• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 22
  • 13
  • 2
  • Tagged with
  • 61
  • 61
  • 58
  • 58
  • 34
  • 16
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Le dalaï-lama et la science moderne

Bellard, Benoit T. 08 1900 (has links)
No description available.
22

Étude théorique des collisions ultra-froides en réseau optique / Theoretical study of ultracold collisions in optical lattice

Terrier, Hugo 18 July 2016 (has links)
Un réseau optique, créé par des lasers, permet de piéger des atomes refroidis à ultra-basse température. Il permet d'obtenir une contrainte comme s'il s'agissait d'un cristal idéal (un cristal sans agitation thermique). Je décris les états des particules dans un potentiel périodique (un réseau optique) à l'aide d'ondes de probabilité (physique quantique) stationnaires (théorie indépendante du temps). Le caractère ondulatoire de la matière est exacerbé à très basse température et donne lieu à des phénomènes d'interférence et de résonance particuliers. / An optical lattice, created by lasers, can trap atoms cooled to ultra-low temperatures. It provides a constraint as if it were a perfect crystal (a crystal without thermal agitation). I describe the states of particles in a periodic potential (optical network) using probability waves (quantum physics) stationary (independent theory of time). The wave nature of the material is exacerbated at very low temperatures and gives rise to interference phenomena and individual resonance.
23

Interaction lumière matière avec des ensembles atomiques

Dubost, Brice 26 November 2012 (has links) (PDF)
L'étude de l'interaction lumière matière avec des ensembles atomiques est un domaine de recherche actif. Ce type de système permet des études fondamentales sur la mesure dans le contexte de variables continues, l'intrication collective, et les simulations quantiques. Ce domaine de recherche est également intéressant dans le contexte de la métrologie quantique, la communication quantique et l'informatique quantique. Dans cette thèse, deux aspects complémentaires de l'intéraction lumière matière avec des ensembles atomiques ont été étudiés avec des ions piégés et des atomes neutres refroidis par laser. L'expérience basée sur les ions piégés a pour but d'évaluer la possibilité d'utiliser de grands nuages d'ions afin d'obtenir une mémoire quantique possédant un long temps de cohérence. La forte répulsion de Coulomb entre les ions les place dans un état cristallin permettant de réduire les phénomènes de décohérence. L'interaction entre la lumière et la matière dans un grand cristal de Coulomb a été mesuré et les limitations d'un tel système sont discutées. L'expérience atomes froids c'est concentrée sur l'utilisation de mesures non destructives pour détecter les états non gaussiens atomiques. Ces états sont une ressource importante pour nombre de protocoles quantiques en régime de variables continues. Cette expérience est semblable aux expériences de communication quantique qui sont actuellement menées. Le travail présenté dans cette thèse se concentre sur la détection des états non gaussiens dans des ensembles atomiques en utilisant les cumulants, et en particulier le bruit associé à la mesure des cumulants.
24

Matrice de diffusion en interaction de configuration. Résonances orbitalaires et électronique moléculaire quantique

Portais, Mathilde 29 November 2013 (has links) (PDF)
La miniaturisation des circuits électroniques, qui pourraient à terme être réalisés par une seule molécule placée entre des électrodes, tout comme l'amélioration des techniques expérimentales pour mesurer le courant dans une jonction moléculaire, nous oblige à développer des techniques de calcul du courant tunnel et de ses variations toujours plus précises. Nous développons dans cette thèse une méthode de calcul multi-électronique du coefficient de transmission qui est en fait une généralisation de la méthode mono-électronique ESQC. Celle-ci repose sur l'écriture de la matrice de diffusion de la jonction moléculaire dans une base de configurations à m+1 particules: 1 particule incidente, et m électrons localisés, mais non figés, sur la molécule. Cette méthode, nommée CI-ESQC, est par la suite utilisée pour comprendre les mécanismes multi-électroniques de transfert de charges dans la jonction tunnel aux énergies résonantes. Dans la suite, les interférences entre plusieurs résonances sont étudiées, de même que la décroissance du coefficient de transmission avec la longueur d'un fil moléculaire contenu dans la jonction. Finalement la méthode est appliquée à une jonction moléculaire susceptible de réaliser des portes logiques contrôlées en fréquence.
25

Des fondements théoriques des concepts et méthodes de la chimie quantique à l'analyse et la prédiction d'observations

Cassam-Chenaï, Patrick 17 June 2003 (has links) (PDF)
Le problème typique du physicien théoricien, tel qu'il peut être décrit dans certains manuels scolaires, consiste à rendre compte de faits expérimentaux et d'observations à l'aide d'un modèle théorique. L'expérimentateur (qui peut être la même personne) quant à lui valide ou invalide le modèle au moyen de nouvelles expériences. Pour le physicien et épistémologiste Thomas S. Kuhn (''La structure des révolutions scientifiques'', 1960), cette vision du progrès scientifique qui suppose, notons le en passant, que l'on ait affaire à des théories réfutables au sens de Popper, est quelque peu naïve. En effet, expérimentateurs et théoriciens sont déjà de connivence pour accepter les mêmes paradigmes au sens de Kuhn, c'est-à-dire en particulier qu'il y a accord, en général tacite, sur les problèmes susceptibles d'être formulés. Ils répondent malgré eux à des questions qu'ils ne se sont pas posés. Notre travail s'inscrit dans le cadre orthodoxe de la théorie quantique. Nous avons cependant tenté de répondre à quelques questions que l'on omet généralement de poser. Ceci aussi bien au niveau des méthodes et des concepts de la chimie théorique qu'au niveau de l'analyse de données expérimentales. Par exemple, dans nos travaux théoriques nous nous sommes demandé si la définition de certains concepts tenus pour fondamentaux était véritablement indépendante de toute approximation ou représentation arbitraire, et inversement si d'autres concepts supposés liés à une approximation particulière, ne pouvaient pas être étendus ou avoir une signification plus profonde que celle qu'on leur accorde habituellement (cas des surfaces de Born-Oppenheimer). Dans nos travaux d'analyse de données nous avons tenté de remonter à des données expérimentales aussi brutes que possible pour éviter les biais que peuvent introduire les traitements qu'elles subissent. Ces traitements sont fonctions des modèles physiques auxquels les données sont supposées se conformer et que nous avons remis en question. Depuis notre thèse, nous nous sommes efforcé de maintenir un équilibre entre une recherche fondamentale tournée vers la théorie et permettant de voir de façon plus synthétique ou plus critique, certains aspects de la chimie quantique, et une recherche tournée vers l'expérience et les applications astrophysiques. La présentation de nos travaux s'articulera donc naturellement sur deux volets. Notons aussi que cette présentation n'est pas exhaustive. En particulier nous n'aborderons pas ici nos travaux sur les hydrocarbones polycycliques aromatiques qui entrent dans une des thématiques traditionnelles de notre laboratoire. Notre exposé se limitera aux principaux projets de recherches dont nous avons eu l'initiative et qui ont donné lieu à des collaborations, (à l'exception de notre travail sur les bases flottantes dont il ne sera pas non plus question dans cette présentation). Ce choix nous a paru conforme à l'esprit de l'habilitation à diriger des recherches.
26

Micro-cavité Fabry Perot fibrée : une nouvelle approche pour l'étude des polaritons dans des hétérostructures semi-conductrices

Besga, Benjamin 06 June 2013 (has links) (PDF)
L'interaction entre la lumière et la matière est au coeur de la physique quantique depuis ses origines. Nous nous intéressons ici à l'interaction entre les excitations élémentaires d'une hétérostructure semi-conductrice (excitons de boîtes et de puits quantiques) et le mode du champ d'une cavité Fabry Perot fibrée. Nous présentons une caractérisation des propriétés géométriques et spectrales des modes de la micro-cavité fibrée plan-concave. Cette dernière est entièrement ajustable et cette nouvelle approche nous permet d'étudier plusieurs régimes de l'électrodynamique quantique d'émetteurs solides en cavité. Pour une boîte quantique unique dans une micro-cavité fibrée nous obtenons un couplage à la limite du régime de couplage fort et une coopérativité supérieure à l'unité, traduisant le potentiel d'un tel système pour des applications dans le domaine de l'information quantique. Pour un puits quantique dans une micro-cavité fibrée, le couplage obtenu est comparable a celui observé dans des structures intégrées et permet d'étudier plusieurs aspects de la physique des polaritons confinés optiquement. Ces derniers, issus du couplage fort d'un exciton et d'un photon, possèdent un temps de vie relativement long qui permet d'étudier les propriétés thermodynamiques du système. Le rôle du désordre dans le puits quantique est explicité. Cela nous permet d'interpréter la non-linéarité de la photoluminescence des polaritons avec la puissance de pompe en termes de transition de Dicke. Enfin, le confinement optique des polaritons, permet d'étudier le rôle des interactions entre polaritons et ouvre la voie vers un régime de blocage quantique de polariton.
27

From single to many atoms in a microscopic optical dipole trap

Fuhrmanek, Andreas 23 September 2011 (has links) (PDF)
This thesis focuses on the manipulation of rubidium 87 atoms in a microscopic optical dipole trap. The experiments are performed in various regimes where the number of atoms in the microscopic trap ranges from exactly one atom to several thousands on average.The single atom regime allows us to calibrate the experimental setup. We use it a quantum bit, which state we can prepare and read out with efficiencies of 99.97% and 98.6%, respectively. When several atoms are loaded in the microscopic trap we observe a sub-Poissonian distribution of the number of atoms due to light-assisted collisions in the presence of near-resonant light. A study of these collisions in our particular case (microscopic trap) reveals extremely high loss rates approaching the theoretical Langevin limit. Finally, we demonstrate that the loading of the microscopic trap is more efficient when we superimpose on this trap a second macroscopic trap, which we use as an atom reservoir. This reservoir allows us to load the micro trap from the macro trap in the absence of any near-resonant light, thus avoiding light-assisted collisions.The loading of the micro trap from the macro trap leads to optimal initial conditions for forced evaporation towards Bose-Einstein condensation with about ten atoms only. After evaporation we reach phase-space densities approaching the degenerate regime.
28

Quantum memory protocols in large cold atomic ensembles

Veissier, Lucile 05 December 2013 (has links) (PDF)
Les mémoires quantiques sont un élément essentiel dans le domaine de l'information quantique, en particulier pour la mise en oeuvre de communications quantiques sur de longues distances. Une mémoire quantique a pour but de stocker un état quantique de la lumière, comme par exemple un bit quantique (qubit), et de le réémettre après un délai donné. Les ensembles atomiques sont de bons candidats pour construire de telles mémoires quantiques, car il est possible d'obtenir de fort couplage lumière-matière dans le cas d'un grand nombre d'atomes. De plus, la notion d'effet collectif, qui est renforcé pour de large profondeur optique, permet en principe une efficacité de stockage proche de l'unité. Ainsi, dans cette thèse, un piège magnéto-optique de césium à forte densité optique est utilisé pour l'implémentation d'un protocole de mémoire quantique basé sur la transparence induite électromagnétiquement (EIT). Tout d'abord, le phénomène EIT est étudié à travers un critère de discrimination entre les modèles d'EIT et de séparation Autler-Townes. Nous rapportons ensuite la mise en oeuvre d'une mémoire basée sur l'EIT pour des qubits photoniques encodés en moment angulaire orbital (OAM) de la lumière. Une mémoire réversible pour des modes de Laguerre-Gauss est réalisée, et nous démontrons que la mémoire optique préserve le sens de la structure hélicoïdale au niveau du photon unique. Ensuite, une tomographie quantique complète des états réémis est effectuée, donnant des fidélités au-dessus de la limite classique. Cela montre que notre mémoire optique fonctionne dans le régime quantique. Enfin, nous présentons la mise en oeuvre du protocole dit DLCZ dans notre ensemble d'atomes froids, permettant la génération de photons uniques annoncés. Une détection homodyne nous permet de réaliser la tomographie quantique de l'état photonique ainsi créé.
29

Sources brillantes de photons uniques indiscernables et démonstration d'une porte logique quantique

Gazzano, Olivier 11 October 2013 (has links) (PDF)
L'objectif de cette thèse a été de développer de nouvelles sources brillantes de photons à la fois uniques et indiscernables et de les utiliser pour réaliser une porte logique quantique. Pour cela, nous avons étudié et contrôlé l'émission spontanée de boîtes quantiques semi-conductrices insérées dans des structures optiques. Dans un premier temps, nous avons développé un nouveau type de cavités tridimensionnelles - simples à réaliser et que nous avons nommées cavités à " modes de Tamm plasmoniques confinés " - afin de contrôler l'émission spontanée d'une boîte quantique et de créer une source brillante de photons uniques. Dans un second temps, nous avons fabriqué et caractérisé des sources de photons uniques ayant des brillances records allant jusqu'à 0.79 photons collectés par impulsion laser. Pour cela, nous avons couplé de manière déterministe une boîte quantique à un mode confiné de micropilier. L'indiscernabilité des photons émis par la source a été étudiée en fonction des conditions d'excitation. Un schéma d'excitation à deux couleurs nous a permis d'obtenir pour la première fois une grande indiscernabilité entre les photons à forte brillance de la source. Enfin, pour montrer le potentiel de ces sources, nous avons construit une porte logique quantique Controlled-NOT opérant sur deux photons uniques. Cette porte qui retourne l'état d'un qubit de cible en fonction de l'état d'un qubit de contrôle est l'élément de base d'un ordinateur quantique. Grâce à la mesure de la table de vérité, nous avons obtenu le taux de succès de la porte. Finalement, en utilisant cette porte, nous avons généré deux photons intriqués en polarisation. La fidélité à l'état de Bell atteint 71%.
30

Read-out and coherent manipulation of an isolated nuclear spin using a single molecule magnet spin transistor / Lecture et manipulation cohérente d'un spin nucléaire isolé en utilisant un transistor à molécule aimant unique

Thiele, Stefan 24 January 2014 (has links)
La réalisation d'un ordinateur quantique fonctionnel est l'un des objectifs technologiques les plus ambitieux pour les scientifiques d'aujourd'hui. Sa brique de base est composée d'un système quantique à deux niveaux, appelé bit quantique (ou qubit). Parmi les différents concepts existants, les dispositifs à base de spin sont très attractifs car ils bénéficient de la progression constante des techniques de nanofabrication et permettent la lecture électrique de l'état ​​du qubit. Dans ce contexte, les dispositifs à base de spins nucléaires offrent un temps de cohérence supérieur à celui des dispositifs à base de spin électronique en raison de leur meilleure isolation à l'environnement. Mais ce couplage faible a un prix: la détection et la manipulation des spins nucléaires individuels restent des tâches difficiles. De très bonnes conditions expérimentales étaient donc essentielles pour la réussite de ce projet. Outre des systèmes de filtrage des radiofréquences à très basses températures et des amplificateurs à très faible bruit, j'ai développé de nouveaux supports d'échantillons et des bobines de champ magnétique trois axes compacts avec l'appui des services techniques de l'Institut Néel. Chaque partie a été optimisée afin d'améliorer la qualité de l'installation et évaluée de manière quantitative. Le dispositif lui-même, un qubit réalisé grâce à un transistor de spin nucléaire, est composé d'un aimant à molécule unique couplé à des électrodes source, drain et grille. Il nous a permis de réaliser la lecture électrique de l'état d'un spin nucléaire unique, par un processus de mesure non destructif de son état quantique. Par conséquent, en sondant les états quantique de spin plus rapidement que le temps de relaxation caractéristique de celui-ci, nous avons réalisé la mesure de la trajectoire quantique d'un qubit nucléaire isolé. Cette expérience a mis en lumière le temps de relaxation T$ _1$ du spin nucléaire ainsi que son mécanisme de relaxation dominant. La manipulation cohérente du spin nucléaire a été réalisée en utilisant des champs électriques externes au lieu d'un champ magnétique. Cette idée originale a plusieurs avantages. Outre une réduction considérable du chauffage par effet Joule, les champs électriques permettent de contrôler et de manipuler le spin unique de façon très rapide. Cependant, pour coupler le spin à un champ électrique, un processus intermédiaire est nécessaire. Un tel procédé est l'interaction hyperfine, qui, si elle est modifiée par un champ électrique, est également désigné sous le nom d'effet Stark hyperfin. En utilisant cet effet, nous avons mis en évidence la manipulation cohérente d'un spin nucléaire unique et déterminé le temps de cohérence $ T^*_2 $. En outre, l'exploitation de l'effet Stark hyperfin statique nous avons permis de régler le qubit de spin nucléaire à et hors résonance par l'intermédiaire de la tension de grille. Cela pourrait être utilisé pour établir le contrôle de l'intrication entre les différents qubits nucléaires. En résumé, nous avons démontré pour la première fois la possibilité de réaliser et de manipuler un bit quantique basé sur un aimant à molécule unique, étendant ainsi le potentiel de la spintronique moléculaire au delà du stockage de données classique. De plus, la grande polyvalence des molécules aimants est très prometteuse pour une variété d'applications futures qui, peut-être un jour, parviendront à la réalisation d'un ordinateur quantique moléculaire. / The realization of a functional quantum computer is one of the most ambitious technologically goals of today's scientists. Its basic building block is composed of a two-level quantum system, namely a quantum bit (or qubit). Among the other existing concepts, spin based devices are very attractive since they benefit from the steady progress in nanofabrication and allow for the electrical read-out of the qubit state. In this context, nuclear spin based devices exhibit an additional gain of coherence time with respect to electron spin bases devices due to their better isolation from the environment. But weak coupling comes at a price: the detection and manipulation of individual nuclear spins remain challenging tasks. Very good experimental conditions were important for the success of this project. Besides innovative radio frequency filter systems and very low noise amplifiers, I developed new chip carriers and compact vector magnets with the support of the engineering departments at the institute. Each part was optimized in order to improve the overall performance of the setup and evaluated in a quantitative manner. The device itself, a nuclear spin qubit transistor, consisted of a TbPc$_2$ single-molecule magnet coupled to source, drain, and gate electrodes and enabled us to read-out electrically the state of a single nuclear spin. Moreover, the process of measuring the spin did not alter nor demolish its quantum state. Therefore, by sampling the spin states faster than the characteristic relaxation time, we could record the quantum trajectory of an isolated nuclear qubit. This experiment shed light on the relaxation time T$_1$ of the nuclear spin and its dominating relaxation mechanism. The coherent manipulation of the nuclear spin was performed by means of external electric fields instead of a magnetic field. This original idea has several advantages. Besides a tremendous reduction of Joule heating, electric fields allow for fast switching and spatially confined spin control. However, to couple the spin to an electric field, an intermediate quantum mechanical process is required. Such a process is the hyperfine interaction, which, if modified by an electric field, is also referred to as the hyperfine Stark effect. Using the effect we performed coherent rotations of the nuclear spin and determined the dephasing time $T^*_2$. Moreover, exploiting the static hyperfine Stark effect we were able to tune the nuclear qubit in and out of resonance by means of the gate voltage. This could be used to establish the control of entanglement between different nuclear qubits. In summary, we demonstrated the first single-molecule magnet based quantum bit and thus extended the potential of molecular spintronics beyond classical data storage. The great versatility of magnetic molecules holds a lot of promises for a variety of future applications and, maybe one day, culminates in a molecular quantum computer.

Page generated in 0.7014 seconds