• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 52
  • 17
  • 14
  • 13
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Dysfonction synaptique des interneurones GABAergiques corticaux : implications des mutations du gène Cacna1a dans le développement de l’épilepsie et des déficits cognitifs

Lupien-Meilleur, Alexis 12 1900 (has links)
Les mutations héréditaires causant une perte de fonction du gène CACNA1A, encodant la sous-unité α1 du canal CaV2.1, entraînent chez l’humain le développement d’une ataxie épisodique s’accompagnant parfois d’épilepsie et d’atteintes cognitives. Également, des mutations de novo de CACNA1A ont été rapportées chez près de 1 % des enfants souffrant d’encéphalopathies épileptogènes, ainsi que chez des enfants présentant un trouble du spectre de l’autisme isolé. Ensemble, ces données suggèrent que les altérations de CACNA1A peuvent jouer un rôle central dans la pathogenèse de divers troubles neurodéveloppementaux avec atteintes cognitives et développementales. D’ailleurs, notre évaluation de 16 patients, issus de quatre familles non consanguines, porteurs de différentes mutations induisant une perte de fonction de CACNA1A a révélé l’existence de déficits neurocognitifs modérés à sévères chez la majorité des individus atteints, allant de déficits d’attention avec difficultés d’apprentissage à une déficience intellectuelle avec ou sans trouble du spectre de l’autisme. Alors que les mécanismes pathologiques exacts par lesquels l’haploinsuffisance de CACNA1A induit de tels troubles cognitifs sont encore indéterminés, les mécanismes conduisant à l’épilepsie ont été mieux étudiés. La délétion embryonnaire du canal CaV2.1 dans les interneurones (IN) émanant de l’éminence ganglionnaire médiale (MGE), incluant les IN exprimant la parvalbumine (IN PV) et ceux exprimant la somatostatine (IN SOM), entraîne une épilepsie avec crises tonico-cloniques ainsi que des crises de type absences résultant en une mortalité précoce chez la souris Nkx2.1Cre; Cacna1ac/c. Cependant, la perte du canal dans les IN SOM, chez le modèle SOMCre; Cacna1ac/c, n’induit pas d’épilepsie et la perte ciblée aux IN PV, chez le modèle PVCre; Cacna1ac/c, entraîne une épilepsie caractérisée par des crises d’absence et de rares crises motrices. L’objectif de cette thèse consistait donc, dans un premier temps, de comprendre les mécanismes sous-jacents aux différences épileptiques entre les modèles Nkx2.1Cre; Cacna1ac/c et PVCre; Cacna1ac/c. Les techniques combinées d’imagerie immunohistochimique, d’imagerie 2-photon, d’électrophysiologie, d’analyse d’électroencéphalogramme et de croisement de modèles conditionnels nous ont permis d’identifier les conséquences cellulaires et électrophysiologiques de la délétion de Cacna1a de manière précoce ou tardive dans les IN PV. Elles ont dévoilé, chez le modèle PVCre; Cacna1ac/c, un gain d’inhibition dendritique dans les cellules pyramidales (CP) résultant d’une arborescence axonale accrue des IN SOM. Ce remodelage, dépendant de mTORC1, suffit à prévenir l’apparition de crises motrices et l’inhibition de cette croissance axonale à l’aide de rapamycine renverse l’effet protecteur observé chez la souris PVCre; Cacna1ac/c. Enfin, nous démontrons que l’activation chémogénétique des IN SOM corticaux prévient l’apparition de crises motrices dans un modèle d’épilepsie induite à l’acide kaïnique. Puisque les IN PV en panier du cortex sont essentiels à plusieurs processus cognitifs, telles la flexibilité cognitive et l’attention, qu’ils sont affectés par la perte de fonction homozygote de CaV2.1 et afin de reproduire une condition semblable à celle de nos patients, nous avons exploré dans un deuxième temps l’implication pathologique de ces neurones dans les troubles cognitifs associés à l’haploinsuffisance de Cacna1a. À l’aide du modèle murin portant une délétion hétérozygote de Cacna1a ciblée aux populations neuronales exprimant la PV (PVCre; Cacna1ac/+), nous démontrons par électrophysiologie que la perte du canal CaV2.1 dans ces neurones suffit à réduire l’inhibition corticale. Les tests comportementaux incluant l’Openfield, l’Elevated Plus Maze, le Morris Water Maze, une tâche testant la rigidité cognitive ainsi qu’une tâche évaluant l’attention, ont démontré que les mutants PVCre; Cacna1ac/+ présentent de l’impulsivité, de la rigidité cognitive ainsi qu’un déficit d’attention sélective. Bien que l’ablation homozygote du canal réduise la relâche synaptique des CP chez le mutant homozygote Emx1Cre; Cacna1ac/c, aucun déficit de relâche synaptique, comportemental ou cognitif n’a été observé chez les souris Emx1Cre; Cacna1ac/+ suggérant qu’au niveau cortical, la délétion hétérozygote de Cacna1a affecte sélectivement les IN PV. De plus, à l’aide de délétions ciblées au cortex orbito-frontal (OFC) et au cortex préfrontal médial (mPFC), nous démontrons que l’haploinsuffisance de Cacna1a dans ces régions entraîne de la rigidité cognitive et des troubles de l’attention, respectivement. Enfin, nous révélons que ces deux atteintes peuvent être corrigées via une activation chémogénétique locale des IN PV. Dans son ensemble, ce travail contribue au développement des connaissances portant sur les délétions de Cacna1a. Il présente également de nouvelles avenues pour le traitement de crises épileptiques motrices et pour la prise en charge des atteintes cognitives chez les patients souffrant d’haploinsuffisance de CACNA1A. / Loss-of-function mutations in the CACNA1A gene, encoding the α1 subunit of voltage-gated CaV2.1 channels, result in epilepsy and neurocognitive impairments, including attention deficits, intellectual deficiency and autism. Also, de novo mutations in CACNA1A have been reported in nearly 1% of children with epileptogenic encephalopathies, as well as in children with isolated autism spectrum problems. Taken together, these data suggest that alterations in CACNA1A may play a central role in the pathogenesis of various neurodevelopmental disorders with cognitive and developmental impairment. Moreover, our evaluation of 16 patients, from four non-consanguineous families, carriers of different mutations inducing a loss of function of CACNA1A have shown the existence of moderate to severe neurocognitive deficits in the majority of affected individuals, ranging from deficits from attention with learning difficulties to intellectual disabilities with or without an autism spectrum problem. While the exact pathological mechanisms by which CACNA1A haploinsufficiency induces such cognitive impairment are still unknown, the mechanisms leading to epilepsy have been better studied. Embryonic deletion of CaV2.1 in interneurons (IN) emanating from the medial ganglionic eminence (MGE), including INs expressing parvalbumin (PV IN) and those expressing somatostatin (SOM IN), causes epilepsy with tonic-clonic seizures and absence seizures resulting in early mortality in the Nkx2.1Cre; Cacna1ac/c mice model. However, loss of the channel in SOM IN (SOMCre; Cacna1ac/c) does not induce epilepsy whereas targeted loss in PV IN (PVCre; Cacna1ac/c) causes epilepsy with absence and rare motor seizures. The objective of this thesis was therefore, first of all, to understand the mechanisms underlying the epileptic differences between the Nkx2.1Cre ;Cacna1ac/c and the PVCre; Cacna1ac/c mice. The combined techniques of immunohistochemistry, 2-photon imaging, electrophysiology, electroencephalogram analysis and the crossing of different conditional models identified the cellular and electrophysiological consequences of the deletion of Cacna1a in the IN PV. Compared to Nkx2.1Cre; Cacna1ac/c mice, PVCre; Cacna1ac/c mice have a net increase in cortical inhibition, with a gain of dendritic inhibition through sprouting of SOM IN axons, largely preventing motor seizures. This beneficial compensatory remodeling of cortical GABAergic innervation is mTORC1-dependent and its inhibition with rapamycin leads to a striking increase in motor seizures. Furthermore, we show that a direct chemogenic activation of cortical SOM-INs prevents motor seizures in a model of kainate-induced seizures. Cortical PV IN basket cells are essential for several cognitive processes, such as cognitive flexibility and attention and they are affected by CaV2.1 knock-out. CACNA1A haploinsufficiency also causes cause epilepsy, ataxia, and a range of neurocognitive deficits, including inattention, impulsivity, intellectual deficiency and autism. Therefore, this thesis had for second objective to clarify the consequences of Cacna1a haploinsufficiency in PV IN. Using the mice model carrying a heterozygous deletion of Cacna1a targeted at neuronal populations expressing PV (PVCre; Cacna1ac/+), we demonstrated by electrophysiology that the loss of the CaV2.1 in this neuronal population is sufficient to reduce cortical inhibition. Behavioral tests including the OpenField, the Elevated Plus Maze, the Morris Water Maze, a cognitive rigidity task as well as an attention set-shifting task have shown that PVCre; Cacna1ac/+ exhibit impulsivity, cognitive rigidity, and selective attention deficit. Although Cacna1a homozygous ablation reduced synaptic release of PC in the Emx1Cre; Cacna1ac/c mice mutant, no synaptic, behavioural or cognitive relaxation deficits were observed in the Emx1Cre; Cacna1ac/+ mice suggesting that, at the cortical level, the heterozygous deletion of Cacna1a selectively affects PV IN. These findings have enabled us to determine, using targeted deletions within the orbitofrontal cortex (OFC) and the medial prefrontal cortex (mPFC), that the haploinsufficiency of Cacna1a in PV IN results in reversal learning deficits and impairs selective attention, respectively. These deficits can be rescued by the selective chemogenetic activation of cortical PV IN respectively in the OFC or mPFC of PVCre; Cacna1ac/+ mutants As a whole, this work contributes to the development of knowledge on Cacna1a deletions. It also presents new avenues for the treatment of motor epileptic seizures and for the management of cognitive impairment in patients with CACNA1A haploinsufficiency.
32

Developmental Expression of Calcium Buffering Proteins in Central Auditory Pathways of Normal Hearing and Congenitally Deaf Mice

Deardorff, Adam S. 29 June 2010 (has links)
No description available.
33

V1-DERIVED RENSHAW CELLS AND IA INHIBITORY INTERNEURONS DIFFERENTIATE EARLY DURING DEVELOPMENT

Benito González, Ana 11 July 2011 (has links)
No description available.
34

Role of cortical parvalbumin interneurons in fear behaviour / Rôle des interneurones corticaux parvalbuminergiques dans les comportements de peur

Courtin, Julien 13 December 2013 (has links)
Les processus d'apprentissage et de mémoire sont contrôlés par des circuits et éléments neuronaux spécifiques. De nombreuses études ont récemment mis en évidence que les circuits corticaux jouent un rôle important dans la régulation des comportements de peur, cependant, leurs caractéristiques anatomiques et fonctionnelles restent encore largement inconnues. Au cours de ma thèse, en utilisant des enregistrements unitaires et des approches optogénétiques chez la souris libre de se comporter, nous avons pu montrer que les interneurones inhibiteurs du cortex auditif et du cortex préfrontal médian forment un microcircuit désinhibiteur permettant respectivement l'acquisition et l'expression de la mémoire de peur conditionnée. Dans les deux cas, les interneurones parvalbuminergiques constituent l'élément central du circuit et sont inhibés de façon phasique. D’un point de vue fonctionnel, nous avons démontré que cette inhibition était associée à la désinhibition des neurones pyramidaux par un mécanisme de réduction de l'inhibition continue exercée par les interneurones parvalbuminergiques. Ainsi, les interneurones parvalbuminergiques peuvent contrôler temporellement l'excitabilité des neurones pyramidaux. En particulier, nous avons montré que l'acquisition de la mémoire de peur conditionnée dépend du recrutement d'un microcircuit désinhibiteur localisé dans le cortex auditif. En effet, au cours du conditionnement de peur, la présentation du choc électrique induit l'inhibition des interneurones parvalbuminergiques, ce qui a pour conséquence de désinhiber les neurones pyramidaux du cortex auditif et de permettre l’apprentissage du conditionnement de peur. Dans leur ensemble, ces données suggèrent que la désinhibition est un mécanisme important dans l'apprentissage et le traitement de l'information dans les circuits corticaux. Dans un second temps, nous avons montré que l'expression de la peur conditionnée requière l'inhibition phasique des interneurones parvalbuminergiques du cortex préfrontal médian. En effet, leur inhibition désinhibe les cellules pyramidales préfrontales et synchronise leur activité en réinitialisant les oscillations thêta locales. Ces résultats mettent en évidence deux mécanismes neuronaux complémentaires induits par les interneurones parvalbuminergiques qui coordonnent et organisent avec précision l’activité neuronale des neurones pyramidaux du cortex préfrontal pour contrôler l'expression de la peur conditionnée. Ensemble, nos données montrent que la désinhibition joue un rôle important dans les comportements de peur en permettant l’association entre des informations comportementalement pertinentes, en sélectionnant les éléments spécifiques du circuit et en orchestrant l'activité neuronale des cellules pyramidales. / Learning and memory processes are controlled by specific neuronal circuits and elements. Numerous recent reports highlighted the important role of cortical circuits in the regulation of fear behaviour, however, the anatomical and functional characteristics of their neuronal components remain largely unknown. During my thesis, we used single unit recordings and optogenetic manipulations of specific neuronal elements in behaving mice, to show that both the auditory cortex and the medial prefrontal cortex contain a disinhibitory microcircuit required respectively for the acquisition and the expression of conditioned fear memory. In both cases, parvalbumin-expressing interneurons constitute the central element of the circuit and are phasically inhibited during the presentation of the conditioned tone. From a functional point of view, we demonstrated that this inhibition induced the disinhibition of cortical pyramidal neurons by releasing the ongoing perisomatic inhibition mediated by parvalbumin-expressing interneurons onto pyramidal neurons. Thereby, this disinhibition allows the precise temporal regulation of pyramidal neurons excitability. In particular, we showed that the acquisition of associative fear memories depend on the recruitment of a disinhibitory microcircuit in the auditory cortex. Fear-conditioning-associated disinhibition in auditory cortex is driven by foot-shock-mediated inhibition of parvalbumin-expressing interneurons. Importantly, pharmacological or optogenetic blockade of pyramidal neuron disinhibition abolishes fear learning. Together, these data suggest that disinhibition is an important mechanism underlying learning and information processing in cortical circuits. Secondly, in the medial prefrontal cortex, we demonstrated that expression of fear behaviour is causally related to the phasic inhibition of prefrontal parvalbumin-expressing interneurons. Inhibition of parvalbumin-expressing interneuron activity disinhibits prefrontal pyramidal neurons and synchronizes their firing by resetting local theta oscillations, leading to fear expression. These results identify two complementary neuronal mechanisms both mediated by prefrontal parvalbumin-expressing interneurons that precisely coordinate and enhance the neuronal efficiency of prefrontal pyramidal neurons to drive fear expression. Together these data highlighted the important role played by neuronal disinhibition in fear behaviour by binding behavioural relevant information, selecting specific circuit elements and orchestrating pyramidal neurons activity.
35

Etude de la diversité neuronale au sein du Globus Pallidus : analyse neurochimique, électrophysiologique et manipulation optogénétique d’un sous-type neuronal chez le rongeur / Study of neuronal diversity in the Globus Pallidus : neurochemical, electrophysiological analysis and optogenetic manipulation of neuronal subtype in rodents

Abdi, Azzedine 28 November 2013 (has links)
Le réseau des ganglions de la base (GB) est un ensemble de structures sous corticales, dont la principale fonction est le contrôle du mouvement volontaire. Le Globus Pallidus (GP), équivalent du GPe chez le primate, est un noyau constitué exclusivement de neurones GABAergiques, qui joue un rôle clé dans le fonctionnement des GB de par ses projections inhibitrices diffuses sur l’ensemble des structures de ce macrocircuit. Bien qu’une diversité neuronale au sein du GP ait été suggérée sur les bases de l’origine embryonnaire, de l’expression de protéines spécifiques ou encore de l’activité électrique des neurones, ces différents paramètres n’ont pas été corrélés de manière claire. Notre premier objectif a donc été de corréler les propriétés membranaires de neurones du GP enregistrés en patch-clamp sur des tranches de cerveau de rat avec l’expression spécifique de deux marqueurs neuronaux : une protéine liant le calcium, la parvalbumine (PV) ou un facteur de transcription, Forkhead Box 2 (FoxP2). Nous avons observé des différences électrophysiologiques significatives entre les neurones PV-positifs et FoxP2-positifs. Ce résultat nous a amené à formuler l’hypothèse qu’ayant des propriétés distinctes, les neurones PV-positifs et FoxP2-positifs pouvaient être connectés de manière différente au sein du réseau des ganglions de la base. Nous avons donc réalisé des expériences de traçage neuronal in vivo afin d’identifier les structures cibles de chaque sous-population. Nous montrons que les neurones PV-positifs projettent sur les structures de sortie des ganglions de la base tandis que les neurones FoxP2-positifs projettent uniquement sur le striatum. Enfin, le GP étant majoritairement composé de neurones PV-positifs, nous avons décidé de manipuler spécifiquement l’activité électrique de cette population in vitro et in vivo grâce à l’optogénétique. Nous présentons des résultats montrant que la modulation de l’activité électrique des neurones PV-positifs modifie le comportement moteur chez l’animal vigile. Nos résultats d’immunohistochimie et d’électrophysiologie in vitro démontrent pour la première fois l’existence d’une diversité neuronale au sein du GP. Nos expériences constituent la première étude du rôle des neurones PV-positifs dans le contrôle du mouvement volontaire. / Globus Pallidus (GP in Rodents; GPe in Primates) which belongs to the indirect pathway of basal ganglia is often, if not always, considered as an homogeneous entity which simply relays striatal information through the subthalamic nucleus, downstream to the output of basal ganglia, the substantia nigra pars reticulata. Prototypical GP neurons are often described as fast-spiking GABAergic cells which express parvalbumin (PV) as a neurochemical marker. However, cellular heterogeneity in GP has been suggested by anatomical, neurochemical, fate mapping analysis and electrophysiological activity in vivo but a clear demonstration of the existence of distinct cell types in GP, which requires by definition correlation of electrophysiological activity with neurochemistry and structure, is still missing. The objective of my PhD was i) to determine if the expression of specific neuronal markers in GP neurons is correlated with specific electrophysiological properties, ii) to understand the function of identified cell types in motor control, in order to prove that neuronal diversity exists and matters in GP. We show that electrical activity and repertoire of ionic channels differ in PV-positive and FoxP2-positive neurons. We demonstrate that PV-positive neurons do project on downstream structures whereas FoxP2-positive neurons exclusively target striatum. We report that manipulating PV-positive neurons using optogenetics induce changes in motor behavior. Thus, our results contribute to highlight the function of GP in motor control.
36

Caracteriza??o comportamental e distribui??o de neur?nios inibit?rios em um modelo animal de autismo induzido por ?cido valpr?ico

Sousa, Juliana Alves Brand?o Medeiros de 23 August 2013 (has links)
Made available in DSpace on 2014-12-17T15:28:53Z (GMT). No. of bitstreams: 1 JulianaABMS_DISSERT.pdf: 2223845 bytes, checksum: 223f33020eca4ef9f2713bc27ef300ca (MD5) Previous issue date: 2013-08-23 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Autism comprises a heterogeneous group of neurodevelopmental disorders that affects the brain maturation and produces sensorial, motor, language and social interaction deficits in early childhood. Several studies have shown a major involvement of genetic factors leading to a predisposition to autism, which are possibly affected by environmental modulators during embryonic and post-natal life. Recent studies in animal models indicate that alterations in epigenetic control during development can generate neuronal maturation disturbances and produce a hyper-excitable circuit, resulting in typical symptoms of autism. In the animal model of autism induced by valproic acid (VPA) during rat pregnancy, behavioral, electrophysiological and cellular alterations have been reported which can also be observed in patients with autism. However, only a few studies have correlated behavioral alterations with the supposed neuronal hyper-excitability in this model. The aim of this project was to generate an animal model of autism by pre-natal exposure to VPA and evaluate the early post-natal development and pre-puberal (PND30) behavior in the offspring. Furthermore, we quantified the parvalbumin-positive neuronal distribution in the medial prefrontal cortex and Purkinje cells in the cerebellum of VPA animals. Our results show that VPA treatment induced developmental alterations, which were observed in behavioral changes as compared to vehicle-treated controls. VPA animals showed clear behavioral abnormalities such as hyperlocomotion, prolonged stereotipies and reduced social interaction with an unfamiliar mate. Cellular quantification revealed a decrease in the number of parvalbumin-positive interneurons in the anterior cingulate cortex and in the prelimbic cortex of the mPFC, suggesting an excitatory/inhibitory unbalance in this animal model of autism. Moreover, we also observed that the neuronal reduction occurred mainly in the cortical layers II/III and V/VI. We did not detect any change in the density of Purkinje neurons in the Crus I region of the cerebellar cortex. Together, our results strengthens the face validity of the VPA model in rats and shed light on specific changes in the inhibitory circuitry of the prefrontal cortex in this autism model. Further studies should address the challenges to clarify particular electrophysiological correlates of the cellular alterations in order to better understand the behavioral dysfunctions / O autismo compreende um grupo heterog?neo de desordens do neurodesenvolvimento que afetam a matura??o cerebral e produzem d?ficits sensoriais, motores, de linguagem e de intera??o social no in?cio da inf?ncia. Diversos estudos tem demonstrado um importante envolvimento de fatores gen?ticos que levam ? predisposi??o ao autismo, que s?o possivelmente afetados por modula??es ambientais durante a vida embrion?ria e p?s-natal. Estudos recentes em modelos animais indicam que altera??es no controle epigen?tico durante o desenvolvimento podem gerar dist?rbios na matura??o neuronal e produzir um circuito hiper-excit?vel, resultando em sintomas t?picos do autismo. No modelo animal de autismo induzido por ?cido valpr?ico (VPA) durante a gesta??o de ratas, foram observadas altera??es comportamentais, eletrofisiol?gicas e celulares semelhantes ?s observadas nos pacientes com autismo. Entretanto, ainda s?o poucos os estudos que correlacionam altera??es comportamentais com a suposta hiper-excitabilidade neuronal desse modelo. O objetivo desse estudo foi de gerar o modelo animal de autismo por exposi??o pr?-natal ao VPA e avaliar o desenvolvimento e comportamento p?s-natal e pr?-p?bere (PND 30). Al?m disso, quantificamos a distribui??o neuronal de interneur?nios parvalbumina-positivos no c?rtex pr?-frontal medial (CPFm) e de c?lulas de Purkinje no cerebelo de animais VPA. Nossos resultados mostraram que o tratamento com VPA induziu altera??es no desenvolvimento, que foram observadas em altera??es comportamentais quando comparadas com os animais controle. Animais VPA mostraram claras altera??es comportamentais, como hiperlocomo??o, estereotipia prolongada e redu??o na intera??o social com animal n?o-familiar. A quantifica??o celular revelou uma diminui??o no n?mero de interneur?nios parvalbumina-positivos no c?rtex cingulado anterior e no c?rtex pr?-l?mbico, sugerindo um desbalan?o na excita??o/inibi??o nesse modelo animal de autismo. Tamb?m observamos que essa redu??o ocorreu principalmente nas camadas corticais II/III e V/VI. N?o observamos modifica??o na densidade de c?lulas de Purkinje na regi?o Crus I do c?rtex cerebelar. Em conjunto, nossos resultados fortalecem a validade de face do modelo VPA em ratos e relatam modifica??es espec?ficas na circuitaria inibit?ria do CPFm nesse modelo de autismo. Novos estudos devem abordar correlatos eletrofisiol?gicos particulares com altera??es celulares, de forma a esclarecer as disfun??es comportamentais encontradas nesse modelo animal
37

Caracteriza??o de subpopula??es de interneur?nios imunorreativos para prote?nas ligantes de c?lcio no c?rtex pr?-frontal do Sagui (Callithrix jacchus): distribui??o e morfologia

Silva, Joanilson Guimar?es 02 May 2011 (has links)
Made available in DSpace on 2014-12-17T15:36:38Z (GMT). No. of bitstreams: 1 JoanilsonGS_TESE.pdf: 3996700 bytes, checksum: 8b3084030c1c254db2c08a440881ea9a (MD5) Previous issue date: 2011-05-02 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Cortical interneurons are characterized by their distinct morphological, physiological and biochemical properties, acting as modulators of the excitatory activity by pyramidal neurons, for example. Various studies have revealed differences in both distribution and density of this cell group throughout distinct cortical areas in several species. A particular class of interneuron closely related to cortical modulation is revealed by the immunohistochemistry for calcium binding proteins calbindin (CB), calretinina (CR) and parvalbumin (PV). Despite the growing amount of studies focusing on calcium binding proteins, the prefrontal cortex of primates remains relatively little explored, particularly in what concerns a better understanding of the organization of the inhibitory circuitry across its subdivisions. In the present study we characterized the morphology and distribution of neurons rich in calcium-binding proteins in the medial, orbital and dorsolateral areas of the prefrontal cortex of the marmoset (Callithrix jacchus). Using both morphometric and stereological techniques, we found that CR-reactive neurons (mainly double bouquet and bipolar cells) have a more complex dendritic arborization than CB-reactive (bitufted and basket cells) and PV-reactive neurons (chandelier cells). The neuronal densities of CR- and CB-reactive cells are higher in the supragranular layers (II/III) whilst PV-reactive neurons, conversely, are more concentrated in the infragranular layers (V/VI). CR-reactive neurons were the predominant group in the three regions evaluated, being most prevalent in dorsomedial region. Our findings point out to fundamental differences in the inhibitory circuitry of the different areas of the prefrontal cortex in marmoset / Os interneur?nios do c?rtex cerebral s?o caracterizados por suas diferentes propriedades morfol?gicas, fisiol?gicas e bioqu?micas, atuando como moduladores da atividade excitat?ria cortical dos neur?nios piramidais, por exemplo. V?rios estudos revelaram diferen?as na distribui??o e densidade deste grupo celular ao longo de diferentes ?reas corticais em diversas esp?cies. Uma classe particular de interneur?nios intimamente relacionada ? modula??o cortical ? revelada pela imunohistoqu?mica para as prote?nas ligantes de c?lcio calbindina (CB), calretinina (CR) e parvalbumina (PV). Em que pese a quantidade crescente de estudos focando nas prote?nas ligantes de c?lcio, o c?rtex pr?frontal de primatas ainda permanece relativamente pouco explorado, especialmente no que se refere a um melhor entendimento da organiza??o do circuito inibit?rio ao longo de suas subdivis?es. No presente estudo caracterizamos a morfologia e a distribui??o desse grupo neuronal nas regi?es medial, orbital e dorso-lateral do c?rtex pr?-frontal do sagui (Callithrix jacchus). Utilizando par?metros morfom?tricos e t?cnicas estereol?gicas, evidenciamos que os neur?nios reativos a CR (especialmente c?lulas em duplo-buqu? e bipolares) possuem arboriza??o dendr?tica mais complexa quando comparados aos neur?nios reativos a CB (neur?nios de tufos duplos e c?lulas em cesto) e PV (c?lulas em candelabro). A densidade dos neur?nios reativos a CB e CR ? mais elevada nas camadas supragranulares (II/III), enquanto os neur?nios reativos a PV se concentram predominantemente nas camadas infragranulares (V/VI). Os neur?nios reativos a CR foram o grupo predominante nas tr?s regi?es avaliadas, sendo mais prevalente na regi?o dorsolateral. Nossos achados apontam para diferen?as cruciais no circuito inibit?rio ao longo das diferentes ?reas do c?rtex pr?-frontal do sagui
38

Etude du rôle de protéines apparentées aux cadhérines dans le développement des interneurones du cortex auditif / Study of the role of cadherin-related proteins in the development of auditory cortex interneurons

Libé-Philippot, Baptiste 16 June 2017 (has links)
L'éminence ganglionnaire médiale (MGE) produit la grande majorité des interneurones GABAergiques corticaux synthétisant la parvalbumine. Les neuroblastes issus de la MGE migrent sur une longue distance avant d'atteindre leur destination finale. A ce jour, on ne sait pas s'il existe des mécanismes moléculaires les guidant vers des régions corticales données. Je montre que deux protéines apparentées aux cadhérines, cdhr23 et cdhr15, ont un rôle déterminant dans le développement d'interneurones du cortex auditif et de manière spécifique. Chez la souris et le macaque, ces deux protéines sont co-synthétisées par des neuroblastes issus de la MGE pendant leur migration. Chez les souris déficientes pour Cdhr23 ou Cdhr15, les neuroblastes synthétisant cdhr15 ou cdhr23 s'accumulent dans le télencéphale basal, ne parviennent pas à pénétrer dans le néocortex et présentent in vitro des défauts de polarité cellulaire. Cdhr15 intervient dans la survie des précurseurs d'interneurones à parvalbumine pendant la première semaine postnatale. Les souris mutantes pour Cdhr23 ou Cdhr15 présentent à trois semaines un nombre réduit d'interneurones à parvalbumine dans leur cortex auditif mais pas dans les cortex avoisinants. Cette diminution est associée à une disposition aux crises audiogènes. Mes résultats indiquent que des précurseurs d'interneurones du cortex auditif sont équipés de protéines d'adhérence déterminantes pour leur migration et leur intégration dans le cortex auditif. Ils suggèrent l'existence d'un possible mécanisme moléculaire général fondé sur un " code d'adhérence " qui déterminerait les neuroblastes GABAergiques dès leur naissance à intégrer une aire corticale donnée. / The medial ganglionic eminence (MGE) gives rise to the majority of cortical GABAergic interneurons that synthetize parvalbumin. Neuroblasts born in the MGE undergo a long distance migration before reaching their final target. Up to now, it is unknown whether any molecular mechanism guides them to specific cortical regions. I show that two cadherin-related proteins, cdhr23 and cdhr15, have a critical role in the development of interneurons of the auditory cortex, specifically. In mice and macaque, the two proteins are co-synthetized in neuroblasts from the MGE during their migration. In mouse mutants for Cdhr23 or Cdhr15, neuroblasts synthetizing cdhr15 or cdhr23 accumulate in the basal telencephalon, fail to enter the neocortex and present in vitro cell polarity defects. Cdhr15 is involved in the survival of parvalbumin interneuron precursors during the first postnatal week. Mutant mice for Cdhr23 and Cdhr15 show at three weeks a reduced number of parvalbumin interneurons in the mouse auditory cortex but not the neighbouring ones. This decrease is associated with a susceptibility to audiogenic seizures. My results reveal that interneuron precursors of the auditory cortex are endowed by specific adhesion proteins critically involved in their migration and integration in the auditory cortex. They suggest a possible general molecular mechanism based on an "adhesion code” that would determine GABAergic neuroblasts from their birth to a specific cortical region.
39

A Novel Method for Analysis of Proprioceptor Sensory Neuron Subtypes in the Mouse Dorsal Root Ganglia

Grant, Delaney C. 05 May 2021 (has links)
No description available.
40

In-vivo-optogenetische Inhibition striataler Parvalbumin-reaktiver Interneurone zur Untersuchung der pathophysiologischen Bedeutung in einem DYT1 Knock-in-Mausmodell

Schulz, Anja 27 June 2023 (has links)
Einleitung: Die Dystonie ist eine neurologische Bewegungsstörung, bei der durch unwillkürliche anhaltende oder intermittierende Muskelkontraktionen schraubenartige Bewegungen oder Haltungen auftreten. Die häufigste genetische Form ist die DYT1 Dystonie, bei der eine Deletion von drei Basenpaaren im TOR1A-Gen zur Expression eines mutierten TorsinA-Proteins führt. Die unzureichende Aufklärung der Pathophysiologie von Dystonien erschwert die Entwicklung geeigneter Therapien. Studien an Tiermodellen und humanen Patienten deuten darauf hin, dass der Dystonie Fehlfunktionen innerhalb der Basalganglienschleife zugrunde liegen, an denen die Basalganglien, der Cortex, der Thalamus und das Kleinhirn beteiligt sind. Eine anerkannte Hypothese besagt, dass die Dystonie aus einem Ungleichgewicht zwischen Erregung und Hemmung resultiert. Eine abnorme neuronale Plastizität, z.B. eine erhöhte Langzeitpotenzierung und eine verminderte Langzeitdepression im Striatum, der Eingangsstruktur der Basalganglien, ebenso wie eine beeinträchtigte GABAerge Hemmung bei verschiedenen Arten von menschlicher Dystonie stützen die Hypothese des Verlustes der Hemmung im Striatum. Ziele der Untersuchungen: Striatale GABAerge Parvalbumin-reaktive Interneurone (PV+) nehmen eine zentrale Rolle in der hemmenden Kontrolle ein, indem sie die Aktivität striataler Projektionsneurone (MSN) und somit das Gleichgewichts zwischen Erregung und Hemmung im Striatum regulieren. Die Bedeutung eines Hemmungsverlustes im Striatum, ausgelöst durch eine mögliche Fehlfunktion striataler PV+, sollte in einem Tiermodell der DYT1 Dystonie untersucht werden. Mithilfe einer in-vivo-optogenetischen Inhibition striataler PV+ in dem DYT1 Knock-in-Mausmodell (DYT1 KI), ein ätiologisches Mausmodell ohne Ausprägung eines dystonen Phänotyps, wurden die Auswirkungen auf das lokomotorische Verhalten, auf die Entwicklung dystoner Symptome und auf die neuronale Aktivität untersucht. Tiere, Material und Methoden: Zu diesem Zweck wurde eine Mauslinie etabliert, welche die lichtsensitive Chloridionenpumpe Halorhodopsin (eNpHR3.0) in PV+ exprimiert und entweder heterozygot oder Wildtyp (WT) für die DYT1-Mutation ist. Dafür wurden unter Verwendung des Cre-LoxP Systems verschiedene Mauslinien miteinander gekreuzt. Die Untersuchungen wurden an männlichen sechs Monate alten DYT1 KI (n = 7) und WT-Mäusen (n = 8) durchgeführt, da diese geschlechts- und altersabhängig signifikante Verhaltensänderungen zeigten. Die Expression von Halorhodopsin wurde mittels Genotypisierung und Immunhistochemie verifiziert. Durch bilaterale stereotaktische Implantation optischer Fasern in das murine dorsale Striatum konnten Lichtimpulse an das eNpHR3.0 übertragen werden. Anregung mit gelbem Licht führt zur Aktivierung des eNpHR3.0, welches einen Chloridioneneinstrom ermöglicht und zu einer Hyperpolarisation der striatalen PV+ führt. Es wurden verschiedene Stimulationsprotokolle verwendet, welche sich in der Länge und dem Intervall der Lichtimpulse sowie der Dauer der Stimulation unterschieden. Dabei befanden sich die Mäuse im „open field” und ihre lokomotorische Aktivität sowie weitere Parameter, z.B. Thigmotaxis und Putzverhalten, wurden beurteilt. Untersuchungen zur neuronalen Aktivität wurden sowohl an den stimulierten (DYT1 KI n = 7, WT n = 6) als auch an naiven Tieren (DYT1 KI n = 6, WT n = 8) aus derselben Mauslinie durchgeführt. Effekte auf die neuronale Aktivität wurden anhand der Expression des neuronalen Markers c-Fos untersucht. Die gesamte neuronale Aktivität wurde durch stereologisches Zählen c-Fos-positiver Neurone analysiert. Die Aktivität striataler PV+ und cholinerger Interneurone (CIN) wurde durch Doppelmarkierungen mit c-Fos- und eNpHR3.0 bzw. Cholinacetyltransferase (ChAT) beurteilt. Die grafische Darstellung und statistische Auswertung wurde mit SigmaPlot14.0 durchgeführt und erfolgte mittels Varianzanalyse (ein- und zweifaktorielle ANOVA, mit und ohne Messwiederholung) gefolgt von einem Post-Hoc-Test für Mehrfachvergleiche (Holm-Sidak). Das Signifikanzniveau wurde bei p < 0,05 festgesetzt. Ergebnisse: Die optogenetischen Stimulationen mit gelben Lichtimpulsen bei unterschiedlichen Impulsdauern und Intervalllängen und mit einer Stimulationsdauer von bis zu 60 Minuten lösten in den Mäusen keine abnormalen Bewegungen, wie dystone Symptome, aus. Weiterhin waren sowohl das lokomotorische Verhalten als auch die weiteren analysierten Parameter unter Stimulation unverändert. Dagegen zeigten immunhistochemische Untersuchungen Genotyp-abhängige Unterschiede zur neuronalen Aktivität. Im Gegensatz zu stimulierten WT-Mäusen zeigten stimulierte DYT1 KI eine verringerte striatale neuronale Gesamtaktivität (p = 0,002), d.h. weniger c-Fos reaktive Neurone, welches sich über das gesamte Striatum erstreckt. Weiterhin zeigten stimulierte DYT1 KI-Mäuse eine geringere Aktivität eNpHR3.0-positiver Neurone als stimulierte WT (p = 0,31), also eine anhaltende Hemmung der PV+, sowie eine erhöhte Aktivierung cholinerger Interneurone nach optogenetischer Hemmung von PV+ (vs. WT p < 0,001, vs. naive DYT1 KI p < 0,001). Schlussfolgerungen: Da die in-vivo-optogenetische Hemmung striataler PV+ nicht ausreichte, um in DYT1 KI-Mäusen dystone Symptome hervorzurufen, scheinen zumindest kürzere hemmende Defizite über PV+ für die Ausprägung der DYT1 Dystonie keine zentrale Rolle zu spielen. Ebenso hatte die optogenetische Hemmung von PV+ keinen Einfluss auf das lokomotorische Verhalten von WT und DYT1 KI-Mäusen. Dennoch deuten die Genotyp-bezogenen Unterschiede in der neuronalen Aktivität zwischen stimulierten Mäusen auf eine abnorme Reaktion auf die optogenetische Hemmung von PV+ und eine striatale Fehlfunktion bei den DYT1 KI-Mäusen hin. Weiterführende Studien aus einer Kombination von optogenetischen Manipulationen von PV+ und elektrophysiologischen Untersuchungen bzw. Neurotransmittermessungen können Erklärungsansätze für Veränderungen in der neuronalen Aktivität liefern und Einblicke in Neurotransmitterimbalancen, die der Dystonie zugrunde liegen, geben.:Abkürzungsverzeichnis 1. Einleitung 2. Literaturübersicht 2.1 Definition und Einteilung von Dystonien 2.1.1 Die primäre DYT1 Torsionsdystonie 2.2 Diagnose und Therapieoptionen von Dystonien 2.3 Tiermodelle primärer Dystonien 2.3.1 Das DYT1 Knock-in-Mausmodell 2.4 Die Basalganglien: Neuroanatomie und Physiologie 2.4.1 Nervenzellen des Striatums 2.4.1.1 Striatale Projektionsneurone 2.4.1.2 Striatale Interneurone 2.4.2 Basalganglien und Dystonie: pathophysiologische Veränderungen 2.4.3 Striatale Parvalbumin-reaktive Interneurone 2.4.3.1 Physiologische Eigenschaften 2.4.3.2 Bedeutung für Verhalten, Motorik und Dystonien 2.4.3.3 Inhibition Parvalbumin-reaktiver Interneurone mithilfe der In-vivo-Optogenetik 3. Fragestellung 4. Publikation 5. Diskussion 5.1 Methodische Aspekte 5.2 Ergebnisse 5.2.1 Verhaltensuntersuchungen 5.2.2 Neuronale Aktivität 5.3 Schlussfolgerungen und Ausblick 6. Zusammenfassung 7. Summary 8. Literaturverzeichnis 9. Danksagung / Introduction: Dystonia is a movement disorder characterized by abnormal involuntary movements or postures due to sustained or intermittent muscle contractions. The most common inherited form is DYT1 dystonia, in which a deletion of three base pairs in the TOR1A gene leads to the expression of a mutant torsinA protein. The insufficient elucidation of the pathophysiology of dystonia hampers the development of effective treatments. Studies in animal models and in human patients suggest that dystonia underlies dysfunction within the basal ganglia loop involving the basal ganglia, cortex, thalamus and cerebellum. An accepted hypothesis is that dystonia results from an imbalance between excitation and inhibition. Abnormal neuronal plasticity, e.g., increased long-term potentiation and decreased long-term depression in the striatum, the input structure of the basal ganglia, as well as impaired GABAergic inhibition in various types of human dystonia support the hypothesis of a loss of inhibition in the striatum. Aim: Striatal GABAergic parvalbumin-reactive interneurons (PV+) play a central role in inhibitory control by regulating the activity of striatal projection neurons (MSN) and consequently the balance between excitation and inhibition in the striatum. The importance of a loss of inhibition in the striatum, triggered by possible dysfunction of striatal PV+, should be investigated in an animal model of DYT1 dystonia. Using in vivo optogenetic inhibition of striatal PV+ in the DYT1 knock-in mouse model (DYT1 KI), a genetic mouse model without manifestation of a dystonic phenotype, the effects on locomotor behavior, on the development of dystonic symptoms and on neuronal activity were investigated. Animals, material and methods: A mouse line expressing the light-sensitive chloride ion pump halorhodopsin (eNpHR3.0) in PV+ and either heterozygous or wildtype (wt) for the DYT1 mutation was established. For this, different mouse lines were crossed using the Cre-LoxP system. Studies were performed in male six-month-old DYT1 KI (n = 7) and wt mice (n = 8), as they showed significant behavioral abnormalities in a sex- and age-dependent manner. Halorhodopsin expression was verified by genotyping and immunohistochemistry. After bilateral stereotactic implantation of optical fibers into the murine dorsal striatum, light pulses could be transmitted to eNpHR3.0. Excitation with yellow light leads to activation of eNpHR3.0, which leads to chloride ion influx and results in hyperpolarization of striatal PV+. Different stimulation protocols were used, differing in the length and interval of light pulses and the duration of stimulation. During optogenetic stimulation, mice were in the 'open field' and their locomotor activity and other parameters, e.g., thigmotaxis and grooming behavior, were assessed. Studies on neuronal activity were performed on both stimulated (DYT1 KI n = 7, WT n = 6) and naive animals (DYT1 KI n = 6, WT n = 8) from the same mouse line. For neuronal activity studies, the expression of the neuronal marker c-Fos was examined. Overall neuronal activity was analyzed by stereological counting of c-Fos-positive neurons. Activity of striatal PV+ and cholinergic interneurons (CIN) was determined by colabeling with c-Fos- and eNpHR3.0 or choline acetyltransferase (ChAT). All plots and statistical analyses were performed using SigmaPlot14.0 and analyzed by analysis of variance (one-way and two-way ANOVA, with and without repeated measures) followed by a multiple comparison post-hoc test (Holm-Sidak). Significance was assigned at p < 0.05. Results: In stimulated mice, optogenetic inhibition using yellow light pulses at different pulse durations and interval lengths and with a stimulation duration up to 60 minutes did not induce abnormal movements, such as dystonic signs. Furthermore, both locomotor behavior and other parameters analyzed remained unchanged under stimulation. In contrast, immunohistochemical studies revealed genotype-dependent differences in neuronal activity. In contrast to stimulated wt mice, stimulated DYT1 KI showed reduced overall striatal neuronal activity (p = 0.002), i.e., fewer c-Fos reactive neurons, spreading over the entire striatum. Likewise, stimulated DYT1 KI mice showed decreased activity of eNpHR3.0-positive neurons than stimulated wt (p = 0.31), indicating lasting inhibition of PV+, as well as increased activation of cholinergic interneurons after optogenetic inhibition of PV+ (vs. WT p < 0.001, vs. naive DYT1 KI p < 0.001). Conclusions: Since in vivo optogenetic inhibition of striatal PV+ was not sufficient to elicit dystonic symptoms in DYT1 KI mice, at least short-time inhibition seems not to play a central role in the manifestation of DYT1 dystonia. Similarly, optogenetic inhibition of PV+ had no effect on locomotor behavior in wt and DYT1 KI mice. Despite this, genotype differences in neuronal activity between stimulated mice suggest an abnormal response to optogenetic inhibition of PV+ and striatal dysfunction in the DYT1 KI mice. Further studies combining optogenetic manipulations of PV+ and electrophysiological or neurotransmitter measurements may provide explanatory approaches to changes in neuronal activity and give insights into neurotransmitter imbalances underlying dystonia.:Abkürzungsverzeichnis 1. Einleitung 2. Literaturübersicht 2.1 Definition und Einteilung von Dystonien 2.1.1 Die primäre DYT1 Torsionsdystonie 2.2 Diagnose und Therapieoptionen von Dystonien 2.3 Tiermodelle primärer Dystonien 2.3.1 Das DYT1 Knock-in-Mausmodell 2.4 Die Basalganglien: Neuroanatomie und Physiologie 2.4.1 Nervenzellen des Striatums 2.4.1.1 Striatale Projektionsneurone 2.4.1.2 Striatale Interneurone 2.4.2 Basalganglien und Dystonie: pathophysiologische Veränderungen 2.4.3 Striatale Parvalbumin-reaktive Interneurone 2.4.3.1 Physiologische Eigenschaften 2.4.3.2 Bedeutung für Verhalten, Motorik und Dystonien 2.4.3.3 Inhibition Parvalbumin-reaktiver Interneurone mithilfe der In-vivo-Optogenetik 3. Fragestellung 4. Publikation 5. Diskussion 5.1 Methodische Aspekte 5.2 Ergebnisse 5.2.1 Verhaltensuntersuchungen 5.2.2 Neuronale Aktivität 5.3 Schlussfolgerungen und Ausblick 6. Zusammenfassung 7. Summary 8. Literaturverzeichnis 9. Danksagung

Page generated in 0.243 seconds