• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 52
  • 17
  • 14
  • 13
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Genetic Targeting and Analysis of Parvalbumin and VGLUT3 Expressing Inhibitory Interneurons / Analyse von Parvalbumin- und VGLUT3-exprimierenden Inhibitorischen Neuronen

Bredack, Christoph 02 May 2011 (has links)
No description available.
42

Neocortical Interneuron Subtypes Show an Altered Distribution in a Rat Model of Maldevelopment Associated With Epileptiform Activity

Hays, Kimberly Lynne 01 January 2007 (has links)
Cortical malformations as a result of altered development are a common cause of human epilepsy. The cellular mechanisms that render neurons of malformed cortex epileptogenic remain unclear. Using a rat model of the malformation of microgyria, a previous study showed an alteration in the number of immunocytochemically-identified parvalbumin cells, a GABAergic inhibitory interneurons subtype (Rosen et al., 1998). A second study showed no change in the total number of GABAergic neurons (Schwarz et al., 2000). Consequently, we hypothesize that interneuron subtypes are differentially affected by maldevelopment. The present study investigated (1) whether interneuron subtype identity is retained in malformed cortex, based on chemical content, and (2) whether the proportion of three chemical subtypes is altered in malformed cortex. Here we demonstrate that three non-overlapping subtype markers remain non-overlapping in malformed cortex, but show altered distributions. These findings suggest that an increase in one subpopulation of interneurons may compensate for a corresponding decrease in a second subset.
43

Plasticité intermodale chez le hamster énucléé à la naissance : Études de la distribution des interneurones CaBPir dans les cortex visuel et auditif primaires.

Desgent, Sébastien 01 1900 (has links)
La période postnatale et l’expérience sensorielle sont critiques pour le développement du système visuel. Les interneurones inhibiteurs exprimant l’acide γ-aminobutyrique (GABA) jouent un rôle important dans le contrôle de l’activité neuronale, le raffinement et le traitement de l’information sensorielle qui parvient au cortex cérébral. Durant le développement, lorsque le cortex cérébral est très susceptible aux influences extrinsèques, le GABA agit dans la formation des périodes critiques de sensibilité ainsi que dans la plasticité dépendante de l’expérience. Ainsi, ce système inhibiteur servirait à ajuster le fonctionnement des aires sensorielles primaires selon les conditions spécifiques d’activité en provenance du milieu, des afférences corticales (thalamiques et autres) et de l’expérience sensorielle. Certaines études montrent que des différences dans la densité et la distribution de ces neurones inhibiteurs corticaux reflètent les caractéristiques fonctionnelles distinctes entre les différentes aires corticales. La Parvalbumine (PV), la Calretinine (CR) et la Calbindine (CB) sont des protéines chélatrices du calcium (calcium binding proteins ou CaBPs) localisées dans différentes sous-populations d’interneurones GABAergiques corticaux. Ces protéines tamponnent le calcium intracellulaire de sorte qu’elles peuvent moduler différemment plusieurs fonctions neuronales, notamment l’aspect temporel des potentiels d’action, la transmission synaptique et la potentialisation à long terme. Plusieurs études récentes montrent que les interneurones immunoréactifs (ir) aux CaBPs sont également très sensibles à l’expérience et à l’activité sensorielle durant le développement et chez l’adulte. Ainsi, ces neurones pourraient avoir un rôle crucial à jouer dans le phénomène de compensation ou de plasticité intermodale entre les cortex sensoriels primaires. Chez le hamster (Mesocricetus auratus), l’énucléation à la naissance fait en sorte que le cortex visuel primaire peut être recruté par les autres modalités sensorielles, telles que le toucher et l’audition. Suite à cette privation oculaire, il y a établissement de projections ectopiques permanentes entre les collicules inférieurs (CI) et le corps genouillé latéral (CGL). Ceci a pour effet d’acheminer l’information auditive vers le cortex visuel primaire (V1) durant le développement postnatal. À l’aide de ce modèle, l’objectif général de ce projet de thèse est d’étudier l’influence et le rôle de l’activité sensorielle sur la distribution et l’organisation des interneurones corticaux immunoréactifs aux CaBPs dans les aires sensorielles visuelle et auditive primaires du hamster adulte. Les changements dans l’expression des CaBPs ont été déterminés d’une manière quantitative en évaluant les profils de distribution laminaire de ces neurones révélés par immunohistochimie. Dans une première expérience, nous avons étudié la distribution laminaire des CaBPs dans les aires visuelle (V1) et auditive (A1) primaires chez le hamster normal adulte. Les neurones immunoréactifs à la PV et la CB, mais non à la CR, sont distribués différemment dans ces deux cortex primaires dédiés à une modalité sensorielle différente. Dans une deuxième étude, une comparaison a été effectuée entre des animaux contrôles et des hamsters énucléés à la naissance. Cette étude montre que le cortex visuel primaire de ces animaux adopte une chimioarchitecture en PV similaire à celle du cortex auditif. Nos recherches montrent donc qu’une suppression de l’activité visuelle à la naissance peut influencer l’expression des CaBPs dans l’aire V1 du hamster adulte. Ceci suggère également que le type d’activité des afférences en provenance d’autres modalités sensorielles peut moduler, en partie, une circuiterie corticale en CaBPs qui lui est propre dans le cortex hôte ou recruté. Ainsi, nos travaux appuient l’hypothèse selon laquelle il serait possible que certaines de ces sous-populations d’interneurones GABAergiques jouent un rôle crucial dans le phénomène de la plasticité intermodale. / The postnatal period and sensory experience are critical for the development of the visual system. The inhibitory interneurons expressing the γ-aminobutyric acid (GABA) play an important role in the control of neural activity, refinement and treatment of sensory information which reaches the cerebral cortex. During development, when the cerebral cortex is very likely to be influenced by extrinsic factors, GABA acts in the formation of critical period of receptivity as well as in experience dependent plasticity. Thus, this inhibitory system adjusts the functioning of the primary sensory areas according to the specific conditions of activity from the environment, cortical afferents (e.g. of thalamic origin), and sensory experience. Several studies show that differences in the distribution and density of these inhibitory interneurons tend to reflect functional discrepancies between the different neocortical areas. Parvalbumin (PV), Calretinin (CR) and Calbindin (CB) are calcium-binding proteins (CaBPs) found in different sub-populations of GABAergic cortical interneurons. These proteins buffer intracellular calcium levels, which can in turn modulate several neural functions, notably the temporal aspect of action potentials, synaptic transmission and long-term potentiation. Several recent studies are showing that CaBPs immunoreactive (ir) interneurons are also very sensitive to experience and sensory activity during development and adulthood. Therefore, these neurons may have a critical role in intermodal plasticity or compensatory processes between primary sensory cortices. In the hamster (Mesocricetus auratus), after enucleation at birth, the primary visual cortex can be recruited by other sensory modalities such as touch and audition. After this type of visual deprivation, there is establishment of permanent ectopic projections between the inferior colliculus (IC) and the lateral geniculate nucleus (LGN). This phenomenon leads to the rerouting of auditory information to the primary visual cortex (V1) during postnatal development. By using this animal model, the general objective of this thesis is to study the influence and the role of sensory activity on the distribution and organization of cortical interneurons that display immunoreactivity for CaBPs in the primary visual and auditory sensory areas in adult hamsters. Changes in the expression of CaBPs were quantitatively determined by assessing the laminar distribution profiles of cell bodies revealed by immunohistochemistry. In the first experiment, we studied laminar distribution of CaBPs in the primary visual (V1) and auditory (A1) cortices of normal hamsters. PVir and CBir, but not CRir neurons, are distributed in a dissimilar fashion between the two primary cortices devoted to each sensory modality. In the second study, a comparison was performed between control animals and hamsters which were enucleated at birth. The results of this study show that the primary visual cortex of these animals adopts a PVir chemoarchitecture similar to that of the auditory cortex. Our research shows that the abolition of visual activity at birth can influence the expression of CaBPs in V1 of the adult hamster. The present results also suggest that the type of activity in afferents from other sensory modalities can at least in part modulate the cortical circuitry of CaBPs in the host or recruited cortex. Thus, our work supports the hypothesis that sub-populations of GABAergic interneurons may play a critical role in the intermodal cortical plasticity.
44

Plasticité intermodale chez le hamster énucléé à la naissance : Études de la distribution des interneurones CaBPir dans les cortex visuel et auditif primaires

Desgent, Sébastien 01 1900 (has links)
No description available.
45

Altérations anatomo-fonctionnelles des interneurones à parvalbumine dans un modèle murin de la maladie d'Alzheimer / Anatomo-functional alterations of parvalbumin interneurons in a mouse model of Alzheimer’s disease

Cattaud, Vanessa 18 December 2018 (has links)
La maladie d'Alzheimer (MA) est une maladie neurodégénérative induisant des troubles cognitifs, et particulièrement des troubles de la mémoire. L'utilisation des souris modèles de la MA a permis de mettre en évidence des altérations de l'activité des réseaux neuronaux hippocampiques et corticaux qui seraient à l'origine des troubles cognitifs. Ainsi,les patients atteints de la MA et des souris transgéniques modèles de la pathologie ont un dysfonctionnement des interneurones exprimant la parvalbumine (PV), à l'origine de la perturbation des oscillations gamma et des troubles cognitifs. Au cours de cette thèse, nous avons fait l'hypothèse que les souris Tg2576, modèles de la MA, présentent une altération progressive des interneurones PV, et de leur matrice extracellulaire spécifique, les PNN. Cela aurait pour conséquence une altération de l'activité cérébrale (hypersynchronie, perturbation de la puissance des oscillations gamma et de leur couplage avec les oscillations thêta), qui sous-tendrait les troubles cognitifs. Ce travail a permis de montrer que les souris Tg2576 présentent effectivement des perturbations des oscillations gamma au cours d'une tâche cognitive. D'autre part, l'activation spécifique des neurones PV par optogénétique permet la génération d'oscillations gamma chez nos souris anesthésiées. Cependant nous n'avons pas pu combiner cette approche à la réalisation tâche cognitive. Nous avons par ailleurs observé une diminution du nombre de neurones PV hippocampiques et de leur PNN à un âge précoce de la pathologie, qui peut toutefois être restauré par un séjour transitoire dans un environnement enrichi. Enfin nous avons mis en évidence que les souris Tg2576 présentent des activités épileptiformes particulièrement au cours du sommeil paradoxal (SP), ainsi qu'une perturbation des oscillations gamma et de leur couplage avec les oscillations thêta dès l'âge de 1.5 mois pendant le SP. Ainsi, les travaux de cette thèse permettent de mieux caractériser l'impact de la MA sur les neurones PV et sur les phénomènes oscillatoires associés à leur fonction. / Alzheimer's disease (AD) is a neurodegenerative disorder inducing cognitive dysfunction, in particular memory loss. The use of murine models of AD have highlighted alterations of the neural activity of hippocampal and cortical networks leading to alteration of brain oscillations and spontaneous epileptic activities. Interestingly, it has also been found in AD patients and AD mice that GABAergic interneurons expressing parvalbumin (PV) are dysfunctioning, inducing a decrease in gamma oscillations associated with cognitive deficit. Thus, we hypothesized that Tg2576 mice exhibit progressive alteration of PV interneurons, and their specific extracellular matrix (PNN). These would induce aberrant cerebral activity (hypersynchrony, alteration of gamma oscillations and their association with theta oscillations) sustaining cognitive deficits. This work demonstrates that Tg2576 mice exhibit an alteration of gamma power during a cognitive task. On the other hand, the specific activation of PV neurons allows the generation of gamma oscillation in our anesthetized mice, however we haven't been able to try enhancing gamma during a cognitive task. We have also observed a decrease in the number of hippocampal PV neurons and their PNN at an early age of pathology, which can be restored by a transient stay in an enriched environment. Finally, we demonstrate that Tg2576 mice exhibit epileptiform activities, particularly during paradoxical sleep (PS), as well as an alteration of gamma oscillations and their coupling with theta oscillations during PS, as early as 1.5 months of age. Thus, these results allow to better characterize the impact of AD on PV neurons and the oscillatory phenomena associated with their function.
46

Molecular Players in Preserving Excitatory-Inhibitory Balance in the Brain

Mao, Wenjie 07 December 2017 (has links)
Information processing in the brain relies on a functional balance between excitation and inhibition, the disruption of which leads to network destabilization and many neurodevelopmental disorders, such as autism spectrum disorders. One of the homeostatic mechanisms that maintains the excitatory and inhibitory balance is called synaptic scaling: Neurons dynamically modulate postsynaptic receptor abundance through activity-dependent gene transcription and protein synthesis. In the first part of my thesis work, I discuss our findings that a chromatin reader protein L3mbtl1 is involved in synaptic scaling. We observed that knockout and knockdown of L3mbtl1 cause a lack of synaptic downscaling of glutamate receptors in hippocampal primary neurons and organotypic slice cultures. Genome-wide mapping of L3mbtl1 protein occupancies on chromatin identified Ctnnb1 and Gabra2 as downstream target genes of L3mbtl1-mediated transcriptional regulation. Importantly, partial knockdown of Ctnnb1 by itself prevents synaptic downscaling. Another aspect of maintaining E/I balance centers on GABAergic inhibitory neurons. In the next part of my thesis work, we address the role of the scaffold protein Shank1 in excitatory synapses onto inhibitory interneurons. We showed that parvalbumin-expressing interneurons lacking Shank1 display reduced excitatory synaptic inputs and decreased levels of inhibitory outputs to pyramidal neurons. As a consequence, pyramidal neurons in Shank1 mutant mice exhibit increased E/I ratio. This is accompanied by a reduced expression of an inhibitory synapse scaffolding protein gephyrin. These results provide novel insights into the roles of chromatin reader molecules and synaptic scaffold molecules in synaptic functions and neuronal homeostasis.
47

Régulation de la mémoire par la plasticité des interneurones inhibiteurs de l’hippocampe

Honoré, Ève 08 1900 (has links)
La mémoire explicite émerge de l’acheminement approprié de l’information à travers les circuits hippocampiques, et la formation d’un engramme qui encode cette mémoire. Les interneurones inhibiteurs régulent le flot d’information à travers ce réseau par leur contrôle dynamique des différents compartiments des cellules principales, ce qui contribue probablement à la formation de l’engramme. À cet égard, les interneurones somatostatinergiques (SOM-INs) et parvalbuminergiques (PV-INs), représentant les deux groupes majeurs de neurones inhibiteurs de l’hippocampe, sont particulièrement intéressants, car ils démontrent plusieurs formes de plasticité à long terme. Cette thèse a pour objectif d’étudier le rôle spécifique des SOM-INs et PV-INs de l’aire CA1 ainsi que leurs plasticités à long terme dans le contrôle dynamique des réseaux de l’hippocampe et la formation de la mémoire. Les SOM-INs expriment une potentialisation à long terme (PLT) à leurs synapses excitatrices venant des cellules pyramidales locales. Cette PLT a pour conséquence l’augmentation de l’inhibition des cibles des SOM-INs, les cellules pyramidales et interneurones locaux, ce qui contribue à la métaplasticité des circuits synaptiques de CA1. La PLT des SOM-INs contribue à la consolidation de la mémoire de peur contextuelle et la mémoire spatiale aversive. Cependant, nous ne savons pas si : 1) cette PLT est suffisante pour la formation de ces types de mémoire, ni si elle est impliquée dans la formation de la mémoire non aversive 2) si cette PLT est induite lors de l’acquisition ou de la consolidation de ces mémoires. Pour l’étude de la PLT des SOM-INs, nous avons utilisé l’optogénétique afin d’avoir un contrôle sur la localisation et le moment des modifications de l’activité des SOM-INs. Nous avons montré que l’activité de ces interneurones était nécessaire durant l’apprentissage de la mémoire de peur contextuelle et de la mémoire spatiale épisodique non aversive. Nous avons établi un protocole de stimulation optogénétique capable d’induire in vitro une PLT aux synapses des cellules pyramidales de CA1 sur les SOM-INs. Nous avons démontré que cette PLT était nécessaire et suffisante pour moduler les réseaux synaptiques du CA1 in vitro, ainsi que les deux types de 3 mémoires étudiées. De plus, nous avons démontré de façon directe que l’induction de cette PLT induisait la synthèse protéique via l’activation de mTORC1 dans les SOM-INs in vitro. Les PV-INs expriment également une PLT à leurs synapses excitatrices venant majoritairement des cellules pyramidales de l’aire CA3 à la suite d’un conditionnement à la peur, qui est nécessaire à la consolidation de cette mémoire. In vitro, la stimulation haute fréquence des afférences de CA3 entraine une PLT de l’excitabilité intrinsèque des PV-INs. Cependant, nous ne savons pas si cette forme de plasticité est également nécessaire pour la mémoire de peur contextuelle. Pour l’étude de la PLT de l’excitabilité intrinsèque des PV-INs, nous avons d’abord établi qu’une perte de fonction hétérozygote et homozygote de mTORC1 dans les PV-INs ne change pas les propriétés de décharge de base de ces neurones, mais diminue la fréquence d’une décharge répétée et bloque l’induction de la PLT de l’excitabilité intrinsèque. De plus, nous avons montré que cette forme de PLT des PV-INs n’est pas nécessaire à la consolidation ni la discrimination de la mémoire de peur contextuelle. En conclusion, ces travaux suggèrent que la plasticité synaptique des interneurones étudiés est nécessaire à la formation de la mémoire explicite. Celle des SOM-INs est nécessaire durant l’apprentissage, celle des PV-INs durant la consolidation. L’ensemble de nos résultats mettent en évidence les rôles spécifiques des divers types de plasticité des interneurones inhibiteurs dans les fonctions mnésiques et soulignent leur rôle critique dans la régulation de la mémoire. / Explicit memory emerges from the proper routing of information through hippocampal circuits, and the formation of an engram encoding this memory. Inhibitory interneurons regulate the flow of information in these networks by their dynamic control of the different compartments of pyramidal cells, which is likely to contribute to engram formation. In this regard, somatostatinergic (SOM-INs) and parvalbuminergic (PV-INs) interneurons, representing major groups of hippocampal inhibitory neurons, are particularly interesting because of the multiple forms of longterm plasticity they demonstrate. The objective of this thesis is to study the specific roles of SOM-INs and PV-INs from hippocampal CA1 area, as well as their long-term plasticity in the dynamic control of the network and memory formation. SOM-INs demonstrate long-term potentiation (LTP) at their excitatory synapses coming from local pyramidal cells. This LTP results in increased inhibition of SOM-INs targets, the local pyramidal cells and interneurons, which contributes to the metaplasticity of CA1 synaptic circuits. SOM-IN LTP is also involved in contextual fear memory and aversive spatial memory consolidation. However, it remains to be determined: 1) if this LTP is sufficient for the formation of these memory types, and if it is implicated in non-aversive memory formation; 2) if this LTP is induced during the acquisition or consolidation of these memories. For studying SOM-IN LTP, we used optogenetics to control the place and time of SOM-IN activity. We showed that the activity of these interneurons is necessary during learning of contextual fear memory and non-aversive spatial episodic memory. We established an optogenetic stimulation protocol enabling us to induce LTP at synapses from CA1 pyramidal cells to SOM-INs in vitro. We demonstrated that this LTP is necessary and sufficient to modulate CA1 synaptic networks in vitro, as well as the two memory types studied. Moreover, we demonstrated a direct link between this LTP and mTORC1-dependent protein synthesis in SOM-INs in vitro. PV-INs also express LTP at their excitatory synapses mainly coming from CA3 pyramidal cells after contextual fear conditioning, necessary for the consolidation of this memory. High frequency stimulation of CA3 afferents leads to PV-IN LTP of intrinsic excitability in vitro. Yet, we don’t know if this form of plasticity is also necessary for contextual fear memory. To study PV-INs LTP of intrinsic excitability, we established that heterozygous or homozygous mTORC1 loss of function in PV-INs did not change basic firing properties of these neurons but decreased repeated firing frequency and blocked LTP of intrinsic excitability. Besides, we showed that this form of PV-IN LTP is not necessary for the consolidation or discrimination of contextual fear memory. In conclusion, these works suggest that synaptic plasticity of the studied interneurons is necessary for explicit memory formation. SOM-IN synaptic LTP is necessary during learning, while PV-INs LTP is necessary during consolidation. Overall, our results highlight the specific roles of the various inhibitory interneuron plasticity in memory functions and emphasize their critical role in the regulation of memory.
48

Rôles de la voie de signalisation mTORC1 dans le développement des cellules GABAergiques exprimant la parvalbumine

Amegandjin, Clara A. 08 1900 (has links)
La voie de signalisation mTORC1 (mechanistic target of rapamycin complex 1) est cruciale pour la croissance de l’organisme. Dans les neurones matures, mTORC1 régule la synthèse des protéines ainsi que la plasticité synaptique à la base de l’apprentissage et de la formation de la mémoire. Des dérégulations de mTOR constituent la cause de plusieurs maladies monogéniques (mTORpathies) et sont impliquées aussi bien dans des troubles neurodéveloppementaux que neuropsychiatriques. L’une des mTORpathies, la sclérose tubéreuse, est causée par des mutations des gènes codant pour les inhibiteurs de mTORC1, les complexes 1 et 2 de la sclérose tubéreuse (Tsc1 et Tsc2). Elle est associée à l’épilepsie, l’autisme et aux déficiences intellectuelles. Le rôle de mTORC1 dans les neurones excitateurs est largement connu, pourtant, son implication dans la modulation des circuits inhibiteurs corticaux a été très peu investiguée. Dans le cerveau, les interneurones inhibiteurs GABAergiques (cellules produisant l’acide gamma-aminobutyrique) sont caractérisés par leur grande diversité de morphologies, connectivités et propriétés électrophysiologiques. Les Basket Cells qui expriment la parvalbumine (PV) ciblent spécifiquement le soma et les dendrites proximales de centaines de neurones excitateurs. Cela étant, les cellules PV sont positionnées de façon stratégique pour contrôler la génération des potentiels d’actions. En particulier, l’arborisation axonale ainsi que la densité synaptique des cellules PV subissent des changements drastiques dans le jeune cerveau en développement. Par ailleurs, des altérations dans le fonctionnement des cellules PV ont été associées aux maladies du spectre de l’autisme. Les mécanismes moléculaires et cellulaires sous-jacents le développement de la connectivité des cellules PV sont très peu investigués. En particulier, dans quelle mesure et comment une dérégulation de la voie de signalisation mTORC1 affecterait le développement des cellules PV est inconnue. D’un autre côté, il a été rapporté qu’en plus de dysfonctionnements cognitifs, les maladies du spectre de iv l’autisme sont également caractérisées par des déficits dans le traitement sensoriel. Environ 90% des patients de cette pathologie subissent des expériences sensorielles atypiques telles qu’une hyper et hypo-réactivité et des réponses anormales aux stimuli tactiles. À cet égard, les anomalies sensorielles font désormais partie intégrante des critères de diagnostic de l’autisme. Pourtant, les mécanismes neurobiologiques à l’origine des déficits sensoriels demeurent encore mal connus. Vu l’importance de la voie mTORC1-TSC1 dans la physiologie neuronale et du fait que les mutations de TSC1 génèrent des traits autistiques, nous proposons l’hypothèse selon laquelle la dérégulation Tsc1-dépendante de la voie mTOR dans les cellules PV engendre une perturbation de la connectivité de ces dernières, provoquant une altération des comportements relatifs à la sclérose tubéreuse. Les résultats présentés dans cette thèse démontrent qu’une haploinsuffisance ou une absence totale de TSC1 soit dans des cellules PV isolées, en cultures organotypiques, ou dans toute la population de cellules PV in vivo entraîne une croissance précoce des branchements axonaux et de la densité des boutons synaptiques formés par les cellules mutantes, ce qui est suivie par une perte exagérée de leur innervation chez les souris adultes. Par ailleurs, les souris hétérozygotes PV-Cre;Tsc1flox/+ et knock-out PV-Cre;Tsc1flox/flox comparativement aux souris saines présentaient des déficits dans les comportements sociaux. Aussi, nous avons identifié les dysfonctionnements dans l’autophagie comme mécanismes moléculaires sous-jacents la perte des synapses PV chez les souris mutantes. Enfin, nous avons démontré l’existence d’une période critique se situant entre les 2e et 3e semaines postnatales durant laquelle un traitement à la Rapamycine qui inhibe l’hyperactivation de mTORC1 découlant de l’haploinsuffisance de TSC1 est suffisante pour renverser de façon permanente les déficits synaptiques et comportementaux des animaux mutants. Aussi, l’haploinsuffisance de TSC1 dans les cellules PV entraîne une augmentation de la discrimination tactile chez les animaux mutants. Par ailleurs, nous avons trouvé que les v connectivités glutamatergiques aussi bien intra-corticales que thalamocorticales sur les cellules PV sont réduites chez les adultes mutants comparativement aux contrôles alors que chez les souris pré-adolescentes, elles ne sont pas affectées. Finalement, une restriction sensorielle par l’intermédiaire de la coupe de moustaches pendant la fenêtre critique identifiée est suffisante pour renverser le phénotype d’hypersensibilité de ces animaux. Dans son ensemble, cette thèse apporte les preuves du rôle particulier de la signalisation mTORC1 dans la régulation du développement et du maintien de la connectivité des cellules PV et établit le ciblage de ces dernières comme bases mécanistiques d’un renversement des déficits dans les comportements sociaux et la discrimination sensorielle relatifs à l’autisme dans la sclérose tubéreuse. / Mechanistic target of rapamcyin (mTORC1) is a central player in cell growth throughout the organism. However, mTORC1 takes on additional, more specialized roles in the brain, for example, regulating neuron differentiation and glutamatergic synapse formation. In addition, in mature neuron, mTORC1 regulates protein synthesis-dependent and synaptic plastic changes underlying learning and memory. mTOR dysfunctions are the root cause of several monogenetic disorders (mTORpathies) and are implicated in both neurodevelopmental and neuropsychiatric disorders. One of the most studied mTORpathy is Tuberous Sclerosis, which is caused by mutations in the mTORC1-negative regulators Tuberous Sclerosis Complex 1 or 2 (TSC1 or TSC2). Tuberous Sclerosis is associated with neurological problems, including epilepsy, autism and intellectual disabilities. The role of mTORC1 in excitatory neurons has been extensively investigated, on the other hand whether and how it modulates cortical inhibitory circuit formation is not known. Within the forebrain, inhibitory GABAergic (γ-aminobutyric acid producing) interneurons possess the largest diversity in morphology, connectivity, and physiological properties. Cortical parvalbumin (PV)-positive basket cells (BC) specifically target the soma and proximal dendrites of excitatory neurons. PV cells are strategically positioned to control the generation of action potentials and are also strongly interconnected, which promotes their synchronous activity. The correct development of inhibitory interneurons is crucial for functional circuits. In particular, the axonal arborisation and synapse density of PV interneurons change in the postnatal brain. Interestingly, altered PV cells function has been associated to neurodevelopmental disorders, such as autism spectrum disorders (ASDs), both in human and animal models. How and whether mTORC1 signaling affects PV cell development is unknown. In addition to cognitive impairments, ASDs often result in sensory processing deficits. About 90% of ASD individuals have atypical sensory experiences, described as both hyper- and hypo-reactivity, with abnormal responses to tactile stimulation representing a very frequent finding. In fact, sensory abnormalities are now commonly recognized as diagnostic criteria in ASDs. However, the neurobiological mechanisms that underlie impaired sensory processing associated with ASDs are poorly understood. Mindful of the importance of TSC1-mTOR pathway for neuronal physiology and since mutations in Tsc1 give rise to autistic traits, we questioned whether and how Tsc1 deletion selectively in PV cells affects their connectivity, and whether and to what extent these alterations in cortical PV cell circuits might be contributing to changes in behaviours downstream of altered mTOR signaling. The results presented in this thesis show that Tsc1 haploinsufficiency causes a premature increase in terminal axonal branching and bouton density formed by mutant PV cells, followed by a loss of perisomatic innervation in adult mice. Further PV cell-restricted Tsc1 haploinsufficient and knockout mice, respectively PV-Cre;Tsc1flox/+ and PV-Cre;Tsc1flox/flox mice show deficits in social behaviour. Moreover, we identify autophagy dysfunctions as molecular mechanisms underlying PV synapses loss in PV-Cre;Tsc1flox/+ and PV-Cre;Tsc1flox/flox mice. Finally, we identify a sensitive period during the third postnatal week during which treatment with the mTOR inhibitor Rapamycin rescues deficits in both PV cell innervation and behavioral deficits in adult conditional haploinsufficient mice. We further find that PV-Cre;Tsc1flox/+ mice show increased texture discrimination. Our data also demonstrate that mutant PV cells show reduced cortical and thalamocortical glutamatergic inputs in adult mice, whereas they do not exhibit any alterations of these inputs in pre-adolescent mice. Finally sensory modulation by whisker trimming during the third postnatal week rescues texture discrimination hypersensitivity in adult conditional haploinsufficient mice. Altogether, this thesis demonstrates the crucial role of mTORC1 signaling in the regulation of the developmental time course and maintenance of cortical PV cell connectivity and support a mechanistic basis for the targeted rescue of social behaviors and sensory processing in disorders associated with deregulated mTORC1 signaling.
49

Effects of neonatal hypoxia on cortical circuits and cognitive functions

Lee, Karen 01 1900 (has links)
Les enfants qui ont subi une asphyxie périnatale modérée (MPA) risquent de développer des déficits cognitifs et comportementaux subtils et durables, notamment des troubles d'apprentissage et des problèmes émotionnels. Comprendre les mécanismes sous-jacents est une étape essentielle pour concevoir une thérapie ciblée. Déterminer comment le développement du cerveau est corrélé entre les humains et les rongeurs n'est pas simple, mais il existe également un alignement inter-espèces considérable en termes d'étapes clés du développement. Sur la base des changements biochimiques et neuroanatomiques au cours du développement précoce, le consensus général est qu'un cerveau de rongeur P8-10 correspond à peu près au cerveau d'un enfant à terme ; par conséquent, nous avons utilisé cette fenêtre temporelle comme référence pour développer un modèle préclinique de MPA chez la souris. Nous avons d'abord établi un protocole qui nous permet d'observer de manière fiable les crises induites par l'hypoxie chez les souris postnatales. Nous avons constaté que l'exposition de chiots P8-9 directement à 4 % d'O2 pendant 8 minutes induit de manière fiable des crises avec une latence d'environ 5 minutes chez 3 souches de souris (FVB, C57Bl/6, 129S6). Cet aspect est cliniquement pertinent car les convulsions sont la caractéristique néonatale la plus importante de l'encéphalopathie de stade 2 (modérée) telle que définie par l'échelle de Sarnat. Les souris MPA adultes présentent des séquelles à long terme sur des performances cognitives spécifiques, notamment des déficits de la mémoire de reconnaissance et de la flexibilité cognitive, mais aucune altération du comportement moteur et émotionnel. Le cortex préfrontal (PFC) régule la flexibilité cognitive et le comportement émotionnel. Les neurones qui libèrent la sérotonine (5-HT) projettent vers le PFC, et les composés modulant l'activité 5-HT influencent l'émotion et la cognition. On ne sait pas si les dérégulations de la 5-HT contribuent aux problèmes cognitifs induits par le MPA. Dans une première étude, nous avons trouvé que les niveaux d'expression de 5-HT, quantifiés par immunohistochimie, et de libération de 5-HT, quantifiés par microdialyse in vivo chez des souris éveillées, sont réduits dans le PFC de souris MPA adultes. Les souris MPA présentent également une régulation de la température corporelle altérée après l'injection de l'agoniste des récepteurs 5-HT1A, 8-OH-DPAT, suggérant la présence de déficits dans la fonction des auto-récepteurs 5-HT sur les neurones du raphé. Enfin, le traitement chronique de souris MPA adultes avec de la fluoxétine, un inhibiteur du transporteur de recapture de la 5-HT, ou l'agoniste des récepteurs 5-HT1A, la tandospirone, sauve la flexibilité cognitive et les troubles de la mémoire. Ensemble, ces données démontrent que le développement de la fonction du système 5-HT est vulnérable à une asphyxie périnatale modérée. L'hypofonctionnement de la 5-HT pourrait à son tour contribuer à une déficience cognitive à long terme à l'âge adulte, indiquant une cible potentielle pour les thérapies pharmacologiques. Les circuits GABAergiques comprennent une variété étonnante de différents types de cellules, qui sont probablement recrutées par différents événements comportementaux. Un sous-type important de cellules GABAergiques, les cellules positives à la parvalbumine (PV), génèrent des potentiels d'action à haute fréquence et synchronisent l'activité des neurones pyramidaux excitateurs. Les cellules PV sont particulièrement importantes pour la génération d'oscillations gamma, qui à leur tour régulent de nombreuses fonctions cognitives, notamment le traitement attentionnel axé sur les objectifs et la mémoire de travail. Des découvertes récentes indiquent que les cellules PV utilisent beaucoup plus d'énergie que les autres neurones corticaux, ce qui peut les rendre très vulnérables aux conditions de stress métabolique et oxydatif causées par le MPA. Nos données ont montré que l'expression de PV est altérée chez les souris MPA adultes. Nous avons en outre constaté que le niveau d'expression du récepteur de la neurotrophine p75NTR, qui limite la maturation des cellules PV au cours de la première semaine postnatale, est augmenté chez les souris MPA. La suppression génétique de p75NTR dans les neurones GABAergiques exprimant le facteur de transcription Nkx2.1, qui comprend les cellules PV, protège les souris de la perte de niveaux de PV et des effets cognitifs à long terme du MPA. Enfin, un traitement d'une semaine avec un inhibiteur de p75NTR commençant après le MPA sauve complètement les déficits d'activité cognitive et corticale chez les souris adultes. L'ensemble de ces données révèle une cible moléculaire potentielle pour le traitement des altérations cognitives causées par le MPA. / Children who experienced moderate perinatal asphyxia (MPA) are at risk of developing long lasting subtle cognitive and behavioral deficits, including learning disabilities and emotional problems. Understanding the underlying mechanisms is an essential step for designing targeted therapy. Determining how brain development correlates between humans and rodents is not straightforward, however there is also considerable cross-species alignment in terms of key developmental milestones. Based on biochemical and neuroanatomical changes during early development, the general consensus is that a P8-10 rodent brain corresponds roughly to the brain of a term infant; therefore, we used this time window as reference to develop a preclinical model of MPA in mouse. We first established a protocol that allows us to reliably observe hypoxia-induced seizures in postnatal mice. We found that exposing P8-9 pups directly to 4% O2 for 8 minutes reliably induces seizures with a latency of about 5’ in 3 mouse strains (FVB, C57Bl/6, 129S6). This aspect is clinically relevant as seizures are the most prominent neonatal hallmark of Stage 2 (Moderate) encephalopathy as defined by the Sarnat Scale. Adult MPA mice show long-term sequelae on specific cognitive performance, including deficits in recognition memory and cognitive flexibility, but no impairment in motor and emotional behavior. The prefrontal cortex (PFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin (5-HT) project to the PFC, and compounds modulating 5-HT activity influence emotion and cognition. Whether 5-HT dysregulations contribute to MPA-induced cognitive problems is unknown. In a first study, we found that 5-HT expression levels, quantified by immunohistochemistry, and 5-HT release, quantified by in vivo microdialysis in awake mice, are reduced in PFC of adult MPA mice. MPA mice also show impaired body temperature regulation following injection of the 5-HT1A receptor agonist 8-OH-DPAT, suggesting the presence of deficits in 5-HT auto-receptor function on raphe neurons. Finally, chronic treatment of adult MPA mice with fluoxetine, an inhibitor of 5-HT reuptake transporter, or the 5-HT1A receptor agonist tandospirone rescues cognitive flexibility and memory impairments. All together, these data demonstrate that the development of 5-HT system function is vulnerable to moderate perinatal asphyxia. 5-HT hypofunction might in turn contribute to long-term cognitive impairment in adulthood, indicating a potential target for pharmacological therapies. GABAergic circuits comprise an astonishing variety of different cell types, which are likely recruited by different behavioral events. An important subtype of GABAergic cells, the fast-spiking, parvalbumin-positive (PV) cells, generate action potentials at high frequency and synchronize the activity of excitatory pyramidal neurons. PV cells are particularly important for the generation of gamma oscillations, which in turn regulate many cognitive functions including goal-directed attentional processing and working memory. Recent findings indicate that PV cells utilize much more energy than other cortical neurons, which may render them highly vulnerable to conditions of metabolic and oxidative stress caused by MPA. Our data showed that PV expression is impaired in adult MPA mice. We further found that the expression level of the neurotrophin receptor p75NTR, which limits PV cell maturation during the first postnatal week, is increased in MPA mice. Genetic deletion of p75NTR in GABAergic neurons expressing the transcription factor Nkx2.1, which include PV cells, protects mice from PV levels loss and the long-term cognitive effects of MPA. Finally, one week treatment with a p75NTR inhibitor starting after MPA completely rescues the cognitive and cortical activity deficits in adult mice. All together this data reveals a potential molecular target for the treatment of the cognitive alterations caused by MPA.
50

Bases moléculaires et cellulaires d’un trouble neurodéveloppemental causé par l’haploinsuffisance de SYNGAP1

Berryer, Martin, H 12 1900 (has links)
No description available.

Page generated in 0.4388 seconds