• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 41
  • 9
  • Tagged with
  • 118
  • 52
  • 46
  • 34
  • 29
  • 29
  • 25
  • 21
  • 19
  • 19
  • 18
  • 17
  • 17
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Jointly integrating current context and social influence for improving recommendation / Intégration simultanée du contexte actuel et de l'influence sociale pour l'amélioration de la recommandation

Bambia, Meriam 13 June 2017 (has links)
La diversité des contenus recommandation et la variation des contextes des utilisateurs rendent la prédiction en temps réel des préférences des utilisateurs de plus en plus difficile mettre en place. Toutefois, la plupart des approches existantes n'utilisent que le temps et l'emplacement actuels séparément et ignorent d'autres informations contextuelles sur lesquelles dépendent incontestablement les préférences des utilisateurs (par exemple, la météo, l'occasion). En outre, ils ne parviennent pas considérer conjointement ces informations contextuelles avec les interactions sociales entre les utilisateurs. D'autre part, la résolution de problèmes classiques de recommandation (par exemple, aucun programme de télévision vu par un nouvel utilisateur connu sous le nom du problème de démarrage froid et pas assez d'items co-évalués par d'autres utilisateurs ayant des préférences similaires, connu sous le nom du problème de manque de donnes) est d'importance significative puisque sont attaqués par plusieurs travaux. Dans notre travail de thèse, nous proposons un modèle probabiliste qui permet exploiter conjointement les informations contextuelles actuelles et l'influence sociale afin d'améliorer la recommandation des items. En particulier, le modèle probabiliste vise prédire la pertinence de contenu pour un utilisateur en fonction de son contexte actuel et de son influence sociale. Nous avons considérer plusieurs éléments du contexte actuel des utilisateurs tels que l'occasion, le jour de la semaine, la localisation et la météo. Nous avons utilisé la technique de lissage Laplace afin d'éviter les fortes probabilités. D'autre part, nous supposons que l'information provenant des relations sociales a une influence potentielle sur les préférences des utilisateurs. Ainsi, nous supposons que l'influence sociale dépend non seulement des évaluations des amis mais aussi de la similarité sociale entre les utilisateurs. Les similarités sociales utilisateur-ami peuvent être établies en fonction des interactions sociales entre les utilisateurs et leurs amis (par exemple les recommandations, les tags, les commentaires). Nous proposons alors de prendre en compte l'influence sociale en fonction de la mesure de similarité utilisateur-ami afin d'estimer les préférences des utilisateurs. Nous avons mené une série d'expérimentations en utilisant un ensemble de donnes réelles issues de la plateforme de TV sociale Pinhole. Cet ensemble de donnes inclut les historiques d'accès des utilisateurs-vidéos et les réseaux sociaux des téléspectateurs. En outre, nous collectons des informations contextuelles pour chaque historique d'accès utilisateur-vidéo saisi par le système de formulaire plat. Le système de la plateforme capture et enregistre les dernières informations contextuelles auxquelles le spectateur est confronté en regardant une telle vidéo.Dans notre évaluation, nous adoptons le filtrage collaboratif axé sur le temps, le profil dépendant du temps et la factorisation de la matrice axe sur le réseau social comme tant des modèles de référence. L'évaluation a port sur deux tâches de recommandation. La première consiste sélectionner une liste trie de vidéos. La seconde est la tâche de prédiction de la cote vidéo. Nous avons évalué l'impact de chaque élément du contexte de visualisation dans la performance de prédiction. Nous testons ainsi la capacité de notre modèle résoudre le problème de manque de données et le problème de recommandation de démarrage froid du téléspectateur. Les résultats expérimentaux démontrent que notre modèle surpasse les approches de l'état de l'art fondes sur le facteur temps et sur les réseaux sociaux. Dans les tests des problèmes de manque de donnes et de démarrage froid, notre modèle renvoie des prédictions cohérentes différentes valeurs de manque de données. / Due to the diversity of alternative contents to choose and the change of users' preferences, real-time prediction of users' preferences in certain users' circumstances becomes increasingly hard for recommender systems. However, most existing context-aware approaches use only current time and location separately, and ignore other contextual information on which users' preferences may undoubtedly depend (e.g. weather, occasion). Furthermore, they fail to jointly consider these contextual information with social interactions between users. On the other hand, solving classic recommender problems (e.g. no seen items by a new user known as cold start problem, and no enough co-rated items with other users with similar preference as sparsity problem) is of significance importance since it is drawn by several works. In our thesis work, we propose a context-based approach that leverages jointly current contextual information and social influence in order to improve items recommendation. In particular, we propose a probabilistic model that aims to predict the relevance of items in respect with the user's current context. We considered several current context elements such as time, location, occasion, week day, location and weather. In order to avoid strong probabilities which leads to sparsity problem, we used Laplace smoothing technique. On the other hand, we argue that information from social relationships has potential influence on users' preferences. Thus, we assume that social influence depends not only on friends' ratings but also on social similarity between users. We proposed a social-based model that estimates the relevance of an item in respect with the social influence around the user on the relevance of this item. The user-friend social similarity information may be established based on social interactions between users and their friends (e.g. recommendations, tags, comments). Therefore, we argue that social similarity could be integrated using a similarity measure. Social influence is then jointly integrated based on user-friend similarity measure in order to estimate users' preferences. We conducted a comprehensive effectiveness evaluation on real dataset crawled from Pinhole social TV platform. This dataset includes viewer-video accessing history and viewers' friendship networks. In addition, we collected contextual information for each viewer-video accessing history captured by the plat form system. The platform system captures and records the last contextual information to which the viewer is faced while watching such a video. In our evaluation, we adopt Time-aware Collaborative Filtering, Time-Dependent Profile and Social Network-aware Matrix Factorization as baseline models. The evaluation focused on two recommendation tasks. The first one is the video list recommendation task and the second one is video rating prediction task. We evaluated the impact of each viewing context element in prediction performance. We tested the ability of our model to solve data sparsity and viewer cold start recommendation problems. The experimental results highlighted the effectiveness of our model compared to the considered baselines. Experimental results demonstrate that our approach outperforms time-aware and social network-based approaches. In the sparsity and cold start tests, our approach returns consistently accurate predictions at different values of data sparsity.
92

Vers l'intégration de post-éditions d'utilisateurs pour améliorer les systèmes de traduction automatiques probabilistes / Towards the integration of users' post-editions to improve phrase-based machine translation systems

Potet, Marion 09 April 2013 (has links)
Les technologies de traduction automatique existantes sont à présent vues comme une approche prometteuse pour aider à produire des traductions de façon efficace et à coût réduit. Cependant, l'état de l'art actuel ne permet pas encore une automatisation complète du processus et la coopération homme/machine reste indispensable pour produire des résultats de qualité. Une pratique usuelle consiste à post-éditer les résultats fournis par le système, c'est-à-dire effectuer une vérification manuelle et, si nécessaire, une correction des sorties erronées du système. Ce travail de post-édition effectué par les utilisateurs sur les résultats de traduction automatique constitue une source de données précieuses pour l'analyse et l'adaptation des systèmes. La problématique abordée dans nos travaux s'intéresse à développer une approche capable de tirer avantage de ces retro-actions (ou post-éditions) d'utilisateurs pour améliorer, en retour, les systèmes de traduction automatique. Les expérimentations menées visent à exploiter un corpus d'environ 10 000 hypothèses de traduction d'un système probabiliste de référence, post-éditées par des volontaires, par le biais d'une plateforme en ligne. Les résultats des premières expériences intégrant les post-éditions, dans le modèle de traduction d'une part, et par post-édition automatique statistique d'autre part, nous ont permis d'évaluer la complexité de la tâche. Une étude plus approfondie des systèmes de post-éditions statistique nous a permis d'évaluer l'utilisabilité de tels systèmes ainsi que les apports et limites de l'approche. Nous montrons aussi que les post-éditions collectées peuvent être utilisées avec succès pour estimer la confiance à accorder à un résultat de traduction automatique. Les résultats de nos travaux montrent la difficulté mais aussi le potentiel de l'utilisation de post-éditions d'hypothèses de traduction automatiques comme source d'information pour améliorer la qualité des systèmes probabilistes actuels. / Nowadays, machine translation technologies are seen as a promising approach to help produce low cost translations. However, the current state of the art does not allow the full automation of the process and human intervention remains essential to produce high quality results. To ensure translation quality, system's results are commonly post-edited : the outputs are manually checked and, if necessary, corrected by the user. This user's post-editing work can be a valuable source of data for systems analysis and improvement. Our work focuses on developing an approach able to take advantage of these users' feedbacks to improve and update a statistical machine translation (SMT) system. The conducted experiments aim to exploit a corpus of about 10,000 SMT translation hypotheses post-edited by volunteers through a crowdsourcing platform. The first experiments integrated post-editions into the translation model on the one hand, and on the system outputs by automatic post-editing on another hand, and allowed us to evaluate the complexity of the task. Our further detailed study of automatic statistical post-editions systems evaluate the usability, the benefits and limitations of the approach. We also show that the collected post-editions can be successfully used to estimate the confidence of a given result of automatic translation. The obtained results show that the use of automatic translation hypothese post-editions as a source of information is a difficult but promising way to improve the quality of current probabilistic systems.
93

Variabilité et incertitudes en géotechnique : de leur estimation à leur prise en compte

Dubost, Julien 08 June 2009 (has links)
L’évolution actuelle de l’ingénierie géotechnique place la maîtrise des risques d’origine géotechnique au cœur de ses objectifs. On constate aussi que la complexité des projets d’aménagement (à travers les objectifs coûts/délais/performances qui sont recherchés) est croissante et que les terrains choisis pour les recevoir présentent, quant à eux, des conditions géotechniques de plus en plus souvent « difficiles ». Ces conditions défavorables se traduisent par une variabilité forte des propriétés des sols, rendant leur reconnaissance et leur analyse plus complexe. Ce travail de thèse traite de la caractérisation de la variabilité naturelle des sols et des incertitudes liées aux reconnaissances géotechniques dans le but de mieux les prendre en compte dans les dimensionnements des ouvrages. Il se positionne dans le contexte de la maîtrise des risques de projet d’origine géotechnique. Les principaux outils statistiques servant à décrire la dispersion des données et leur structuration spatiale (géostatistique), ainsi que des méthodes probabilistes permettant d’utiliser leur résultats dans des calculs, sont présentés sous l’angle de leur application en géotechnique. La démarche est appliquée à un projet de plate-forme ferroviaire. Cette infrastructure a été implantée sur un site géologiquement et géotechniquement complexe, et présente aujourd’hui des déformations importantes dues aux tassements des sols. Une nouvelle analyse des données géotechniques a donc été entreprise. Elles ont, au préalable, été regroupées dans une base de données qui a facilité leur traitement statistique et géostatistique. Leur variabilité statistique et spatiale a été caractérisée permettant une meilleure compréhension du site. Le modèle géologique et géotechnique ainsi établi a ensuite été utilisé pour calculer les tassements. Une démarche en trois temps est proposée : globale, locale et spatialisée permettant une estimation des tassements et de leur incertitude, respectivement, à l’échelle du site, aux points de sondages, et spatialisée sur la zone d’étude. Les résultats montrent clairement l’intérêt des méthodes statistiques et géostatistiques pour la caractérisation des sites complexes et l’élaboration d’un modèle géologique et géotechnique du site adapté. La démarche d’analyse des tassements proposée met en avant le fait que les incertitudes des paramètres se répercutent sur les résultats des calculs de dimensionnement et expliquent le comportement global de l’infrastructure. Ces résultats peuvent se traduire sous forme d’une probabilité de ruine qui peut ensuite être utilisée dans un processus de prise de décision et de management des risques. D’une manière plus large, ce travail de thèse constitue une contribution à l’élaboration et l’analyse des campagnes de reconnaissances géotechniques, en ayant le souci d’identifier, d’évaluer et de prendre en compte la variabilité et les incertitudes des données lors des différentes phases du projet pour permettre une meilleure maîtrise du risque d’origine géotechnique. / The current evolution of the geotechnical engineering places the risk management of geotechnical origin in the heart of its objectives. We also notice that the complexity of the projects of development (through the objectives costs/deadline/performances which are sought) is increasing and that soil chosen to receive them present unusual geotechnical conditions. These unfavourable conditions usually mean a strong variability of the soil properties, which induces soil investigation and data analysis more difficult. This work of thesis deals with the characterization of the natural variability of soils and with the uncertainties dues to geotechnical investigations, with the aim to better take them into account in geotechnical engineering project. This work takes place in the context of the management of the risk of project with geotechnical origin. The main statistical tools used for describe the scattering of the data and their spatial variability (geostatistic), as well as the probabilistic methods enabling to use their results in calculations, are presented under the view of their application in geotechnical design. The approach is applied to a project of railway platform. This infrastructure was located on a site where the geology and the geotechnical conditions are complex, and which present important deformations due to the soil settlements. A new analysis of geotechnical data was started again. First, geotechnical data were included in a database in order to ease their statistical and geostatistical treatment. Their statistical and spatial variability were characterized allowing a better understanding of the site. The geologic and geotechnical model so established was then used to assess the settlement effects. An analysis in three levels is proposed: global, local and spatial, which give means to estimate the settlement values and its uncertainty, respectively, on the scale of the site, on the boring points, and on zone of study according to the spatial connectivity of soil properties. The results clearly show the interest of statistical and geostatiscal methods in characterizing complex sites and in the elaboration of a relevant geologic and geotechnical model. The settlement analysis proposed highlight that the parameter uncertainties are of first importance on the design calculations and explain the global behaviour of the infrastructure. These results can be translated in the form of a reliabilitry analysis which can be then used in a process of decision-making and risk management. In a wider way, this work of thesis contributes toward the elaboration and the analysis of the geotechnical investigations, with the aim to identify, to estimate and to take into account the variability and the uncertainties of the data during the various stages of the project. It leads to better control of the risk of geotechnical origin.
94

Two-Player Stochastic Games with Perfect and Zero Information / Jeux Stochastiques à Deux Joueurs à Information Parfaite et Zéro

Kelmendi, Edon 02 December 2016 (has links)
On considère des jeux stochastiques joués sur un graphe fini. La première partie s’intéresse aux jeux stochastiques à deux joueurs et information parfaite. Dans de tels jeux, les joueurs choisissent des actions dans ensemble fini, tour à tour, pour une durée infinie, produisant une histoire infinie. Le but du jeu est donné par une fonction d’utilité qui associe un réel à chaque histoire, la fonction est bornée et Borel-mesurable. Le premier joueur veut maximiser l’utilité espérée, et le deuxième joueur veut la minimiser. On démontre que si la fonction d’utilité est à la fois shift-invariant et submixing alors le jeu est semi-positionnel. C’est-à-dire le premier joueur a une stratégie optimale qui est déterministe et sans mémoire. Les deux joueurs ont information parfaite: ils choisissent leurs actions en ayant une connaissance parfaite de toute l’histoire. Dans la deuxième partie, on étudie des jeux de durée fini où le joueur protagoniste a zéro information. C’est-à-dire qu’il ne reçoit aucune information sur le déroulement du jeu, par conséquent sa stratégie est un mot fini sur l’ensemble des actions. Un automates probabiliste peut être considéré comme un tel jeu qui a un seul joueur. Tout d’abord, on compare deux classes d’automates probabilistes pour lesquelles le problème de valeur 1 est décidable: les automates leaktight et les automates simples. On prouve que la classe des automates simples est un sous-ensemble strict de la classe des automates leaktight. Puis, on considère des jeux semi-aveugles, qui sont des jeux à deux joueurs où le maximiseur a zéro information, et le minimiseur est parfaitement informé. On définit la classe des jeux semi-aveugles leaktight et on montre que le problème d’accessibilité maxmin est décidable sur cette classe. / We consider stochastic games that are played on finite graphs. The subject of the first part are two-player stochastic games with perfect information. In such games the two players take turns choosing actions from a finite set, for an infinite duration, resulting in an infinite play. The objective of the game is given by a Borel-measurable and bounded payoff function that maps infinite plays to real numbers. The first player wants to maximize the expected payoff, and the second player has the opposite objective, that of minimizing the expected payoff. We prove that if the payoff function is both shift-invariant and submixing then the game is half-positional. This means that the first player has an optimal strategy that is at the same time pure and memoryless. Both players have perfect information, so the actions are chosen based on the whole history. In the second part we study finite-duration games where the protagonist player has zero information. That is, he gets no feedback from the game and consequently his strategy is a finite word over the set of actions. Probabilistic finite automata can be seen as an example of such a game that has only a single player. First we compare two classes of probabilistic automata: leaktight automata and simple automata, for which the value 1 problem is known to be decidable. We prove that simple automata are a strict subset of leaktight automata. Then we consider half-blind games, which are two player games where the maximizer has zero information and the minimizer is perfectly informed. We define the class of leaktight half-blind games and prove that it has a decidable maxmin reachability problem.
95

Advances in deep learning with limited supervision and computational resources

Almahairi, Amjad 12 1900 (has links)
Les réseaux de neurones profonds sont la pierre angulaire des systèmes à la fine pointe de la technologie pour une vaste gamme de tâches, comme la reconnaissance d'objets, la modélisation du langage et la traduction automatique. Mis à part le progrès important établi dans les architectures et les procédures de formation des réseaux de neurones profonds, deux facteurs ont été la clé du succès remarquable de l'apprentissage profond : la disponibilité de grandes quantités de données étiquetées et la puissance de calcul massive. Cette thèse par articles apporte plusieurs contributions à l'avancement de l'apprentissage profond, en particulier dans les problèmes avec très peu ou pas de données étiquetées, ou avec des ressources informatiques limitées. Le premier article aborde la question de la rareté des données dans les systèmes de recommandation, en apprenant les représentations distribuées des produits à partir des commentaires d'évaluation de produits en langage naturel. Plus précisément, nous proposons un cadre d'apprentissage multitâches dans lequel nous utilisons des méthodes basées sur les réseaux de neurones pour apprendre les représentations de produits à partir de textes de critiques de produits et de données d'évaluation. Nous démontrons que la méthode proposée peut améliorer la généralisation dans les systèmes de recommandation et atteindre une performance de pointe sur l'ensemble de données Amazon Reviews. Le deuxième article s'attaque aux défis computationnels qui existent dans l'entraînement des réseaux de neurones profonds à grande échelle. Nous proposons une nouvelle architecture de réseaux de neurones conditionnels permettant d'attribuer la capacité du réseau de façon adaptative, et donc des calculs, dans les différentes régions des entrées. Nous démontrons l'efficacité de notre modèle sur les tâches de reconnaissance visuelle où les objets d'intérêt sont localisés à la couche d'entrée, tout en maintenant une surcharge de calcul beaucoup plus faible que les architectures standards des réseaux de neurones. Le troisième article contribue au domaine de l'apprentissage non supervisé, avec l'aide du paradigme des réseaux antagoniste génératifs. Nous introduisons un cadre fléxible pour l'entraînement des réseaux antagonistes génératifs, qui non seulement assure que le générateur estime la véritable distribution des données, mais permet également au discriminateur de conserver l'information sur la densité des données à l'optimum global. Nous validons notre cadre empiriquement en montrant que le discriminateur est capable de récupérer l'énergie de la distribution des données et d'obtenir une qualité d'échantillons à la fine pointe de la technologie. Enfin, dans le quatrième article, nous nous attaquons au problème de l'apprentissage non supervisé à travers différents domaines. Nous proposons un modèle qui permet d'apprendre des transformations plusieurs à plusieurs à travers deux domaines, et ce, à partir des données non appariées. Nous validons notre approche sur plusieurs ensembles de données se rapportant à l'imagerie, et nous montrons que notre méthode peut être appliquée efficacement dans des situations d'apprentissage semi-supervisé. / Deep neural networks are the cornerstone of state-of-the-art systems for a wide range of tasks, including object recognition, language modelling and machine translation. In the last decade, research in the field of deep learning has led to numerous key advances in designing novel architectures and training algorithms for neural networks. However, most success stories in deep learning heavily relied on two main factors: the availability of large amounts of labelled data and massive computational resources. This thesis by articles makes several contributions to advancing deep learning, specifically in problems with limited or no labelled data, or with constrained computational resources. The first article addresses sparsity of labelled data that emerges in the application field of recommender systems. We propose a multi-task learning framework that leverages natural language reviews in improving recommendation. Specifically, we apply neural-network-based methods for learning representations of products from review text, while learning from rating data. We demonstrate that the proposed method can achieve state-of-the-art performance on the Amazon Reviews dataset. The second article tackles computational challenges in training large-scale deep neural networks. We propose a conditional computation network architecture which can adaptively assign its capacity, and hence computations, across different regions of the input. We demonstrate the effectiveness of our model on visual recognition tasks where objects are spatially localized within the input, while maintaining much lower computational overhead than standard network architectures. The third article contributes to the domain of unsupervised learning with the generative adversarial networks paradigm. We introduce a flexible adversarial training framework, in which not only the generator converges to the true data distribution, but also the discriminator recovers the relative density of the data at the optimum. We validate our framework empirically by showing that the discriminator is able to accurately estimate the true energy of data while obtaining state-of-the-art quality of samples. Finally, in the fourth article, we address the problem of unsupervised domain translation. We propose a model which can learn flexible, many-to-many mappings across domains from unpaired data. We validate our approach on several image datasets, and we show that it can be effectively applied in semi-supervised learning settings.
96

On the Links between Probabilistic Graphical Models and Submodular Optimisation / Liens entre modèles graphiques probabilistes et optimisation sous-modulaire

Karri, Senanayak Sesh Kumar 27 September 2016 (has links)
L’entropie d’une distribution sur un ensemble de variables aléatoires discrètes est toujours bornée par l’entropie de la distribution factorisée correspondante. Cette propriété est due à la sous-modularité de l’entropie. Par ailleurs, les fonctions sous-modulaires sont une généralisation des fonctions de rang des matroïdes ; ainsi, les fonctions linéaires sur les polytopes associés peuvent être minimisées exactement par un algorithme glouton. Dans ce manuscrit, nous exploitons ces liens entre les structures des modèles graphiques et les fonctions sous-modulaires. Nous utilisons des algorithmes gloutons pour optimiser des fonctions linéaires sur des polytopes liés aux matroïdes graphiques et hypergraphiques pour apprendre la structure de modèles graphiques, tandis que nous utilisons des algorithmes d’inférence sur les graphes pour optimiser des fonctions sous-modulaires. La première contribution de cette thèse consiste à approcher par maximum de vraisemblance une distribution de probabilité par une distribution factorisable et de complexité algorithmique contrôlée. Comme cette complexité est exponentielle dans la largeur arborescente du graphe, notre but est d’apprendre un graphe décomposable avec une largeur arborescente bornée, ce qui est connu pour être NP-difficile. Nous posons ce problème comme un problème d’optimisation combinatoire et nous proposons une relaxation convexe basée sur les matroïdes graphiques et hypergraphiques. Ceci donne lieu à une solution approchée avec une bonne performance pratique. Pour la seconde contribution principale, nous utilisons le fait que l’entropie d’une distribution est toujours bornée par l’entropie de sa distribution factorisée associée, comme conséquence principale de la sous-modularité, permettant une généralisation à toutes les fonctions sous-modulaires de bornes basées sur les concepts de modèles graphiques. Un algorithme est développé pour maximiser les fonctions sous-modulaires, un autre problème NP-difficile, en maximisant ces bornes en utilisant des algorithmes d’inférence vibrationnels sur les graphes. En troisième contribution, nous proposons et analysons des algorithmes visant à minimiser des fonctions sous-modulaires pouvant s’écrire comme somme de fonctions plus simples. Nos algorithmes n’utilisent que des oracles de ces fonctions simple basés sur minimisation sous-modulaires et de variation totale de telle fonctions. / The entropy of a probability distribution on a set of discrete random variables is always bounded by the entropy of its factorisable counterpart. This is due to the submodularity of entropy on the set of discrete random variables. Submodular functions are also generalisation of matroid rank function; therefore, linear functions may be optimised on the associated polytopes exactly using a greedy algorithm. In this manuscript, we exploit these links between the structures of graphical models and submodular functions: we use greedy algorithms to optimise linear functions on the polytopes related to graphic and hypergraphic matroids for learning the structures of graphical models, while we use inference algorithms on graphs to optimise submodular functions.The first main contribution of the thesis aims at approximating a probabilistic distribution with a factorisable tractable distribution under the maximum likelihood framework. Since the tractability of exact inference is exponential in the treewidth of the decomposable graph, our goal is to learn bounded treewidth decomposable graphs, which is known to be NP-hard. We pose this as a combinatorial optimisation problem and provide convex relaxations based on graphic and hypergraphic matroids. This leads to an approximate solution with good empirical performance. In the second main contribution, we use the fact that the entropy of a probability distribution is always bounded by the entropy of its factorisable counterpart mainly as a consequence of submodularity. This property of entropy is generalised to all submodular functions and bounds based on graphical models are proposed. We refer to them as graph-based bounds. An algorithm is developped to maximise submodular functions, which is NPhard, by maximising the graph-based bound using variational inference algorithms on graphs. As third contribution, we propose and analyse algorithms aiming at minimizing submodular functions that can be written as sum of simple functions. Our algorithms only make use of submodular function minimisation and total variation oracles of simple functions.
97

Sur une interprétation probabiliste des équations de Keller-Segel de type parabolique-parabolique / On a probabilistic interpretation of the Keller-Segel parabolic-parabolic equations

Tomasevic, Milica 14 November 2018 (has links)
En chimiotaxie, le modèle parabolique-parabolique classique de Keller-Segel en dimension d décrit l’évolution en temps de la densité d'une population de cellules et de la concentration d'un attracteur chimique. Cette thèse porte sur l’étude des équations de Keller-Segel parabolique-parabolique par des méthodes probabilistes. Dans ce but, nous construisons une équation différentielle stochastique non linéaire au sens de McKean-Vlasov dont le coefficient dont le coefficient de dérive dépend, de manière singulière, de tout le passé des lois marginales en temps du processus. Ces lois marginales couplées avec une transformation judicieuse permettent d’interpréter les équations de Keller-Segel de manière probabiliste. En ce qui concerne l'approximation particulaire il faut surmonter une difficulté intéressante et, nous semble-t-il, originale et difficile chaque particule interagit avec le passé de toutes les autres par l’intermédiaire d'un noyau espace-temps fortement singulier. En dimension 1, quelles que soient les valeurs des paramètres de modèle, nous prouvons que les équations de Keller-Segel sont bien posées dans tout l'espace et qu'il en est de même pour l’équation différentielle stochastique de McKean-Vlasov correspondante. Ensuite, nous prouvons caractère bien posé du système associé des particules en interaction non markovien et singulière. Nous établissons aussi la propagation du chaos vers une unique limite champ moyen dont les lois marginales en temps résolvent le système Keller-Segel parabolique-parabolique. En dimension 2, des paramètres de modèle trop grands peuvent conduire à une explosion en temps fini de la solution aux équations du Keller-Segel. De fait, nous montrons le caractère bien posé du processus non-linéaire au sens de McKean-Vlasov en imposant des contraintes sur les paramètres et données initiales. Pour obtenir ce résultat, nous combinons des techniques d'analyse d’équations aux dérivées partielles et d'analyse stochastique. Finalement, nous proposons une méthode numérique totalement probabiliste pour approcher les solutions du système Keller-Segel bi-dimensionnel et nous présentons les principaux résultats de nos expérimentations numériques. / The standard d-dimensional parabolic--parabolic Keller--Segel model for chemotaxis describes the time evolution of the density of a cell population and of the concentration of a chemical attractant. This thesis is devoted to the study of the parabolic--parabolic Keller-Segel equations using probabilistic methods. To this aim, we give rise to a non linear stochastic differential equation of McKean-Vlasov type whose drift involves all the past of one dimensional time marginal distributions of the process in a singular way. These marginal distributions coupled with a suitable transformation of them are our probabilistic interpretation of a solution to the Keller Segel model. In terms of approximations by particle systems, an interesting and, to the best of our knowledge, new and challenging difficulty arises: each particle interacts with all the past of the other ones by means of a highly singular space-time kernel. In the one-dimensional case, we prove that the parabolic-parabolic Keller-Segel system in the whole Euclidean space and the corresponding McKean-Vlasov stochastic differential equation are well-posed in well chosen space of solutions for any values of the parameters of the model. Then, we prove the well-posedness of the corresponding singularly interacting and non-Markovian stochastic particle system. Furthermore, we establish its propagation of chaos towards a unique mean-field limit whose time marginal distributions solve the one-dimensional parabolic-parabolic Keller-Segel model. In the two-dimensional case there exists a possibility of a blow-up in finite time for the Keller-Segel system if some parameters of the model are large. Indeed, we prove the well-posedness of the mean field limit under some constraints on the parameters and initial datum. Under these constraints, we prove the well-posedness of the Keller-Segel model in the plane. To obtain this result, we combine PDE analysis and stochastic analysis techniques. Finally, we propose a fully probabilistic numerical method for approximating the two-dimensional Keller-Segel model and survey our main numerical results.
98

Towards robust prediction of the dynamics of the Antarctic ice sheet: Uncertainty quantification of sea-level rise projections and grounding-line retreat with essential ice-sheet models / Vers des prédictions robustes de la dynamique de la calotte polaire de l'Antarctique: Quantification de l'incertitude sur les projections de l'augmentation du niveau des mers et du retrait de la ligne d'ancrage à l'aide de modèles glaciologiques essentiels

Bulthuis, Kevin 29 January 2020 (has links) (PDF)
Recent progress in the modelling of the dynamics of the Antarctic ice sheet has led to a paradigm shift in the perception of the Antarctic ice sheet in a changing climate. New understanding of the dynamics of the Antarctic ice sheet now suggests that the response of the Antarctic ice sheet to climate change will be driven by instability mechanisms in marine sectors. As concerns have grown about the response of the Antarctic ice sheet in a warming climate, interest has grown simultaneously in predicting with quantified uncertainty the evolution of the Antarctic ice sheet and in clarifying the role played by uncertainties in predicting the response of the Antarctic ice sheet to climate change. Essential ice-sheet models have recently emerged as computationally efficient ice-sheet models for large-scale and long-term simulations of the ice-sheet dynamics and integration into Earth system models. Essential ice-sheet models, such as the fast Elementary Thermomechanical Ice Sheet (f.ETISh) model developed at the Université Libre de Bruxelles, achieve computational tractability by representing essential mechanisms and feedbacks of ice-sheet thermodynamics through reduced-order models and appropriate parameterisations. Given their computational tractability, essential ice-sheet models combined with methods from the field of uncertainty quantification provide opportunities for more comprehensive analyses of the impact of uncertainty in ice-sheet models and for expanding the range of uncertainty quantification methods employed in ice-sheet modelling. The main contributions of this thesis are twofold. On the one hand, we contribute a new assessment and new understanding of the impact of uncertainties on the multicentennial response of the Antarctic ice sheet. On the other hand, we contribute new methods for uncertainty quantification of geometrical characteristics of the spatial response of physics-based computational models, with, as a motivation in glaciology, a focus on predicting with quantified uncertainty the retreat of the grounded region of the Antarctic ice sheet. For the first contribution, we carry out new probabilistic projections of the multicentennial response of the Antarctic ice sheet to climate change using the f.ETISh model. We apply methods from the field of uncertainty quantification to the f.ETISh model to investigate the influence of several sources of uncertainty, namely sources of uncertainty in atmospheric forcing, basal sliding, grounding-line flux parameterisation, calving, sub-shelf melting, ice-shelf rheology, and bedrock relation, on the continental response on the Antarctic ice sheet. We provide new probabilistic projections of the contribution of the Antarctic ice sheet to future sea-level rise; we carry out stochastic sensitivity analysis to determine the most influential sources of uncertainty; and we provide new probabilistic projections of the retreat of the grounded portion of the Antarctic ice sheet. For the second contribution, we propose to address uncertainty quantification of geometrical characteristics of the spatial response of physics-based computational models within the probabilistic context of the random set theory. We contribute to the development of the concept of confidence sets that either contain or are contained within an excursion set of the spatial response with a specified probability level. We propose a new multifidelity quantile-based method for the estimation of such confidence sets and we demonstrate the performance of the proposed method on an application concerned with predicting with quantified uncertainty the retreat of the Antarctic ice sheet. In addition to these two main contributions, we contribute to two additional pieces of research pertaining to the computation of Sobol indices in global sensitivity analysis in small-data settings using the recently introduced probabilistic learning on manifolds (PLoM) and to a multi-model comparison of the projections of the contribution of the Antarctic ice sheet to global mean sea-level rise. / Les progrès récents effectués dans la modélisation de la dynamique de la calotte polaire de l'Antarctique ont donné lieu à un changement de paradigme vis-à-vis de la perception de la calotte polaire de l'Antarctique face au changement climatique. Une meilleure compréhension de la dynamique de la calotte polaire de l'Antarctique suggère désormais que la réponse de la calotte polaire de l'Antarctique au changement climatique sera déterminée par des mécanismes d'instabilité dans les régions marines. Tandis qu'un nouvel engouement se porte sur une meilleure compréhension de la réponse de la calotte polaire de l'Antarctique au changement climatique, un intérêt particulier se porte simultanément vers le besoin de quantifier les incertitudes sur l'évolution de la calotte polaire de l'Antarctique ainsi que de clarifier le rôle joué par les incertitudes sur le comportement de la calotte polaire de l'Antarctique en réponse au changement climatique. D'un point de vue numérique, les modèles glaciologiques dits essentiels ont récemment été développés afin de fournir des modèles numériques efficaces en temps de calcul dans le but de réaliser des simulations à grande échelle et sur le long terme de la dynamique des calottes polaires ainsi que dans l'optique de coupler le comportement des calottes polaires avec des modèles globaux du sytème terrestre. L'efficacité en temps de calcul de ces modèles glaciologiques essentiels, tels que le modèle f.ETISh (fast Elementary Thermomechanical Ice Sheet) développé à l'Université Libre de Bruxelles, repose sur une modélisation des mécanismes et des rétroactions essentiels gouvernant la thermodynamique des calottes polaires au travers de modèles d'ordre réduit et de paramétrisations. Vu l'efficacité en temps de calcul des modèles glaciologiques essentiels, l'utilisation de ces modèles en complément des méthodes du domaine de la quantification des incertitudes offrent de nombreuses opportunités afin de mener des analyses plus complètes de l'impact des incertitudes dans les modèles glaciologiques ainsi que de développer de nouvelles méthodes du domaine de la quantification des incertitudes dans le cadre de la modélisation glaciologique. Les contributions de cette thèse sont doubles. D'une part, nous contribuons à une nouvelle estimation et une nouvelle compréhension de l'impact des incertitudes sur la réponse de la calotte polaire de l'Antarctique dans les prochains siècles. D'autre part, nous contribuons au développement de nouvelles méthodes pour la quantification des incertitudes sur les caractéristiques géométriques de la réponse spatiale de modèles physiques numériques avec, comme motivation en glaciologie, un intérêt particulier vers la prédiction sous incertitudes du retrait de la région de la calotte polaire de l'Antarctique en contact avec le lit rocheux. Dans le cadre de la première contribution, nous réalisons de nouvelles projections probabilistes de la réponse de la calotte polaire de l'Antarctique au changement climatique au cours des prochains siècles à l'aide du modèle numérique f.ETISh. Nous appliquons des méthodes du domaine de la quantification des incertitudes au modèle numérique f.ETISh afin d'étudier l'impact de différentes sources d'incertitude sur la réponse continentale de la calotte polaire de l'Antarctique. Les sources d'incertitude étudiées sont relatives au forçage atmosphérique, au glissement basal, à la paramétrisation du flux à la ligne d'ancrage, au vêlage, à la fonte sous les barrières de glace, à la rhéologie des barrières de glace et à la relaxation du lit rocheux. Nous réalisons de nouvelles projections probabilistes de la contribution de la calotte polaire de l'Antarctique à l'augmentation future du niveau des mers; nous réalisons une analyse de sensibilité afin de déterminer les sources d'incertitude les plus influentes; et nous réalisons de nouvelles projections probabilistes du retrait de la région de la calotte polaire de l'Antarctique en contact avec le lit rocheux.Dans le cadre de la seconde contribution, nous étudions la quantification des incertitudes sur les caractéristiques géométriques de la réponse spatiale de modèles physiques numériques dans le cadre de la théorie des ensembles aléatoires. Dans le cadre de la théorie des ensembles aléatoires, nous développons le concept de régions de confiance qui contiennent ou bien sont inclus dans un ensemble d'excursion de la réponse spatiale du modèle numérique avec un niveau donné de probabilité. Afin d'estimer ces régions de confiance, nous proposons de formuler l'estimation de ces régions de confiance dans une famille d'ensembles paramétrés comme un problème d'estimation de quantiles d'une variable aléatoire et nous proposons une nouvelle méthode de type multifidélité pour estimer ces quantiles. Finalement, nous démontrons l'efficacité de cette nouvelle méthode dans le cadre d'une application relative au retrait de la région de la calotte polaire de l'Antarctique en contact avec le lit rocheux. En plus de ces deux contributions principales, nous contribuons à deux travaux de recherche additionnels. D'une part, nous contribuons à un travail de recherche relatif au calcul des indices de Sobol en analyse de sensibilité dans le cadre de petits ensembles de données à l'aide d'une nouvelle méthode d'apprentissage probabiliste sur des variétés géométriques. D'autre part, nous fournissons une comparaison multimodèle de différentes projections de la contribution de la calotte polaire de l'Antarctique à l'augmentation du niveau des mers. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
99

Approches formelles pour l'analyse de la performabilité des systèmes communicants mobiles : Applications aux réseaux de capteurs sans fil / Formal approaches for performability analysis of communicating systems : an application to wireless sensor networks

Abo, Robert 06 December 2011 (has links)
Nous nous intéressons à l'analyse des exigences de performabilité des systèmes communicants mobiles par model checking. Nous modélisons ces systèmes à l'aide d'un formalisme de haut niveau issu du π-calcul, permettant de considérer des comportements stochastiques, temporels, déterministes, ou indéterministes. Cependant, dans le π-calcul, la primitive de communication de base des systèmes est la communication en point-à-point synchrone. Or, les systèmes mobiles, qui utilisent des réseaux sans fil, communiquent essentiellement par diffusion locale. C'est pourquoi, dans un premier temps, nous définissons la communication par diffusion dans le π-calcul, afin de mieux modéliser les systèmes que nous étudions. Nous proposons d'utiliser des versions probabilistes et stochastiques de l'algèbre que nous avons défini, pour permettre des études de performance. Nous en définissons une version temporelle permettant de considérer le temps dans les modèles. Mais l'absence d'outils d'analyse des propriétés sur des modèles spécifiés en une algèbre issue du π-calcul est un obstacle majeur à notre travail. La définition de règles de traduction en langage PRISM, nous permet de traduire nos modèles, en modèles de bas niveau supports du model checking, à savoir des chaînes de Markov à temps discret, à temps continu, des automates temporisés, ou des automates temporisés probabilistes. Nous avons choisi l'outil PRISM car, à notre connaissance, dans sa dernière version, il est le seul outil à supporter les formalismes de bas niveau que nous venons de citer, et ainsi il permet de réaliser des études de performabilité complètes. Cette façon de procéder nous permet de pallier à l'absence d'outils d'analyse pour nos modèles. Par la suite, nous appliquons ces concepts théoriques aux réseaux de capteurs sans fil mobiles. / We are interested in analyzing the performability requirements of mobile communication systems by using model checking techniques. We model these systems using a high-level formalism derived from the π-calculus, for considering stochastic, timed, deterministic or indeterministic behaviors. However, in the π-calculus, the basic communication primitive of systems is the synchronous point-to-point communication. However, mobile systems that use wireless networks, mostly communicate by local broadcast. Therefore, we first define the broadcast communication into the π-calculus, to better model the systems we study. We propose to use probabilistic and stochastic versions of the algebra we have defined to allow performance studies. We define a temporal version to consider time in the models. But the lack of tools for analyzing properties of models specified with π-calculus is a major obstacle to our work and its objectives. The definition of translation rules into the PRISM language allows us to translate our models in low-level models which can support model checking, namely discrete time, or continuous time Markov chains, timed automata, or probabilistic timed automata. We chose the PRISM model checker because, in our best knowledge, in its latest version, it is the only tool that supports the low-level formalisms that we have previously cited, and thus, makes it possible to realize complete performability studies. This approach allows us to overcome the lack of model checkers for our models. Subsequently, we apply these theoretical concepts to analyse performability of mobile wireless sensor networks.
100

Reconstruction de phase par modèles de signaux : application à la séparation de sources audio / Phase recovery based on signal modeling : application to audio source separation

Magron, Paul 02 December 2016 (has links)
De nombreux traitements appliqués aux signaux audio travaillent sur une représentation Temps-Fréquence (TF) des données. Lorsque le résultat de ces algorithmes est un champ spectral d’amplitude, la question se pose, pour reconstituer un signal temporel, d’estimer le champ de phase correspondant. C’est par exemple le cas dans les applications de séparation de sources, qui estiment les spectrogrammes des sources individuelles à partir du mélange ; la méthode dite de filtrage de Wiener, largement utilisée en pratique, fournit des résultats satisfaisants mais est mise en défaut lorsque les sources se recouvrent dans le plan TF. Cette thèse aborde le problème de la reconstruction de phase de signaux dans le domaine TF appliquée à la séparation de sources audio. Une étude préliminaire révèle la nécessité de mettre au point de nouvelles techniques de reconstruction de phase pour améliorer la qualité de la séparation de sources. Nous proposons de baser celles-ci sur des modèles de signaux. Notre approche consiste à exploiter des informations issues de modèles sous-jacents aux données comme les mélanges de sinusoïdes. La prise en compte de ces informations permet de préserver certaines propriétés intéressantes, comme la continuité temporelle ou la précision des attaques. Nous intégrons ces contraintes dans des modèles de mélanges pour la séparation de sources, où la phase du mélange est exploitée. Les amplitudes des sources pourront être supposées connues, ou bien estimées conjointement dans un modèle inspiré de la factorisation en matrices non-négatives complexe. Enfin, un modèle probabiliste de sources à phase non-uniforme est mis au point. Il permet d’exploiter les à priori provenant de la modélisation de signaux et de tenir compte d’une incertitude sur ceux-ci. Ces méthodes sont testées sur de nombreuses bases de données de signaux de musique réalistes. Leurs performances, en termes de qualité des signaux estimés et de temps de calcul, sont supérieures à celles des méthodes traditionnelles. En particulier, nous observons une diminution des interférences entre sources estimées, et une réduction des artéfacts dans les basses fréquences, ce qui confirme l’intérêt des modèles de signaux pour la reconstruction de phase. / A variety of audio signal processing techniques act on a Time-Frequency (TF) representation of the data. When the result of those algorithms is a magnitude spectrum, it is necessary to reconstruct the corresponding phase field in order to resynthesize time-domain signals. For instance, in the source separation framework the spectrograms of the individual sources are estimated from the mixture ; the widely used Wiener filtering technique then provides satisfactory results, but its performance decreases when the sources overlap in the TF domain. This thesis addresses the problem of phase reconstruction in the TF domain for audio source separation. From a preliminary study we highlight the need for novel phase recovery methods. We therefore introduce new phase reconstruction techniques that are based on music signal modeling : our approach consists inexploiting phase information that originates from signal models such as mixtures of sinusoids. Taking those constraints into account enables us to preserve desirable properties such as temporal continuity or transient precision. We integrate these into several mixture models where the mixture phase is exploited ; the magnitudes of the sources are either assumed to be known, or jointly estimated in a complex nonnegative matrix factorization framework. Finally we design a phase-dependent probabilistic mixture model that accounts for model-based phase priors. Those methods are tested on a variety of realistic music signals. They compare favorably or outperform traditional source separation techniques in terms of signal reconstruction quality and computational cost. In particular, we observe a decrease in interferences between the estimated sources and a reduction of artifacts in the low-frequency components, which confirms the benefit of signal model-based phase reconstruction methods.

Page generated in 0.0853 seconds