/c, a indução de autofagia provoca um aumento na carga parasitária de L. amazonensis, no entanto, não é capaz de aumentar a carga parasitária de L. major. Além disso, estudos indicam que vacúolos parasitóforos de L. mexicana adquirem macromoléculas do citoplasma da célula hospedeira por meio de microautofagia. Uma vez que L. amazonensis integra o mesmo complexo que L. mexicana, nossa hipótese é que vacúolos parasitóforos induzidos por L. amazonensis interagem com a via autofágica.Assim, o presente estudo tem como bjetivo verificar e comparar a participação da autofagia na infecção por L. amazonensis ou L. major em macrófagos murinos. Para este fim, avaliamos quanto a características autofágicas, os vacúolos parasitóforos induzidos por L. amazonensis ou L. major em macrófagos de camundongo CBA e analisamos a influência da superexpressão de LC3 sobre a sobrevivência de L. amazonensis ou L. major em macrófagos infectados. Inicialmente, macrófagos de camundongos CBA foram infectados com L. amazonensis ou L. major e incubados com ysoTracker, marcador de compartimentos lisossomais, ou DQ-BSA, marcador de compartimentos degradativos. Além disso, foi avaliada a presença de LAMP, proteína lisossomal, e LC3, proteína específica de autofagossomo, na membrana destes vacúolos. Em seguida, a co- localização dos parasitos com os vacúolos parasitóforos contendo estes marcadores foi quantificada. Nossos resultados demostraram um maior percentual de co-localização tanto do LysoTracker como doDQ-BSAcom parasitos em vacúolos no interior de macrófagos infectados com L. major em comparação com aqueles infectados com L. amazonensis. No entanto, não houve diferença no percentual de co-localização de LAMP com L. major ou L. amazonensis e foi observado um maior percentual de co-localização do LC3 com parasitos em macrófagos infectados com L. amazonensis em comparação com aqueles infectados com L. major. Posteriormente, avaliamos o efeito da superexpressão da LC3 na infecção por L. amazonensis ou L. major. Células de linhagem macrofágica RAW foram transfectadas com o plasmídeo contendo a sequência codificante para a LC3 e infectadas com L. amazonensis ou L. major. Nós observamos uma reduçãono percentual de infecção por L. amazonensis e L. major nas células RAW- pmRFP-LC3 em comparação às controle. Essa diminuição na infecção se deu por inibição da fagocitose de L. amazonensis e L. major pois os parasitos continuam a interagir com a membrana das células RAW-pmRFP-LC3, mas não são internalizadas. Em conjunto, estes dados demonstram que os vacúolos parasitóforos de L. amazonensis e L. major interagem com compartimentos da via autofágica de forma distinta e que a superexpressão de LC3 reduz a fagocitose de L. amazonensis e L. major por células RAW, o que resulta na redução da infecção / Leishmania is an intracellular parasite that lives and multiplies within parasitophorous vacuoles in macrophages in the vertebrate host. Despite the fact that vacuoles induced by different species of Leishmania present biochemical similarities, these compartments have significant differences in their sizes and composition. The parasitophorous vacuoles induced by Leishmania mexicana and Leishmania amazonensis are large and contain a large number of amastigotes, while vacuoles induced by Leishmania major and Leishmania donovani are small and tight. Recent studies have demonstrated that depending on the type of intracellular microorganism, the induced compartments can interact with the autophagic pathway and control or promote the establishment of infection. To date, few studies have been conducted to evaluate the role autophagic process plays in the biogenesis and maturation of parasitophorous vacuoles induced by Leishmania. Recently, it has been demonstrated that in macrophages of BALB/c mice, the induction of autophagic causes an increase in parasitic load of L. amazonensis, but not L. major. Furthermore, other studies indicate that L. mexicana-induced parasitophorous vacuoles acquire macromolecules from the cytoplasm of the host cell through microautophagy. Once L. amazonensis belongs to the same complex that L. mexicana, our hypothesis is that L. amazonensis-induced parasitophorous vacuoles interact with the autophagic pathway. Thus, the present study aims to evaluate and compare the role autophagic process plays in Leishmania infection. We evaluated L. amazonensis- or L. major-induced parasitophorous vacuoles regarding their autophagic characteristics and we analyzed the influence of the overexpression of LC3 on the survival of parasites in infected macrophages. Initially, macrophages of CBA mice were infected with L. amazonensis or L. major and incubated with a marker of lysosomal compartments, LysoTracker, or a marker of degrading compartments, DQ-BSA. In addition, we evaluated the presence of the lysosomal membrane protein, LAMP-1, and a protein specific of autophagossomes, LC3 in the membrane of these vacuoles. Then, the colocalization of parasites with the marker labeled-compartments was quantified. Our results demonstrated a higher percentage of colocalization of both LysoTracker and DQ-BSA with parasites in vacuoles within macrophages infected with L. major in comparison with those infected with L. amazonensis. However, there was no difference in the percentage of colocalization of LAMP with L. major or L. amazonensis. We also observed a higher percentage of LC3-co-localizing with parasites in macrophages infected with L. amazonensis in comparison with those infected with L. major. Subsequently, we evaluated the effect of overexpression of LC3 in macrophages infected with L. amazonensis or L. major. RAW cells were transfected with the plasmid containing the coding sequence for the LC3 (RAW-pmRFP-LC3) and then were infected with L. amazonensis or L. major stationary phase promastigotas. A reduction was observed in the percentage of infected RAW-pmRFP-LC3 cells with L. amazonensis and L. major compared to control cells. This decrease in the percentage of infected cells is due to the inhibition of phagocytic ability of RAW-pmRFP-LC3 cells, since the parasites continue to interact with cell membrane, but is not internalized. Together, these findings show that L. amazonensis- and L. major-induced parasitophorous vacuoles interact differently with compartments of the autophagic pathway and that the overexpression of LC3 reduces phagocytosis of both L. amazonensis and L. major by RAW-pmRFP-LC3 cells resulting in the reduction of infection.
5

METHODS DEVELOPMENT IN QUALITATIVE AND QUANTITATIVE PROTEOMICS

Liu, Ting 01 January 2008 (has links)
Proteomics based on liquid chromatography coupled to mass spectrometry has developed rapidly in the last decade and become a powerful tool for protein mixtures analysis. LC-MS based proteomics involves four steps, sample preparation, liquid chromatography, mass spectrometry and bioinformatics. Improvements in each step have extended its applications to new biological research areas. This dissertation mainly focuses on method developments in both qualitative and quantitative proteomics. The first part of this dissertation focuses on qualitative analysis of T. gondii Parasitophorous Vacuole Membrane (PVM) proteins, which is very important for T. gondii’s survival. The hypothesis of this study is that proteomic approaches coupled with immunoprecipitation using polyclonal antisera as affinity reagents can successfully characterize the proteome of the T. gondii PVM. The “Three-layer Sandwich Gel Electrophoresis” (TSGE) protocol, was developed to contend with efficient salt removal and protein concentration from challenging samples. Furthermore, the TSGE coupled to 2D-LC-MS/MS was proven to be effective with the proteomic analysis of complex protein mixtures like T. gondii whole cell lysate, allowing for high-throughput protein analysis from complex samples. By using the TSGE-2D-LC-MS/MS methodology, we successfully identified 61 proteins from the PVM samples and constructed the PVM proteome. The second part of this dissertation describes a novel method for selecting an appropriate isocyanate reagent for potential quantitative proteomics application. Our hypothesis is alteration of isocyanate structure will change fragmentation pattern and ESI property of isocyanate modified peptides. The CID property of N-terminal modified peptides by phenyl isocyanate (PIC), phenethyl isocyanate (PEIC) and pyridine-3- isocyanate (PyIC) was systematically studied using LC-ESI-MS/MS. We observed that adjustment of isocyanate structure changed both ESI and fragmentation characteristic of modified peptides. We rationalized the decrease of protonation of PIC and PEIC modified peptides results from the neutral property of the both reagents. The electron withdrawing feature of PyIC leads to significant reduction of fragments during CID. Therefore, we designed a new isocyanate reagent, 3-(isocyanatomethyl) pyridine (PyMIC). The results revealed that PyMIC modified peptides had more suitable ESI properties and generated more sequence-useful fragments compared to PIC, PyIC and even unmodified peptides. PyMIC is a more appropriate labeling reagent for quantitative proteomics applications.
6

Papel das células B-1 na infecção por Leishmania (L.) amazonensis. / Role of B-1 cells in the infection by Leishmania (L.) amazonensis

Ferreira, Natália Soares 20 April 2016 (has links)
Parasitos do gênero Leishmania causam um espectro de doenças chamadas de leishmaniose. Para compreender de melhor forma a imunobiologia da Leishmania, o estudo de outras células envolvidas no processo de infecção do parasito se torna importante. As células B-1 são encontradas principalmente nas cavidades peritoneal e pleural, tendo como característica a capacidade de se diferenciar em células fagocíticas. Este trabalho teve como objetivo avaliar o papel das células B-1 na infecção por L. (L.) amazonensis. Os resultados mostraram que, assim como os macrófagos, os B-1CDPs são infectados pelo mecanismo de fagocitose e permitem a multiplicação da Leishmania no seu interior. Além disso, os vacúolos parasitóforos formados nos B-1CDPs apresentaram ser maiores do que dos macrófagos. Portanto, os dados com B1CDPs sugerem que estas células podem possuir um papel relevante na infecção por L. (L.) amazonensis, podendo ser considerados células hospedeiras importantes durante a infecção devido à incapacidade de responder de maneira eficaz para a eliminação dos parasitos. / The genus Leishmania parasites cause a spectrum of diseases called leishmaniasis. To better understand the immunobiology of Leishmania, the study of other cells involved in parasite infection process becomes important. The B-1 cells are found predominantly in the peritoneal and pleural cavities, whose feature consist on an ability to differentiate into phagocytic cells. This study aimed to evaluate the role of B-1 cells in the infection by L. (L.) amazonensis. The results showed that, like macrophages, B-1CDPs are infected by a mechanism of phagocytosis and allow the multiplication of Leishmania within. Furthermore, the parasitophorous vacuoles in the B-1CDPs showed to be larger than those formed in the macrophages. Therefore, B1CDPs can have an important role in infection by L. (L.) amazonensis and can be considered important host cells during infection due to inability to respond effectively to the elimination of parasites.
7

Toxoplasma gondii : étude du réseau de nanotubes membranaires de la vacuole parasitophore et des protéines GRA associées / Toxoplasma gondii,parasitophorous vacuole,dense granules,PI(4,5) P2,membranous tubules , amphipathic alpha helices

Bittame, Amina 14 January 2011 (has links)
Dans la cellule hôte, Toxoplasma gondii se développe dans une vacuole parasitophore (VP) caractérisée par un réseau de nanotubes membranaires (RNM) dont la composition, le mécanisme de formation et la fonction sont obscures. Quelques protéines GRA, dont GRA2 et GRA6, sont sécrétées dans la VP à partir des granules denses puis ciblées au RNM. Cette localisation s'accorde avec l'hélice alpha-hydrophobe de GRA6 et les hélices alpha-amphipathiques de GRA2. Avant et après sécrétion dans la VP, les protéines GRA sont partiellement solubles. Le phénotype de parasites délétés de leur(s) gène(s) GRA2 et/ou GRA6 révèle que ces 2 protéines sont indispensables à la formation du RNM. J'ai montré 1) qu'avant leur insertion dans les membranes de la VP, la solubilité des protéines GRA est préservée grâce à des interactions hydrophobes avec peut être, des micelles de l'espace vacuolaire ; 2) que GRA12, une nouvelle protéine du RNM, n'interagit pas avec GRA2 dans ces membranes. 3) que l'adressage spécifique de GRA6 au RNM est déterminé par son domaine N-terminal hydrophile. 4) J'ai montré que GRA2 recombinante a une affinité pour le phosphatidyl inositol (4, 5) diphosphate avec lequel elle interagit via ses hélices alpha-amphipathiques. GRA2 déforme des liposomes de courbure membranaire importante pour générer de courts tubules membranaires. La tubulation est accentuée par GRA6 qui s'associe aux liposomes, quelque soit leur diamètre. Ces résultats valident le rôle direct de GRA2 et GRA6 dans la formation du RNM et laissent envisager un modèle de sa formation, dans lequel GRA6 favoriserait l'assemblage de vésicules lipidiques que GRA2 fusionnerait en tubules membranaires. / Within the host cell, Toxoplasma gondii multiplies in a parasitophorous vacuole (PV) characterized by a membranous nanotubular network (MNN). Its components, the mechanism of its formation and its function remain unknown. A few GRA proteins, including GRA2 and GRA6, are secreted from the dense granules into the PV and are targeted to the MNN. This location is in agreement with the hydrophobic alpha-helix predicted in GRA6 and with the GRA2 amphipatic alpha-helices. However, before and after their secretion in the PV, the GRA proteins are partially soluble. The phenotypic analysis of parasites deleted from their GRA2 and/or GRA6 gene(s) had shown that both these proteins are indispensable for MNN formation. During my thesis, I showed that before their insertion into the PV membranes, the GRA proteins solubility is preserved by establishing hydrophobic interactions, likely with micelles in the PV space. I also showed that GRA12, a novel MNN-associated protein, does not interact with GRA2 within these membranes. Using GRA6 as a model of study, I contributed to demonstrate that the GRA6 specific targeting to the MNN relies on its N-terminal hydrophilic domain. I demonstrated that recombinant GRA2 recognizes inositol (4, 5) biphosphate with which it interacts via its amphipatic alpha-helices. GRA2 deforms liposomes of steep membrane curvature into short membranous tubules. The tubulation is increased by GRA6 which associates with liposomes independently of their diameter. These results validate the direct role of both GRA2 and GRA6 in MNN formation and led us to propose a model in which GRA6 would tether vesicles, the fusion of which would be induced by GRA2.
8

Infection des hépatocytes par Plasmodium : rôle des protéines de micronèmes des sporozoïtes / Plasmodium infection of hepatocytes : role of protein micronemes sporozoltes

Topçu, Selma 10 March 2016 (has links)
L’infection par Plasmodium, parasite responsable du paludisme, débute par l’injection de sporozoïtes par un moustique du genre Anopheles. La première cible des sporozoïtes est le foie, où le parasite se développe avant l’initiation d'une phase d'infection érythrocytaire symptomatique. Dans le foie, les sporozoïtes pénètrent activement les hépatocytes en formant une vacuole parasitophore, dans laquelle le parasite se multiplie. Cette étape, appelée invasion productive, implique des facteurs parasitaires et des protéines de l’hôte, notamment CD81. Toutefois, les mécanismes mis en jeu restent méconnus. À l’aide d’une nouvelle approche génétique développée au laboratoire, nous avons produit de nouvelles souches de parasites transgéniques fluorescents, notamment chez le parasite de rongeurs P. yoelii. L’utilisation des parasites de P. yoelii GFP et d’un système cellulaire de lignées permissives ou non à l’infection, nous a permis de mieux caractériser les mécanismes cellulaires et moléculaires mis en jeu lors de l’invasion. Nous avons confirmé que l’invasion productive est précédée d’une phase de traversée cellulaire. Nous avons découvert et caractérisé la formation de vacuoles transitoires lors de cette phase de traversée cellulaire, distinctes des vacuoles parasitophores productives. Nos résultats montrent que le parasite se sert d’une perforine parasitaire, PLP1 (Perforin-Like Protein 1), pour sortir de cette vacuole transitoire et échapper à la dégradation par les lysosomes cellulaires. Une fois activés, les sporozoïtes passent d’un mode de traversée à un mode d’invasion productive. Nous avons montré que CD81 joue un rôle dans l’invasion productive. CD81 est nécessaire pour induire la sécrétion des rhoptries parasitaires, impliquées dans la formation de la jonction mobile, une structure à travers laquelle le parasite se glisse pour pénétrer dans la cellule. Nous avons pu aussi montrer qu’une autre protéine des hépatocytes, SRBI (scavenger receptor BI), définit une voie d’entrée indépendante de CD81 pour P. berghei et P. vivax. Par une approche génétique originale, nous avons pu montrer que deux protéines des micronèmes des sporozoïtes, P52 et P36, jouent un rôle majeur dans l’entrée via CD81 et SRBI, et mis à jour un lien fonctionnel entre P36 et l’entrée via SRBI. Enfin, nous avons développé plusieurs approches génétiques pour cibler le gène d’ama1 chez P. yoelii, une protéine des micronèmes impliquées dans la formation de la jonction. Nos résultats nous éclairent un peu plus sur les mécanismes d’invasion des sporozoïtes, et ouvrent des perspectives intéressantes vers le développement de nouvelles stratégies vaccinales. / Infection with the Plasmodium parasite begins with the injection of sporozoites by an Anopheles mosquito. The first target is the liver where the parasite replicates as a pre-requisite to the development of pathogenic blood stage infection. In the liver, sporozoites penetrate hepatocytes forming a parasitophorous vacuole in which the parasite multiplies. This step, the productive invasion, involves parasitic factors and host proteins, particularly CD81, but the underlying mechanisms remain largely unknown. To facilitate monitoring of sporozoite invasion, we generated novel transgenic fluorescent parasites, using a new selection strategy named GOMO (gene out marker out) in the rodent parasite P. yoelii. The use of this transgenic parasite and of host cell lines permissive or not to infection, has allowed us to better characterize the cellular and molecular mechanisms involved during invasion. We have confirmed that the productive invasion is preceded by a cell traversal phase. We discovered and characterized the formation of transient vacuoles during this step, before formation of the parasitophorous vacuole. Our results uncovered that the perforin-like protein (PLP1) mediates sporozoite egress from transient vacuoles and escape from degradation by the cell lysosomes. Once activated, the sporozoites switch from the mode of cell traversal to productive invasion. We show that CD81 plays a role in the productive invasion. CD81 is necessary to induce the secretion of rhoptries proteins, involved in the formation of the moving junction, a structure through which the parasite glides to enter the cell. We could also show that another hepatocyte protein, SR-B1 (scavenger receptor B1), defines a CD81-independent pathway for P. berghei and P. vivax infection. Using an original genetic approach, we have shown that two sporozoite micronemal proteins, P52 and P36, play a role in the entry via CD81 and SR-B1, and highlighted a functional link between P36 and entry via SR-B1. Finally, we have developed several genetic approaches to target ama1 gene in P. yoelii, which encodes a protein involved in the formation of the moving junction. Altogether, our results contribute to improve our understanding of the mechanisms of sporozoite invasion, and open interesting perspectives for the development of novel vaccine strategies.
9

Papel das células B-1 na infecção por Leishmania (L.) amazonensis. / Role of B-1 cells in the infection by Leishmania (L.) amazonensis

Natália Soares Ferreira 20 April 2016 (has links)
Parasitos do gênero Leishmania causam um espectro de doenças chamadas de leishmaniose. Para compreender de melhor forma a imunobiologia da Leishmania, o estudo de outras células envolvidas no processo de infecção do parasito se torna importante. As células B-1 são encontradas principalmente nas cavidades peritoneal e pleural, tendo como característica a capacidade de se diferenciar em células fagocíticas. Este trabalho teve como objetivo avaliar o papel das células B-1 na infecção por L. (L.) amazonensis. Os resultados mostraram que, assim como os macrófagos, os B-1CDPs são infectados pelo mecanismo de fagocitose e permitem a multiplicação da Leishmania no seu interior. Além disso, os vacúolos parasitóforos formados nos B-1CDPs apresentaram ser maiores do que dos macrófagos. Portanto, os dados com B1CDPs sugerem que estas células podem possuir um papel relevante na infecção por L. (L.) amazonensis, podendo ser considerados células hospedeiras importantes durante a infecção devido à incapacidade de responder de maneira eficaz para a eliminação dos parasitos. / The genus Leishmania parasites cause a spectrum of diseases called leishmaniasis. To better understand the immunobiology of Leishmania, the study of other cells involved in parasite infection process becomes important. The B-1 cells are found predominantly in the peritoneal and pleural cavities, whose feature consist on an ability to differentiate into phagocytic cells. This study aimed to evaluate the role of B-1 cells in the infection by L. (L.) amazonensis. The results showed that, like macrophages, B-1CDPs are infected by a mechanism of phagocytosis and allow the multiplication of Leishmania within. Furthermore, the parasitophorous vacuoles in the B-1CDPs showed to be larger than those formed in the macrophages. Therefore, B1CDPs can have an important role in infection by L. (L.) amazonensis and can be considered important host cells during infection due to inability to respond effectively to the elimination of parasites.
10

Die parasitophore Vakuole des Mikrosporidiums Encephalitozoon cuniculi: Biogenese und Metabolitaustausch / The parasitophorous vacuole of the microsporidian Encephalitozoon cuniculi: Biogenesis and metabolite exchange

Rönnebäumer, Karin 30 October 2008 (has links)
No description available.

Page generated in 0.4772 seconds