• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 71
  • 55
  • 26
  • 23
  • 22
  • 22
  • 22
  • 18
  • 15
  • 15
  • 14
  • 14
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Problema de Cauchy para un Sistema de Tipo Benjamin-Bona-Mahony / Problema de Cauchy para un Sistema de Tipo Benjamin-Bona-Mahony

Montealegre Scott, Juan 25 September 2017 (has links)
It is proved that the initial value problem for a system of two Benjamin-Bona-Mahony equations coupled through both dispersive and nonlinear terms is locally and globally well posed in the Soboloev spaces Hs ×Hs with s ≥ 0 / Dado el problema de valor inicial para un sistema de dos ecuaciones de Benjamin-Bona-Mahony (BBM) acopladas a través de los términos dispersivos y no lineales, se demuestra que está bien colocado localmente y globalmente en los espacios Hs × Hs con s≥0.
62

Étude de modèles en séparation de phase tenant compte d'effets d'anisotropie / Study of models in phase separation which takes into account anisotropic effects

Makki, Ahmad 14 October 2016 (has links)
Cette thèse se situe dans le cadre de l'analyse théorique et numérique de modèles en séparation de phase qui tiennent compte d'effets d'anisotropie. Ceci est pertinent, par exemple, pour l'évolution de cristaux dans leur matrice liquide pour lesquels ces effets d'anisotropie sont très forts. On étudie l'existence, l'unicité et la régularité de la solution des équations de Cahn-Hilliard et d'Allen-Cahn ainsi que son comportement asymptotique en terme d'existence d'un attracteur global de dimension fractale finie. La première partie de la thèse concerne certains modèles de séparation de phase qui, en particulier, décrivent la formation de motifs dendritiques. D'abord, on étudie les équations de Cahn-Hilliard et d'Allen-Cahn qui prennent en compte les effets d'anisotropie forts en dimension un avec des conditions de type Neumann sur le bord et une non linéarité régulière de type polynomial. En particulier, ces modèles contiennent un terme supplémentaire appelé régularisation de Willmore. Ensuite, on étudie ces modèles avec des conditions de type périodique (respectivement, Dirichlet) sur le bord pour l'équation de Cahn-Hilliard (respectivement, d'Allen-Cahn) mais en dimension spatiales plus élevées. Finalement, on étudie la dynamique des équations de Cahn-Hilliard et d'Allen-Cahn visqueux avec des conditions de type Neumann et Dirichlet respectivement sur le bord et une non linéarité régulière et en plus, la présence de simulations numériques qui montrent les effets du terme de viscosité sur l'anisotropie et l'isotropie dans l'équation de Cahn-Hilliard. Dans le dernier chapitre, on étudie le comportement en temps long en termes d'attracteurs de dimension finie, d'une classe d'équations doublement non linéaires de type Allen-Cahn avec des conditions de type Dirichlet sur le bord et une non linéarité singulière. / This thesis is situated in the context of the theoretical and numerical analysis of models in phase separation which take into account the anisotropic effects. This is relevant, for example, for the development of crystals in their liquid matrix for which the effects of anisotropy are very strong. We study the existence, uniqueness and the regularity of the solution of Cahn-Hilliard and Alen-Cahn equations and the asymptotic behavior in terms of the existence of a global attractor with finite fractal dimension. The first part of the thesis concerns some models in phase separation which, in particular, describe the formation of dendritic patterns. We start by study- ing the anisotropic Cahn-Hilliard and Allen-Cahn equations in one space dimension both associated with Neumann boundary conditions and a regular nonlinearity. In particular, these two models contain an additional term called Willmore regularization. Furthermore, we study these two models with Periodic (respectively, Dirichlet) boundary conditions for the Cahn-Hilliard (respectively, Allen-Cahn) equation but in higher space dimensions. Finally, we study the dynamics of the viscous Cahn-Hilliard and Allen-Cahn equations with Neumann and Dirichlet boundary conditions respectively and a regular nonlinearity in the presence of the Willmore regularization term and we also give some numerical simulations which show the effects of the viscosity term on the anisotropic and isotropic Cahn-Hilliard equations. In the last chapter, we study the long time behavior, in terms of finite dimensional attractors, of a class of doubly nonlinear Allen-Cahn equations with Dirichlet boundary conditions and singular potentials.
63

Equations aux dérivées partielles et aléas / Randomness and PDEs

Xia, Bo 08 July 2016 (has links)
Dans cette thèse, on a d’abord considéré une équation d'onde. On a premièrement montré que l’équation est bien-posée presque sûre par la méthode de décomposition de fréquence de Bourgain sous l’hypothèse de régularité que s > 2(p−3)/(p-1). Ensuite, nous avons réduit de cette exigence de régulation à (p-3)/(p−1) en appelant une estimation probabiliste a priori. Nous considérons également l’approximation des solutions obtenues ci-dessus par des solutions lisses et la stabilité de cette procédure d’approximation. Et nous avons conclu que l’équation est partout mal-posée dans le régime de super-critique. Nous avons considéré ensuite l’équation du faisceau quintique sur le tore 3D. Et nous avons montré que cette équation est presque sûr bien-posée globalement dans certain régimes de super-critique. Enfin, nous avons prouvé que la mesure de l’image de la mesure gaussienne sous l’application de flot de l’équation BBM généralisé satisfait une inégalité de type log-Sobolev avec une petit peu de perte de l’intégrabilité. / In this thesis, we consider a wave equation. We first showed that the equation is almost sure global well-posed via Bourgain’s high-low frequency decomposition under the regularity assumption s > 2(p−3)/(p−1). Then we lowered down this regularity requirement to be (p−3)/(p−1) by invoking a probabilistic a priori estimate. We also consider approximation of the above achieved solutions by smooth solutions and the stability of this approximating procedure. And we concluded that this equation is everywhere ill-posed in the super-critical regime. Next, we considered the quintic beam equation on 3D torus. And we showed that this equation is almost sure global well-posed in certain super-critical regime. Lastly, we proved that the image measure of the Gaussian measure under the generalized BBM flow map satisfies a log-Sobolev type inequality with a little bit loss of integrability.
64

Analyse hautes fréquences pour les équations des ondes de surface / High frequency analysis for water waves systems

Nguyen, Quang Huy 05 July 2016 (has links)
Cette thèse est consacrée à l'analyse mathématique de l'équation d'Euler incompressible à surface libre. On se concentre sur la propriété dispersive et sur la théorie de Cauchy à faible régularité. Une grande part de la thèse est consacrée à l'étude de l'équation des ondes de gravité-capillarité. On établit des critères d'explosion et la persistance de régularité dans les espaces de Sobolev. En démontrant les estimations de Strichartz pour les solutions à faible régularité, on obtient des théories de Cauchy pour les données initiales dont la vitesse peut être non-lipschitzienne. Dans une autre part de la thèse, on étudie la propriété dispersive des équations des ondes de surface. Plus précisément, on s'intéresse aux estimations de Strichartz. On démontre que, pour les solutions raisonnablement régulières, les équations des ondes de surface non linéaires obéissent aux mêmes estimations de Strichartz comme dans le cas des équations linéarisées. / This dissertation is devoted to the mathematical analysis of the water waves systems. We focus on the dispersive property and the Cauchy problem for rough initial data. One of the main objects of study is the gravity-capillary water waves system. We establish blow-up criteria and the persistence of Sobolev regularity. By proving Strichartz estimates for rough solutions, we obtain Cauchy theories for non-Lipschitz initial velocity. In another part of the dissertation, we study the dispersive property of the fully nonlinear water waves systems. More specifically, we are interested in Strichartz estimates. We prove for sufficiently smooth solutions that the nonlinear systems obey the same Strichartz estimates as their linearizations do.
65

Exponential Stability and Initial Value Problems for Evolutionary Equations

Trostorff, Sascha 07 May 2018 (has links)
The thesis deals with so-called evolutionary equations, a class of abstract linear operator equations, which cover a huge class of partial differential equation with and without memory. We provide a unified Hilbert space framework for the well-posedness of such equations. Moreover, we inspect the exponential stability of those problems and construct spaces of admissible inital values and pre-histories, on which a strongly continuous semigroup could be associated with the given problem. The theoretical results are illustrated by several examples.
66

Analyse mathématique et numérique de plusieurs problèmes non linéaires / Mathematical and numerical analysis of some nonlinear problems

Peng, Shuiran 07 December 2018 (has links)
Cette thèse est consacrée à l’étude théorique et numérique de plusieurs équations aux dérivées partielles non linéaires qui apparaissent dans la modélisation de la séparation de phase et des micro-systèmes électro-mécaniques (MSEM). Dans la première partie, nous étudions des modèles d’ordre élevé en séparation de phase pour lesquels nous obtenons le caractère bien posé et la dissipativité, ainsi que l’existence de l’attracteur global et, dans certains cas, des simulations numériques. De manière plus précise, nous considérons dans cette première partie des modèles de type Allen-Cahn et Cahn-Hilliard d’ordre élevé avec un potentiel régulier et des modèles de type Allen-Cahn d’ordre élevé avec un potentiel logarithmique. En outre, nous étudions des modèles anisotropes d’ordre élevé et des généralisations d’ordre élevé de l’équation de Cahn-Hilliard avec des applications en biologie, traitement d’images, etc. Nous étudions également la relaxation hyperbolique d’équations de Cahn-Hilliard anisotropes d’ordre élevé. Dans la seconde partie, nous proposons des schémas semi-discrets semi-implicites et implicites et totalement discrétisés afin de résoudre l’équation aux dérivées partielles non linéaire décrivant à la fois les effets élastiques et électrostatiques de condensateurs MSEM. Nous faisons une analyse théorique de ces schémas et de la convergence sous certaines conditions. De plus, plusieurs simulations numériques illustrent et appuient les résultats théoriques. / This thesis is devoted to the theoretical and numerical study of several nonlinear partial differential equations, which occur in the mathematical modeling of phase separation and micro-electromechanical system (MEMS). In the first part, we study higher-order phase separation models for which we obtain well-posedness and dissipativity results, together with the existence of global attractors and, in certain cases, numerical simulations. More precisely, we consider in this first part higher-order Allen-Cahn and Cahn-Hilliard equations with a regular potential and higher-order Allen-Cahn equation with a logarithmic potential. Moreover, we study higher-order anisotropic models and higher-order generalized Cahn-Hilliard equations, which have applications in biology, image processing, etc. We also consider the hyperbolic relaxation of higher-order anisotropic Cahn-Hilliard equations. In the second part, we develop semi-implicit and implicit semi-discrete, as well as fully discrete, schemes for solving the nonlinear partial differential equation, which describes both the elastic and electrostatic effects in an idealized MEMS capacitor. We analyze theoretically the stability of these schemes and the convergence under certain assumptions. Furthermore, several numerical simulations illustrate and support the theoretical results.
67

Preconditioned Newton methods for ill-posed problems / Vorkonditionierte Newton-Verfahren für schlecht gestellte Probleme

Langer, Stefan 21 June 2007 (has links)
No description available.
68

Étude de modèles de champ de phase de type Caginalp / Study of Caginalp type phase-field models

Doumbé Bangola, Brice Landry 03 May 2013 (has links)
Ce rapport de thèse est consacré à l'étude de modèles de champ de phase de type Caginalp. Nous considérons ici, deux modèles : le premier étant une généralisation du modèle de champ de phase de Caginalp basée sur une généralisation de la loi de Maxwell-Cattaneo et le second une généralisation provenant de la théorie de la conduction de chaleur introduite par Chen et Gurtin. L'étude du premier modèle est faite aussi bien dans un domaine borné (avec un potentiel régulier puis dans le cas d'un potentiel non régulier), que dans un domaine non borné, en l'occurrence R3. Le second modèle est un problème de champ de phase avec un couplage (linéaire et non linéaire). Tout d'abord, l'existence, l'unicité et la régularité des solutions sont analysées aux moyens d'arguments classiques. Ensuite, l'existence d'ensembles bornés absorbants et compacts attractifs est établie, assurant ainsi l'existence de l'attracteur global. Enfin, dans certains cas, l'existence d'attracteurs exponentiels, ainsi que le comportement spatial des solutions lorsque le domaine spatial est un cylindre semi-infini tri-dimensionnel, sont analysés. / This thesis report is dedicated to the study of Caginalp type phase-field Models. Here, we consider two models: the first one being a generalization of the field phase Caginalp based on a generalization of the Maxwell-Cattaneo law and the second one coming from the theory of heat conduction involving two temperatures. We study the first model in bounded (with regular and irregular potentials) and unbounded (i.e. R3) domains. The second model is a phase-field one with coupling term (linear and nonlinear). Firstly, the existence, uniqueness and regularity of solutions are analyzed by means of classical arguments. Secondly, the existence of bounded absorbing sets and attractive compact is established. Such results ensures the existence of the global attractor. Finally, in some cases, the existence of exponential attractors, as well as the spatial behavior of solutions when the spatial domain is a three-dimensional semi-infinite cylinder, are analyzed.
69

Étude asymptotique de modèles en transition de phase / Asymptotic study of phase transition models

Wehbe, Charbel 05 December 2014 (has links)
Ce rapport de thèse est consacré à l'étude de modèles de champ de phase de type Caginalp. Nous considérons ici, deux parties : la première étant une généralisation du modèle de champ de phase de Caginalp basée sur la loi de Maxwell-Cattaneo et la seconde traite le même modèle dans sa version conservative. L'étude dans les deux parties est faite dans un domaine borné. De plus, dans la première partie on distingue les cas de conditions aux bords de type Dirichlet ainsi que Neumann, tandis que dans la deuxième partie le modèle est étudié uniquement avec les conditions Dirichlet (avec un potentiel régulier puis un potentiel singulier). Tout d'abord, l'existence, l'unicité, et la régularité des solutions sont analysées aux moyens d'arguments classiques. Ensuite, l'existence d'ensembles bornés absorbants est établie. Enfin, dans certains cas, l'existence de l'attracteur global et d'attracteurs exponentiels sont analysés. / This thesis report is devoted to the study of Caginalp type phase-field Models. Here, we consider two parts : the first is a generalization of the Caginalp type phase-field model based on a generalization of the Maxwell-Cattaneo law and the second with the same model in its conservative version. The study in the two parts is made in a bounded domain. In addition, in the first part we distinguish cases of boundary conditions of Dirichlet and Neumann, while in the second part the model is studied only with Dirichlet conditions (with a regular potential and a singular potential). First, the existence, uniqueness, and regularity of solutions are analyzed by means of classical arguments. Then, the existence of bounded absorbing sets is established. Finally, in some cases, the existence of the global attractor and exponential attractors are analyzed.
70

On some models in linear thermo-elasticity with rational material laws

Mukhopadhyay, S., Picard, R., Trostorff, S., Waurick, M. 27 September 2019 (has links)
In the present work, we shall consider some common models in linear thermo-elasticity within a common structural framework. Due to the flexibility of the structural perspective we will obtain well-posedness results for a large class of generalized models allowing for more general material properties such as anisotropies, inhomogeneities, etc.

Page generated in 0.0527 seconds