• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 367
  • 103
  • 39
  • 26
  • 16
  • 13
  • 9
  • 8
  • 7
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 675
  • 276
  • 247
  • 239
  • 132
  • 128
  • 119
  • 115
  • 88
  • 72
  • 71
  • 69
  • 68
  • 60
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Estudos estruturais de proteínas de Xanthomonas axonopodis pv citri por ressonância magnética nuclear / Structural studies of Xanthomonas axonopodis pv citri proteins using nuclear magnetic resonance

Leonor Magalhães Peres Galvão de Botton 29 October 2007 (has links)
Xanthomonas axonopodis pv citri (Xac) é uma bactéria fitopatógênica que causa de cancro cítrico em plantações no mundo inteiro. Trinta e cinco proteínas alvo foram selecionadas para estudos de proteômica estrutural a partir do genoma de Xac. As proteínas foram clonadas, expressas e testadas usando uma nova metodologia de triagem de proteínas que permite que espectros de RMN 2D 15N-HSQC sejam coletados antes da purificação da proteína em estudo. Esta abordagem possibilitou determinar quais proteínas alvo melhor se adequavam para estudos estruturais futuros por RMN e/ou cristalografia de raios X de forma rápida e eficaz. A proteína ClpS de Xac, descrita como moduladora da atividade da protease bacteriana ClpAP, foi uma das proteínas selecionadas para estudos estruturais por RMN usando esta metodologia. O assinalamento das ressonâncias da cadeia principal e das cadeias laterais desta proteína usando experimentos de tripla ressonância e dados de dinâmica e de troca H/D forneceram informações sobre a sua estrutura secundária. Um modelo tridimensional foi gerado por modelagem por homologia a partir de um homólogo de E. coli e foi validado por acoplamentos dipolares residuais (DHN ) obtidos experimentalmente. Todos os dados RMN sugerem que a região N-terminal de ClpS se apresenta desestruturada. O mapeamento por RMN da interação de ClpS com a sua parceira ClpA é também apresentado. / Xanthomonas axonopodis pv citri (Xac) is a phytopathogenic bacterium that causes citrus canker around the world. Thirty-five target proteins for structural proteomics studies have been selected from the Xac genome. The target proteins were cloned, expressed and tested using a novel screening methodology that allows for 2D 15N-HSQC NMR spectra to be collected prior to the purification of the target protein. This approach allowed us to determine which target proteins were amenable for future structural studies by NMR and/or X-ray crystallography in a fast and efficient manner. The ClpS protein, which has been described as a modulator of substrate specificity of the bacterial protease ClpAP, was one of the proteins selected structural studies by NMR using this methodology. Backbone and side-chain assignment derived from 3D triple resonance NMR experiments and dynamic data from hydrogen-deuterium exchange NMR experiments have provided information on the secondary structure elements of this protein. A model for Xac ClpS was generated by homology modeling from an E. coli homogue and validated using experimentally obtained DHN residual dipolar couplings. All NMR data suggest that the N-terminal region of the protein ClpS is highly unstructured. NMR mapping of the interaction of ClpS with its partner protein ClpA is also presented.
162

Design optimization of utility-scale PV power plant

Farzaneh Kaloorazi, Meisam, Ghaneei Yazdi, Marzieh January 2021 (has links)
Solar energy market has been rapidly growing in Sweden over the past few years. Älvdalen municipality in central Sweden is investigating the possibility of installing a utility-scale solar power plant. In the present work, we investigate technical design and economic viability of a utility-scale solar power plant in Älvdalen. Several photovoltaics (PV) designs on a 6.6-hectar land are modeled and analyzed. The installation capacity depends on design parameters, such as inter-row spacing distance and orientation.PVsyst simulation tool is used to model several PV system configurations, consisting of both mono- and bifacial PV modules. An extensive sensitivity analysis is performed to get a deep understanding of different design parameters and their effects on performance and production yield of the plant.For PV systems consisting of monofacial PV panels, a set of parameters is investigated, namely, tilt angle of PV arrays, space between rows of the plant. It is observed that an optimized design requires a careful consideration of the two parameters, since they considerably affect the amount of self-shading (shading of PV rows on each other).The optimum design generates more than 5000 MWh electricity annually.Bifacial configurations are designed in two forms: tilted (south or south-east facing) and vertical (east-west oriented). Tiled bifacial systems are basically similar to the monofacial ones. A comparison between the two systems shows that the bifacial gain is between 3 % to 10 %, depending on the tilt angle, inter-row spacing, and PV array height above the ground. Electricity generation per surface area of the vertical east-west bifacial configuration is significantly lower compared to the others and therefore, it is only economically viable together with other land applications, such as agricultural usage.Economical evaluation indicates that for the optimum design the levelized cost of energy (LCOE) is 0.67 SEK/MWh and 0.72 SEK/MWh for monofacial and bifacial system, respectively. Such financial figures are subject to change, depending on the design and financial parameters.
163

Influence of seeding and growth conditions on grain selection, defects, and properties of high-performance multi-crystalline silicon (HPmc-Si) / Influence des germes et des conditions de croissance sur la sélection de grains, les défauts, et les propriétés de silicium multi-cristallin haute performance (HPmc-Si)

Alam, Giri Wahyu 13 December 2018 (has links)
Parmi les nouveaux matériaux massifs pour le silicium photovoltaïque (PV), le silicium multicristallin haute performance (HPmc-Si) a émergé en raison de son rendement de conversion supérieur à celui du silicium multi-cristallin (mc-Si) utilisé largement pour le solaire PV. Ce travail de recherche vise à comprendre l'influence des germes et des conditions de croissance sur les lingots HPmc-Si (structure de grains, dislocations, impuretés et propriétés PV). Cinq lingots ont été élaborés par solidification dirigée. Pour l’un d’entre eux, deux types de germes ont été utilisés. Les caractéristiques de la région de croissance initiale (jusqu’à 50 mm) sont directement liées aux propriétés de la couche de germes. Or, celle-ci dépend à la fois des types de germes utilisés et des paramètres de l’étape de fusion. Les paramètres de croissance prennent le contrôle de la structure de grains après la région affectée par la couche initiale de germes. Cependant, les paramètres de croissance étudiés modifient peu les caractéristiques entre lingots HPmc-Si et le rendement de conversion des cellules solaires. Les zones de faible durée de vie des porteurs minoritaires déterminent le rendement de conversion et peuvent être principalement associées aux défauts structuraux et à la taille du grain, en plus des impuretés métalliques. La compétition des grains est un phénomène dynamique qui permet la disparition de certains grains défectueux pendant la croissance et surtout le maintien d’une taille de grains et homogène. Cette homogénéité obtenue pour la gamme de paramètres étudiée est une des caractéristiques principales des lingots HPmc-Si / Among new bulk silicon PV materials, HPmc-Si is one to be considered due its higher conversion efficiency compared to mc-Si solar PV. This research work aims at understanding the influence of the seeding materials and growth conditions on HPmc-Si ingots (dislocations and impurities). Five ingots were grown, and two types of seeding materials are compared to study the grain structure, the electrical properties and the conversion efficiency of solar cells. The initial growth region up to 50 mm is directly linked to the seed layer properties which are dependent on the melting segment parameters. The growth parameters take control on the grain structure after the seed affected region. The growth parameters studied modify little the characteristics of HPmc-Si ingots and the solar cell conversion efficiency. Low carrier lifetimeareas determine the conversion efficiency and they can mainly be associated to the grain size, besides metallic impurities. The grain competition is very dynamic to suppress defective grains and to maintain smaller grain size variation, homogeneous grain size and properties being the most important characteristic of HPmc-Si ingots
164

Optimizing sunlight distribution in agrivoltaic systems for the Swedish climate

Daniels, Amanda January 2022 (has links)
Due to a rising land demand for the construction of large-scale PV-systems, there is increasing competition between energy and food production. A new emerging segment within the PV market called agrivoltaics is providing a contributing solution to this issue by co-using the land for both crop cultivation and PV energy. Agrivoltaics is a relatively new application in Sweden, so far there is only one research site in Kärrbo Prästgård, Västerås, which was built in 2020. This thesis aims to examine how the basic layout of a PV system affects the irradiance distribution of an agrivoltaic system located in Sweden. With the aim of reaching an effective light sharing to provide the crops with acceptable growing conditions while producing as much electricity as possible. Methodologically, this was done by performing optical light simulations for a big number of different PV layouts. The results show how the module row distance and the array height have the most significant influence on the total irradiance distribution throughout the year. Furthermore, by altering the clearance height and the system azimuth, the irradiance uniformity on the ground can be improved, which results in more similar growing conditions for all the cultivated crops. Arguments are also given for why it is helpful to consider the temporal distribution of the ground irradiance. This thesis has shown that there are PV system layouts that provide low degrees of shading for the crops cultivated on the ground beneath the modules. However, if agrivoltaics is a suitable application for the Swedish climate or not is still an open question. Economic analysis is needed to examine the profitability of agrivoltaic systems in Sweden, and experimental studies on how the shading from the PV modules affect the crop growth in practice would also be useful. In the result section, there are some example layouts given for different degrees of tolerated ground shading which can be used when planning for future agrivoltaic parks. The results generated in the optical light simulations will be accessible for future research. These data files can be found attached together with this report on the DiVA portal.
165

Techno economic study of high PV penetration in Gambia in 2040

Jarjusey, Alieu January 2023 (has links)
Meeting electricity demand and power shortage remains as a challenge to the people of the Gambia. As the country is undergoing tremendous electricity accessibility expansion [1], to secure the environment for the future generation, it is necessary to consider renewable energy to be the major source of electricity production, to be specific, solar energy. This is because the country experiences the radiation from the sun throughout the year, it is sustainable not only to our environment for the future generations, but also economically. However, due to the intermittent nature of most renewable energy technologies, it is cumbersome to rely on them 100 % as a primary source of electricity production. Nonetheless, with suitable storage technologies, combination of different renewable sources, and intercountry grid connections can enhance to overcome this challenge. In this thesis work, designed and techno economic evaluation was carried out for high PV penetration that will meet 50 % electricity demand of the Gambia in year 2040. Three scenarios were considered in this study, based on the Strategic Electricity Roadmap 2020 to 2040 [1]. These scenarios are high, universal access (AU), and low electricity demand. Economically, 50 % electricity supply to meet the demand is possible for all the three cases. Consideration was mainly put on four key figures, thus, levelized cost of electricity (LCOE), payback period (PBP), net present cost (NPC) and solar fraction (SF). To achieve 50 % SF for the high electricity demand scenario, LCOE and PBP are 0.129 $/kWh and 12 years respectively. As for AU electricity demand case, 50 % SF is achieved with 0.126 $/kWh and 10 years for LCOE and PBP respectively. For low electricity demand scenario, 0.127 $/kWh and 10 years for LCOE and PBP respectively for 50 % SF. However, the optimum design recommended by HomerPro were 45 % SF with LCOE of 0.126 $/kWh and PBP of 9 years for high electricity demand scenario. As for the AU electricity demand case, the optimum design is 48 % SF, LCOE of 0.125 $/kWh, and PBP of 9 years. In the last scenario, which is low electricity demand case, 46 % SF, 0.124 $/kWh LCOE, and 9 years PBP.
166

Applications of battery energy storage to mitigate disturbances and uncertainties in power systems with high penetration of renewable energy resources

Sharma, Roshan 30 April 2021 (has links)
Solar photovoltaic (PV) is the fastest-growing energy resource. The price of energy generation from residential PV has dropped from $0.50 to $0.10 per kWh in the past decade. One challenge with this resource is that the amount of power available depends on the solar irradiance and temperature. Abrupt changes in solar irradiance can cause disturbances to the hosting electricity network and lead to voltage and frequency oscillations. The impact is more severe in a weak grid with high penetration of such resources. Evolving grid interconnection standards are imposing requirements to limit the impacts of these disturbances on the grid. Battery energy storage (BES) technology has also experienced a significant price drop (e.g., from $1100 to $156 per kWh for lithium-ion batteries) in the past decade. Therefore, complementary PV+BES solutions are increasingly considered. A BES of sufficient capacity equipped with appropriate controls can respond to both abrupt and long-term PV power variations. Properly formulating the problem and developing efficient control systems is crucial. These define the scope and objective of this research. This research develops two BES solutions. In the first one, the BES is co-located with the PV and connects to its dc output terminals. The BES controller ensures that the PV+BES system exhibits a desirable power ramp rate set by the user. In the second solution, the BES is not co-located with the PV. It detects the disturbances from their signatures on its locally measured signals and takes proper actions. An approach based on capacitor emulation combined with a droop mechanism is developed and optimally designed to provide dynamic and static supports. The BES can respond to the disturbances from more than one PV system and non-PV sources, such as load disturbances. The dissertation presents detailed modeling and control of the BES system. Optimal control techniques are developed to ensure robust and fast responses. For the simulation study, the proposed BES systems are implemented in a hybrid dc/ac study system and the effect on both dc and ac subsystems are investigated. The real-time results obtained by implementing the proposed controllers on laboratory-scale hardware prototypes are also presented.
167

Measurements of solar radiation, development of a climate file for Gävle and calibration of a PV-simulation program

Hernando, Víctor January 2024 (has links)
The research proposed consists in providing a climatic file of received radiation together with solar electric generation for a 1.17 kWp PV system in the city of Gävle. In addition, both radiation and solar electric generation will be compared making use of the WINSUN program. Possible disparities between both data have been analyzed. The interest of this study lies in the lack of a file that provides radiation data in the city of Gävle, which may be of help to people interested in making some kind of photovoltaic installation. Similar studies have been carried out previously in different locations which have tested different models to evaluate various climatic factors affecting the performance of the panels. The research method has been a case study in which monocrystalline solar panels installed in building 45 of the University of Gävle (HiG) have been analyzed together with the radiation data provided by three pyranometers. The results exhibit the importance of adjusting parameters such as diffuse coefficient, horizontal shading, and system efficiency. Results of this study show an accurate climate file, with little errors between measured and simulated data, with values of global performance indicator (GPI) (-2.70E-10, -1.06E-12) for 2022 and 2023 respectively.
168

A Coordinated Voltage Management Method Utilizing Battery Energy Storage Systems and Smart PV Inverters in Distribution Networks with High PV and Wind Penetrations

Alrashidi, Musaed Owehan 16 August 2021 (has links)
Electrical distribution networks face many operational challenges as various renewable distributed generation (DG), such as solar photovoltaic (PV) systems and wind, become part of their structure. Unlike conventional distribution systems, where the only unpredictable aspect is the load level, the intermittent nature of DG poses additional uncertainty levels for distribution system operators (DSO). The voltage quality problem considers the most restrictive issue that hinders high DG integration into distribution grids. Voltage deviates from the nominal grid voltage limits due to the excess power from the DG. DSOs are accustomed to improving the voltage profile by optimal adjustments of the on-load tap changers, voltage regulator taps and capacitor banks. Nevertheless, due to the frequent variability of the output energy from DG, these devices may fail in doing the needful. Battery energy storage systems (BESS) and smart PV inverter functionalities are regarded as promising solutions to promote the seamless integration of renewable resources into distribution networks. BESS are utilized to store the surplus energy during the high penetration of renewable DG that causes high voltage levels and discharge the stored energy when the distribution grid is heavily loaded, which leads to the low voltage levels. Smart PV inverters regulate the network voltage by controlling the reactive power injection or absorption at the inverter end. This dissertation proposes a management strategy that coordinates BESS and smart PV inverter reactive power capability to improve voltage quality in the distribution systems with high PV and wind penetrations. The proposed management method is based on a bi-level optimization algorithm consisting of upper and lower optimization levels. The proposed method determines the optimal location, capacity, numbers and BESS charging and discharging rates to support the distribution system voltage and to ensure optimal deployment of BESS. Case studies are conducted to evaluate the proposed voltage control method. The large size PV system and wind turbine impacts are studied and simulated on the modified IEEE-34 bus test feeder. In addition, the proposed method is applied to the modified IEEE low voltage test feeder to investigate the effectiveness of installing residential rooftop PV systems on the distribution system's voltage. Experimental results show promising outcomes of the proposed method in controlling the distribution networks' voltage. In addition, a day-ahead forecast of PV power output is developed in this dissertation to assist the DSOs to accurately predict the future amounts of PV energy available and reinforcing the decision-making process of batteries operation. Hybrid forecasting models are proposed based on machine learning algorithms, which utilize support vector regression and backpropagation neural network, optimized with three metaheuristic optimization algorithms, namely Social Spider Optimization (SSO), Particle Swarm Optimization (PSO) and Cuckoo Search Optimization (CSO). These algorithms are used to improve the predictive efficacy of the selected algorithms, where the optimal selection of their hyperparameters and architectures plays a significant role in yielding precise forecasting outcomes. / Doctor of Philosophy / The need for more renewable energy has grown significantly, and many countries are embracing these technologies. However, the integration of distributed generation (DG), such as PV systems and wind turbines, poses several operational problems to the distribution system. The voltage problem represents the most significant issue that needs to be addressed. The traditional voltage control equipment may not cope with the rapid fluctuation and may impact their service life. The continuous developments in the battery energy storage systems (BESS) and the smart PV inverter technologies result in increasing the hosting capacity of DG. BESS can store the excess power from the distributed generators and supply this energy to the grid for different operational objectives. On the other hand, the advanced PV inverter's reactive power capability can be exploited from which the grid can attain many benefits. This dissertation aims at providing a reliable control method to the voltage profile in distribution networks embedded with high PV and wind energy by optimal coordination between the operation of the BESS and the smart PV inverter. In addition, the solar forecasting can mitigate the uncertainty associated with PV system generation. In this dissertation, the PV power forecasting application is applied in the distribution system to control the voltage. Through utilizing PV power forecasting, the decision-making for battery operation can be upheld and reinforced. The BESS can store the surplus energy from the PV system as needed and supply it back in low PV power incidents. Experimental results indicate that proper coordination between the BESS and smart PV inverter is beneficial for distribution system operation that can seamlessly integrate PV and wind energy.
169

Experimental Assessment of Photovoltaic Irrigation System

Raza, Khalil 15 December 2014 (has links)
No description available.
170

Molecular characterisation of the causal agent of bacterial leaf streak of maize / Nicolaas Johannes Jacobus Niemann

Niemann, Nicolaas Johannes Jacobus January 2015 (has links)
All members of the genus Xanthomonas are considered to be plant pathogenic, with specific pathovars infecting several high value agricultural crops. One of these pathovars, X. campestris pv. zeae (as this is only a proposed name it will further on be referred to as Xanthomonas BLSD) the causal agent of bacterial leaf steak of maize, has established itself as a widespread significant maize pathogen within South Africa. Insufficient information about the present distribution of the pathogen is available. The main aim of the study was thus to isolate and characterise the pathogen using molecular methods. Results demonstrated that the causal agent of bacterial leaf streak disease (Xanthomonas BLSD: potentially X. campestris pv. zeae) was widely distributed within the major maize cultivation regions of South Africa. Most of the isolates collected originated from the Highveld maize production provinces (North West, Free State, Gauteng and Mpumalanga provinces) as well as from irrigated maize fields in the Northern Cape province. The XgumD gene marker was used to determine if the isolates belonged to the genus Xanthomonas. The gumD gene fragment is located within the gumB-gumM region of the operon and is conserved among Xanthomonas species. This gene fragment is partially responsible for xanthan production. This marker was amplified from all isolates and a selected number were sequenced. The marker was only able to confirm that the causal agent was a member of the genus Xanthomonas. PCR methods were used for the characterisation of the isolates. This included PCR and sequencing of ribosomal RNA- gyraseB and gumD genes. A fingerprinting method BOX-PCR was also employed. Good quality DNA of sufficient quantities was obtained from the various isolates. Amplification produced no non-specific amplification products. This resulted in good quality sequences that could be analysed using bioinformatics tools. Phylogenetic analyses of the ribosomal RNA and gyraseB genes could not detect differences amongst the 47 Xanthomonas BLSD isolates. However, these genes were able to distinguish between the type strain of these isolates and various Xanthomonas species and pathovars. From all three neighbour joining trees the Xanthomonas BLSD isolates had close association with X. axonopodis pv. vasculorum strain ATCC 35938. For the 16S rRNA gene there exists no sequence differences between Xanthomonas BLSD and X. axonopodis pv. vasculorum strain ATCC 35938. A single nucleotide difference was observed between Xanthomonas BLSD and X. axonopodis pv. vasculorum strain ATCC 35938 for the 23S rRNA gene. The gyraseB gene detected a total of six nucleotide variations between these two Xanthomonas species. For all of the phylogenetic trees there was no clustering of Xanthomonas BLSD with X. campestris pathovars. Genetic profiling (via BOX-PCR) based on present/absent analysis revealed no variations amongst the Xanthomonas BLSD isolates. All isolates shared an identical pattern produced by 12 distinct PCR products. This profiling technique did differentiate between the isolates of Xanthomonas BLSD and X. axonopodis pv. vasculorum strain ATCC 35938. Their profiles shared common bands, but differed in the number and overall pattern of the bands. These results suggest two main conclusions: (i) Xanthomonas BLSD has a clonal origin with geographical separation not impacting genetic variation. The fact that all the isolates appear to be clonal may imply that when resistant maize cultivars are developed these should be resistant to all isolates of the pathovar irrespective of their geographical origin. This is a suggestion that will have to be corroborated using more isolates and additional genetic fingerprinting techniques (ii) the Xanthomonas BLSD isolates from this study may not belong to X. campestris. Further studies using other markers should be conducted to determine the real identity of Xanthomonas BLSD. / MSc Environmental Sciences, North-West University, Potchefstroom Campus, 2015

Page generated in 0.0467 seconds