Spelling suggestions: "subject:"feldtheorie""
51 |
Emergence and Breakdown of Quantum Scale Symmetry: From Correlated Condensed Matter to Physics Beyond the Standard ModelRay, Shouryya 13 October 2022 (has links)
Scale symmetry is notoriously fickle: even when (approximately) present at the classical level, quantum fluctuations often break it, sometimes rather dramatically. Indeed, contemporary physics encompasses the study of very different phenomena at very different scales, e.g., from the (nominally) meV scale of spin systems, via the eV of electronic band structures, to the GeV of elementary particles, and possibly even the 10¹⁹ GeV of quantum gravity. However, there are often – possibly surprising – analogies between systems across these seemingly disparate settings. Studying the possible emergence of quantum scale symmetry and its breakdown is one way to systematically exploit these similarities, and in fact allows one to make testable predictions within a unified technical framework (viz., the renormalization group). The aim of this thesis is to do so for a few explicit scenarios. In the first four of these, quantum scale symmetry emerges in the long-wavelength limit near a quantum phase transition, over length scales of the order of the correlation length. In the fifth example, quantum scale symmetry is restored at very high energies (i.e., at and above the Planck scale), but severely constrains the phenomenology at 'low' energies (e.g., at accelerator scales), despite scale invariance being badly broken there.
We begin with the Gross–Neveu (= chiral) SO(3) transition in D = 2+1 spacetime dimensions, which notably has been proposed to describe the transition of certain spin-orbital liquids to antiferromagnets. The chiral fermions that suffer a spontaneous breakdown of their isospin symmetry in this setting are fractionalized excitations (called spinons), and are as such difficult to observe directly in experiment. However, as gapless degrees of freedom, they leave their imprint on critical exponents, which may hence serve as a diagnostic tool for such unconventional excitations. These may be computed using (comparatively) conventional field-theoretic techniques. Here, we employ three complementary methods: a three-loop expansion in D = 4 - ε spacetime dimensions, a second-next-leading order expansion in large flavour number N , and a non-perturbative calculation using the functional renormalization group in the improved local potential approximation. The results are in fair agreement with each other, and yield combined best-guess estimates that may serve as benchmarks for numerical simulations, and possibly experiments on candidate spin liquids.
We next turn our attention to spontaneous symmetry breaking at zero temperature in quasi-planar (electronic) semimetals. We begin with Luttinger semimetals, i.e., semimetals where two bands touch quadratically at isolated points of the Brioullin zone; Bernal-stacked bilayer graphene (BBLG) within certain approximations is one example. Luttinger semimetals are unstable at infinitesimal 4-Fermi interaction towards an ordered state (i.e., the field theory is asymptotically free rather than safe). Nevertheless, since the interactions are marginal, there are several pathologies in the critical behaviour. We show how these pathologies may be understood as a collision between the IR-stable Gaußian fixed point and a critical fixed point distinct from the Gaußian one in d = 2 + ε spatial dimensions. Observables like the order-parameter expectation value develop essential rather than power-law singularities; their exponent, as shown herein by explicit computation for the minimal model of two-component ‘spinors’, is distinct from the mean-field one. More tellingly, although finite critical exponents often default to canonical power-counting values, the susceptibility exponent turns out to be one-loop exact, and, in said minimal model takes the value γ = 2γᵐᵉᵃⁿ⁻ᶠᶦᵉˡᵈ = 2. Such an exact yet non-mean-field prediction can serve as a useful benchmark for numerical methods.
We then proceed to scenarios in D = 2 + 1 spacetime dimensions where Dirac fermions can arise from Luttinger fermions due to low rotational symmetry. In BBLG, the 'Dirac from Luttinger' mechanism can occur both due to explicit and spontaneous breaking of rotational symmetry. The explicit symmetry breaking is due to the underlying honeycomb lattice, which only has C₃ symmetry around the location of the band crossings (so-called K points). As a consequence, the quadratic band crossing points each split into four Dirac cones, which is shown explicitly by computing the two-loop self-energy in the 4-Fermi theory. Within our approximations, we can estimate the critical coupling up to which a semimetallic state survives; it is finite (unlike a quadratic band touching point with high rotational symmetry), but significantly smaller than a 'vanilla' Dirac semimetal. Based on the ordering temperature of BBLG, our rough estimate further shows that the (effective) coupling strength in BBLG may be close to the critical value, in sharp contrast to other quasi-planar Dirac semimetals (such as monolayer graphene). Rotational symmetry in BBLG may also be broken spontaneously, i.e., due to the presence of nematic order, whereby a quadratic band crossing splits into two Dirac cones. Such a scenario is also very appealing for BBLG, since the precise nature of the ordered ground state of BBLG has not been established unambiguously: whilst some experiments show an insulating ground state with a full bulk gap, others show a partial gap opening with four isolated linear band crossings. Here, we show within a simplified phenomenological model using mean-field theory that there exists an extended region of parameter space with coexisting nematic and layer-polarized antiferromagnetic order, with a gapless nematic phase on one side and a gapped antiferromagnetic phase on the other. We then show that the nematic-to-coexistence quantum phase transition has emergent Lorentz invariance to one-loop in D = 2 + ε as well as D = 4 - ϵ dimensions, and thus falls into the celebrated Gross-Neveu-Heisenberg universality class. Combining previous higher-order field-theoretic results, we derive best-guess estimates for the critical exponents of this transition, with the theoretical uncertainty coming out somewhat smaller than in the monolayer counterpart due to the enlarged number of fermion components. Overall, BBLG may hence be a promising candidate for experimentally accessible Gross–Neveu quantum criticality in D = 2 + 1 spacetime dimensions.
Finally, we turn our attention to the 'low-energy' consequences of transplanckian quantum scale symmetry. Extensions to the Standard Model that tend to lower the Higgs mass have many phenomenologically attractive properties (e.g., it would allow one to accommodate a more stable electroweak vacuum). Dark matter is one well-motivated candidate for such an extension. However, even in the most conservative settings, one usually has to contend with a significantly enlarged number of free parameters, and a concomitant reduction of predictivity. Here, we investigate how asymptotic safety (i.e., imposing quantum scale symmetry at the Planck scale and above) may constrain the Higgs mass in Standard Model (plus quantum gravity) when coupled to Yukawa dark matter via a Higgs portal. Working in a toy version of the Standard Model consisting of the top quark and the radial mode of the Higgs, we show within certain approximations that the Higgs mass may be lowered by the necessary amount if the dark scalar undergoes spontaneous symmetry breaking, as a function of the dark scalar mass, which is the only free parameter left in the theory.:1 Introduction
1.1 Scale invariance – why and where
1.1.1 Fundamental quantum field theories
1.1.2 Universality
1.1.3 Novel phases of matter
1.2 Outline of this thesis
2 Renormalization Group: A Brief Review
2.1 Quantum fluctuations and generating functionals
2.2 Renormalization group flow
2.3 Basic notions
2.4 Scale transformations, scale symmetry and RG fixed points
2.5 Characterization and interpretation of RG fixed points
2.5.1 Formal aspects
2.5.2 Scaling at (quantum) phase transitions
2.5.3 Predictivity in fundamental physics
2.5.4 Effective asymptotic safety in particle physics and condensed matter
3 Gross–Neveu SO(3) Quantum Criticality in 2 + 1 Dimensions
3.1 Effective field theory
3.2 Renormalization and critical exponents
3.2.1 4 - ϵ expansion
3.2.1.1 Method
3.2.1.2 Flow equations
3.2.1.3 Critical exponents
3.2.2 Large-N expansion
3.2.2.1 Method
3.2.2.2 Critical exponents
3.2.3 Non-perturbative FRG
3.2.3.1 Flow equations
3.2.3.2 Representation of the effective potential
3.2.3.3 Choice of regulator
3.2.3.4 Limiting behaviour
3.3 Discussion
3.3.1 General behaviour and qualitative aspects
3.3.2 Quantitative estimates for D = 3
3.4 Summary and outlook
4 Luttinger Fermions in Two Spatial Dimensions
4.1 Introduction
4.2 Action from top-down construction
4.3 Renormalization
4.3.1 4-Fermi formulation
4.3.2 Yukawa formulation
4.4 Fixed-point analysis
4.5 Non-mean-field behaviour
4.5.1 Order-parameter expectation value
4.5.2 Susceptibility exponent
4.6 Bottom-up construction: Spinless fermions on kagome lattice
4.6.1 Tight-binding dispersion
4.6.2 From Hubbard to Fermi
4.6.3 Fate of particle-hole asymmetry
4.7 Discussion
5 Dirac from Luttinger I: Explicit Symmetry Breaking
5.1 From lattice to continuum
5.1.1 Fermions on Bernal-stacked honeycomb bilayer
5.1.2 Continuum limit
5.1.3 Interactions
5.2 Mean-field theory
5.3 Renormalization-group analysis
5.3.1 Flow equations
5.3.2 Basic flow properties
5.3.3 Phase diagrams
5.4 Discussion
5.5 Summary and outlook
6 Dirac from Luttinger II: Spontaneous Symmetry Breaking
6.1 Model
6.2 Phase diagram and transitions
6.3 Emergent Lorentz symmetry
6.3.1 Loop expansion near lower critical dimension
6.3.1.1 Minimal 4-Fermi model
6.3.1.2 Gross–Neveu–Heisenberg fixed point
6.3.1.3 Fate of rotational symmetry breaking
6.3.2 Loop expansion near upper critical dimension
6.3.2.1 Gross–Neveu–Yukawa–Heisenberg model
6.3.2.2 Gross–Neveu–Yukawa–Heisenberg fixed point
6.3.2.3 Fate of rotational symmetry breaking
6.4 Critical exponents
6.5 Discussion
7 Higgs Mass in Asymptotically Safe Gravity with a Dark Portal
7.1 Review: The asymptotic safety scenario for quantum gravity and matter
7.2 Review: Higgs mass, and RG flow in the SM and beyond
7.2.1 Higgs mass in the SM
7.2.2 Higgs mass bounds in bosonic portal models
7.2.3 Higgs mass in asymptotic safety
7.2.4 Higgs Portal and Asymptotic Safety
7.3 Higgs mass in an asymptotically safe dark portal model
7.3.1 The UV regime
7.3.2 Flow towards the IR
7.3.3 Infrared masses
7.3.4 From the UV to the IR – Contrasting effective field theory and asymptotic safety
7.4 Discussion
8 Conclusions
Appendices
A Position-space propagator for C₃-symmetric QBT
B Two-sided Padé approximants for C₃-symmetric QBTs
C Corrections to the mean-field nematic order-parameter effective potential due to explicit symmetry breaking
D Self-energy in anisotropic Yukawa theory
E Master integrals for anisotropic Yukawa theory
Bibliography
|
52 |
The Yangian Bootstrap for Massive Feynman DiagramsMiczajka, Julian 25 March 2022 (has links)
In dieser Dissertation erweitern wir die Ideen des Yangian-Bootstrap-Algorithmus auf Feynman-Diagramme mit massiven Teilchen.
Ausgehend von der massiven dual-konformen Symmetrie der N = 4 Super-Yang-Mills Theorie auf dem Coulomb-Zweig konstruieren wir einen Satz von bilokalen Yangian Level-Eins Generatoren und zeigen, dass sie eine unendliche Anzahl von planaren ein- und zwei-Schleifen-Diagrammen vernichten. Wir beschreiben außerdem wie der dual-konforme Level-Eins Impuls-Operator auf eine massive Verallgemeinerung des gewöhnlichen spezial-konformen Generators im Impulsraum abgebildet wird.
Als nächstes wenden wir den Yangian-Bootstrap-Algorithmus mit großem Erfolg auf eine Reihe von massiven Ein-Schleifen-Diagrammen mit verallgemeinerten Propagatorexponenten und in beliebiger Anzahl von Raumdimensionen an. Im Spezialfall der dual-konformen Integrale, deren Propagatorexponenten sich zur Raumdimension addieren, finden wir neue sehr einfache Darstellungen durch hypergeometrische Funktionen, die eine natürliche Verallgemeinerung für Diagramme mit beliebig vielen äußeren Punkten erlauben.
Außerdem diskutieren wir Aspekte des Yangian-Bootstrap-Algorithmus in Minkowski-Raumzeit am Beispiel des masselosen Box-Integrals. Wir zeigen, dass dessen Yangian-Symmetrie gemeinsam mit seinen diskreten Permutationssymmetrien das Box-Integrals bis auf 12 unbestimmte Konstanten komplett festlegt.
Schließlich schlagen wir vor, dass das Auftreten von Yangian-Symmetrie in massiven Fischnetz-Diagrammen mit deren Rolle als Ein-Spur-Streuamplituden in einer massiven Fischnetz-Theorie zusammenhängen könnte. In Analogie mit der masselosen Fischnetz-Theorie zeigen wir, wie diese Theorie als Deformation der N = 4 Super-Yang-Mills Theorie auf dem Coulomb-Zweig definiert werden kann. Wir diskutieren eine bestimmte Klasse von planaren Grenzfällen, in der die off-shell Streuamplituden der Theorie eine massive dual-konforme Symmetrie sowie Yangian-Symmetrie aufweisen. / In this dissertation, we extend the ideas of the Yangian bootstrap algorithm to massive Feynman diagrams.
Based on the massive dual-conformal symmetry of Coulomb branch N = 4 super-Yang-Mills theory, we construct a set of bi-local Yangian level-one generators and show that they annihilate infinite classes of massive planar Feynman integrals at one and two loops. We also describe how the dual-conformal level-one momentum generator maps to a massive deformation of the ordinary momentum space special conformal generator.
We then apply the Yangian bootstrap to a set of massive one-loop integrals with generalised propagator powers and in an arbitrary number of space dimensions to great success. In the special case of dual-conformal integrals, whose propagator powers sum to the space dimension, we find very simple novel hypergeometric structures, suggesting a natural generalisation to diagrams with an arbitrary number of external points.
In the particular case of the massless box integral we also discuss elements of the Yangian bootstrap in Minkowski space. We show that its Yangian and discrete permutation symmetries constrain it up to 12 undetermined constants. We then derive the values of these constants via analytic continuation from the box integral in the Euclidean region.
Finally, we provide evidence that the appearance of Yangian symmetry for massive fishnet diagrams is related to their role as colour-ordered scattering amplitudes in a massive fishnet theory. We show how to construct this theory from Coulomb branch N = 4 super-Yang-Mills theory, paralleling the original construction of the massless fishnet theory. We discuss how a particular class of planar limits leads to the emergence of massive dual-conformal symmetry as well as massive Yangian symmetry for the theory’s off-shell scattering amplitudes.
|
53 |
Conformal Feynman Integrals and Correlation Functions in Fishnet TheoryCorcoran, Luke 12 January 2023 (has links)
In dieser Dissertation untersuchen wir unterschiedliche Aspekte im Zusammenhang mit Korrelationsfunktionen in der Fischnetz-Theorie.
Zunächst betrachten wir einen der einfachsten Korrelatoren der Fischnetz Theorie, das konforme Box-Integral, in Minkowski Signatur. Während dieses Integral in Euklidischer Signatur eine konforme Symmetrie aufweist, wird diese Symmetrie in Minkowski-Raumzeit subtil gebrochen. Wir beschreiben die Brechung der konformen Symmetrie quantitativ, indem wir die funktionale Form des Box-Integrals in allen kinematischen Regionen untersuchen. Ausserdem untersuchen wir das Ausmass zu dem das Box integral durch seine Yangian-Symmetrie festgelegt ist.
Als nächstes widmen wir uns den Basso-Dixon-Graphen, die ebenfalls konforme Vier-Punkt-Integrale sind und Verallgemeinerungen des Box-Integrals zu höheren Schleifenordnungen darstellen. Wir leiten die Yangian-Ward-Identitäten ab, die diese Klasse von Integralen erfüllen. Die Ward-Identitäten sind einhomogene Erweiterungen der partiellen Differentialgleichungen, die im homogenen Fall durch Appell-Hypergeometrische Funktionen gelöst werden. Die Ward-Identitäten können natürlicherweise auf eine Ein-Parameter-Familie von D-dimensionalen Integralen erweitert werden, die Korrelatoren in der verallgemeinerten Fischnetz-Theorie von Kazakov und Olivucci darstellen.
Schliesslich untersuchen wir den Dilatationsoperator in einem Drei-Skalar-Sektor der Fischnetztheorie, der auch als Eklektisches Modell bezeichnet wird. In diesem Sektor der Dilatationsoperator nimmt nicht--diagonalisierbare Form an. Das führt dazu, dass die Zwei-Punkt-Korrelationsfunktionen eine logarithmische Abhängigkeit von der Raumzeitseparierung der Operatoren annimmt. Unter Zuhilfenahme von kombinatorischen Argumenten führen wir eine generierende Funktion ein, die das Jordan-Block-Spektrum eines verwandten Modells, der hypereklektischen Spinkette, vollständig charakterisiert. / We study various aspects of correlation functions in fishnet theory.
We begin with the study of the simplest correlator in theory theory, represented by the conformal box integral, in Minkowski space. While this integral is conformally invariant in Euclidean space, this symmetry is subtly broken in Minkowski space. We quantify the extent to which conformal symmetry is broken by analysing the functional form of the box in each kinematic region. We propose a new method to calculate the box integral directly in Minkowski space, by introducing a family of configurations with two points at infinity. Furthermore, we investigate the extent to which the box integral is constrained by Yangian symmetry. We constrain the functional form of the box integral in all kinematic regions up to twelve undetermined constants, which we fix by three separate analytic continuations from the Euclidean region.
Next, we study the Basso-Dixon graphs, which represent higher-loop versions of the box integral. We derive and study Yangian Ward identities for this class of integrals. These take the form of inhomogeneous extensions of the partial differential equations defining the Appell hypergeometric functions. The Ward identities naturally generalise to a one-parameter family of D dimensional integrals representing correlators in a generalised fishnet theory.
Finally, we study the dilatation operator in a particular three scalar sector of the fishnet theory, which has been dubbed the eclectic model. This dilatation operator is non-diagonalisable in this sector. This leads to logarithmic spacetime dependence in the corresponding two-point functions. Using combinatorial arguments, we introduce a generating function which fully characterises the Jordan block spectrum of a related model: the hypereclectic spin chain. This function is found by purely combinatorial means and can be expressed in terms of the q-binomial coefficient.
|
54 |
Noisy Bayesian Optimization of Variational Quantum EigensolversIannelli, Giovanni 21 August 2024 (has links)
Der Variationsquanten-Eigensolver (VQE) ist ein hybrider quanten-klassischer Algorithmus, der dazu dient, den Grundzustand eines Hamiltonians mit Hilfe von Variationsmethoden aufzufinden. Er hat ein breites Spektrum an möglichen Anwendungen, von der Quanten Chemie bis hin zu Gittereichtheorien in der Hamiltonformulierung. VQE stützt sich auf Quantencomputer, um die Energie eines Systems in Form von Schaltkreisparametern zu berechnen und minimiert diese parametrisierte Energie mit einer klassischen Optimierungsroutine. Diese Doktorarbeit bebenutzt als Algorithmus eine Bayes'sche Optimierung (BO). Der Algorithmus wurde speziell für die Minimierung der parametrisierten Energie, wie sie mit einem Quantencomputer berechnet wird, entwickelt. Die BO basiert auf der Gaußschen Prozessregression (GPR) und ist ein Algorithmus zum Auffinden des globalen Minimums einer Black-Box Kostenfunktion, z.~B.~der Energie. Die BO arbeitet mit einer sehr geringen Anzahl von Iterationen selbst bei Verwendung von Daten, die durch statistisches Rauschen beeinflusst sind.
Außerdem erwies sich das für diese Arbeit entwickelte GPR-Verfahren als sehr vielseitig, da wir es auch für die Berechnung diskreter Integraltransformationen von verrauschten Daten verwenden konnten. Insbesondere wurde dieses Verfahren zur Rekonstruktion von Parton Verteilungsfunktionen aus Gitter-QCD-Daten verwendet. / The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm
used to find the ground state of a Hamiltonian using variational methods. It has a wide range of potential applications, from quantum chemistry to lattice gauge theories in the Hamiltonian formulation. VQE relies on quantum computers to evaluate the energy of the system in terms of circuit parameters, and it minimizes this parametrized energy with a classical optimization routine. This work describes a Bayesian optimization (BO) algorithm specifically designed to minimize the parametrized energy obtained with a quantum computer. BO based on Gaussian process regression (GPR) is an algorithm for finding the global minimum of a black-box cost function, e.g. the energy, with a very low number of iterations even when using data affected by statistical noise.
Furthermore, the GPR procedure developed for this work proved to be very versatile as
we also used it to compute discrete integral transforms of noisy data. In particular, this procedure was used to reconstruct parton distribution functions from lattice QCD data.
|
55 |
Spectral theory of automorphism groups and particle structures in quantum field theory / Die Spektraltheorie von Automorphismengruppen und Teilchenstrukturen in der QuantenfeldtheorieDybalski, Wojciech Jan 15 December 2008 (has links)
No description available.
|
56 |
Structure of Coset models / Struktur von Coset-ModellenKöster, Sören 03 June 2003 (has links)
No description available.
|
57 |
Local Thermal Equilibrium on Curved Spacetimes and Linear Cosmological Perturbation TheoryEltzner, Benjamin 29 May 2013 (has links)
In this work the extension of the criterion for local thermal equilibrium by Buchholz, Ojima and Roos to curved spacetime as introduced by Schlemmer is investigated. Several problems are identified and especially the instability under time evolution which was already observed by Schlemmer is inspected. An alternative approach to local thermal equilibrium in quantum field theories on curved spacetimes is presented and discussed. In the following the dynamic system of the linear field and matter perturbations in the generic model of inflation is studied in the view of ambiguity of quantisation. In the last part the compatibility of the temperature fluctuations of the cosmic microwave background radiation with local thermal equilibrium is investigated.:1. Introduction 5
2. Technical Background 10
2.1. The Free Scalar Field on a Globally Hyperbolic Spacetime . . . . . . 10
2.1.1. Construction of the Scalar Field . . . . . . . . . . . . . . . . . 10
2.1.2. Algebra of Wick Products . . . . . . . . . . . . . . . . . . . . 13
2.1.3. Local Covariance Principle . . . . . . . . . . . . . . . . . . . . 17
2.2. Local Thermal Equilibirum . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1. Global Thermodynamic Equilibrium - KMS States . . . . . . 21
2.2.2. Local Thermal Observables . . . . . . . . . . . . . . . . . . . 24
2.2.3. LTE on Flat Spacetime . . . . . . . . . . . . . . . . . . . . . . 29
2.2.4. LTE in Cosmological Spacetimes . . . . . . . . . . . . . . . . 32
2.3. Linear Scalar Cosmological Perturbations . . . . . . . . . . . . . . . . 34
2.3.1. Robertson-Walker Cosmology . . . . . . . . . . . . . . . . . . 35
2.3.2. Mathematical Background . . . . . . . . . . . . . . . . . . . . 38
2.3.3. Technical Framework and Formulae . . . . . . . . . . . . . . . 40
2.3.4. The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . 46
2.3.5. The Sachs-Wolfe Effect for Adiabatic Perturbations . . . . . . 49
3. Towards a Refinement of the LTE Condition on Curved Spacetimes 54
3.1. Non-Minimal Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.1. Commutator Distribution . . . . . . . . . . . . . . . . . . . . 55
3.1.2. KMS Two-Point Function . . . . . . . . . . . . . . . . . . . . 57
3.1.3. Balanced Derivatives . . . . . . . . . . . . . . . . . . . . . . . 61
3.2. Conformally Static Spacetimes . . . . . . . . . . . . . . . . . . . . . . 65
3.2.1. Conformal KMS States . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2. Extrinsic LTE in de Sitter Spacetime . . . . . . . . . . . . . . 71
3.3. Massive Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.1. Properties of the Model . . . . . . . . . . . . . . . . . . . . . 78
3.3.2. Bogoliubov Transformation . . . . . . . . . . . . . . . . . . . 80
3.3.3. Thermal Observables . . . . . . . . . . . . . . . . . . . . . . . 82
3.4. Towards an Alternative Concept . . . . . . . . . . . . . . . . . . . . . 91
3.4.1. Problems and Open Questions Concerning LTE . . . . . . . . 92
3.4.2. Dynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.3. Positivity Inequalities . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.4. Macroobservable Interpretation . . . . . . . . . . . . . . . . . 100
3.5. An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4. Cosmological Perturbation Theory 105
4.1. Dynamics of Perturbations in Inflation . . . . . . . . . . . . . . . . . 106
4.1.1. CCR Quantisation is Ambiguous . . . . . . . . . . . . . . . . 106
4.1.2. Canonical Symplectic Form . . . . . . . . . . . . . . . . . . . 111
4.1.3. The Algebraic Point of View . . . . . . . . . . . . . . . . . . . 117
4.2. LTE States in Cosmology . . . . . . . . . . . . . . . . . . . . . . . . 120
4.2.1. The Link to Fluid Dynamics . . . . . . . . . . . . . . . . . . . 120
4.2.2. Incompatibility of LTE with Sachs-Wolfe Effect . . . . . . . . 125
5. Conclusion and Outlook 131
A. Technical proofs 136
A.1. Proof of Lemma 3.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.2. Proof of Lemma 3.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.3. Proof of Lemma 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.4. Idea of Proof for Conjecture 3.4.3 . . . . . . . . . . . . . . . . . . . . 144
B. Introduction to Probability Theory 146
Bibliography 150
Correction of Lemma 3.1.2 155 / In dieser Arbeit wird die von Schlemmer eingeführte Erweiterung des Kriteriums für lokales thermisches Gleichgewicht in Quantenfeldtheorien von Buchholz, Ojima und Roos auf gekrümmte Raumzeiten untersucht. Dabei werden verschiedene Probleme identifiziert und insbesondere die bereits von Schlemmer gezeigte Instabilität unter Zeitentwicklung untersucht. Es wird eine alternative Herangehensweise an lokales thermisches Gleichgewicht in Quantenfeldtheorien auf gekrümmten Raumzeiten vorgestellt und deren Probleme diskutiert. Es wird dann eine Untersuchung des dynamischen Systems der linearen Feld- und Metrikstörungen im üblichen Inflationsmodell mit Blick auf Uneindeutigkeit der Quantisierung durchgeführt. Zuletzt werden die Temperaturfluktuationen der kosmischen Hintergrundstrahlung auf Kompatibilität mit lokalem thermalem Gleichgewicht überprüft.:1. Introduction 5
2. Technical Background 10
2.1. The Free Scalar Field on a Globally Hyperbolic Spacetime . . . . . . 10
2.1.1. Construction of the Scalar Field . . . . . . . . . . . . . . . . . 10
2.1.2. Algebra of Wick Products . . . . . . . . . . . . . . . . . . . . 13
2.1.3. Local Covariance Principle . . . . . . . . . . . . . . . . . . . . 17
2.2. Local Thermal Equilibirum . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1. Global Thermodynamic Equilibrium - KMS States . . . . . . 21
2.2.2. Local Thermal Observables . . . . . . . . . . . . . . . . . . . 24
2.2.3. LTE on Flat Spacetime . . . . . . . . . . . . . . . . . . . . . . 29
2.2.4. LTE in Cosmological Spacetimes . . . . . . . . . . . . . . . . 32
2.3. Linear Scalar Cosmological Perturbations . . . . . . . . . . . . . . . . 34
2.3.1. Robertson-Walker Cosmology . . . . . . . . . . . . . . . . . . 35
2.3.2. Mathematical Background . . . . . . . . . . . . . . . . . . . . 38
2.3.3. Technical Framework and Formulae . . . . . . . . . . . . . . . 40
2.3.4. The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . 46
2.3.5. The Sachs-Wolfe Effect for Adiabatic Perturbations . . . . . . 49
3. Towards a Refinement of the LTE Condition on Curved Spacetimes 54
3.1. Non-Minimal Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.1. Commutator Distribution . . . . . . . . . . . . . . . . . . . . 55
3.1.2. KMS Two-Point Function . . . . . . . . . . . . . . . . . . . . 57
3.1.3. Balanced Derivatives . . . . . . . . . . . . . . . . . . . . . . . 61
3.2. Conformally Static Spacetimes . . . . . . . . . . . . . . . . . . . . . . 65
3.2.1. Conformal KMS States . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2. Extrinsic LTE in de Sitter Spacetime . . . . . . . . . . . . . . 71
3.3. Massive Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.1. Properties of the Model . . . . . . . . . . . . . . . . . . . . . 78
3.3.2. Bogoliubov Transformation . . . . . . . . . . . . . . . . . . . 80
3.3.3. Thermal Observables . . . . . . . . . . . . . . . . . . . . . . . 82
3.4. Towards an Alternative Concept . . . . . . . . . . . . . . . . . . . . . 91
3.4.1. Problems and Open Questions Concerning LTE . . . . . . . . 92
3.4.2. Dynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.3. Positivity Inequalities . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.4. Macroobservable Interpretation . . . . . . . . . . . . . . . . . 100
3.5. An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4. Cosmological Perturbation Theory 105
4.1. Dynamics of Perturbations in Inflation . . . . . . . . . . . . . . . . . 106
4.1.1. CCR Quantisation is Ambiguous . . . . . . . . . . . . . . . . 106
4.1.2. Canonical Symplectic Form . . . . . . . . . . . . . . . . . . . 111
4.1.3. The Algebraic Point of View . . . . . . . . . . . . . . . . . . . 117
4.2. LTE States in Cosmology . . . . . . . . . . . . . . . . . . . . . . . . 120
4.2.1. The Link to Fluid Dynamics . . . . . . . . . . . . . . . . . . . 120
4.2.2. Incompatibility of LTE with Sachs-Wolfe Effect . . . . . . . . 125
5. Conclusion and Outlook 131
A. Technical proofs 136
A.1. Proof of Lemma 3.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.2. Proof of Lemma 3.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.3. Proof of Lemma 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.4. Idea of Proof for Conjecture 3.4.3 . . . . . . . . . . . . . . . . . . . . 144
B. Introduction to Probability Theory 146
Bibliography 150
Correction of Lemma 3.1.2 155
|
58 |
Wonderful renormalizationBerghoff, Marko 11 March 2015 (has links)
Die sogenannten wunderbaren Modelle für Teilraumanordnungen, eingeführt von DeConcini und Procesi, basierend auf den Techniken der Fulton und MacPherson''schen Kompaktifzierung von Konfigurationsräumen, ermöglichen es, eine Fortsetzung von Feynmandistributionen auf die ihnen zugeordneten divergenten Teilräume in kanonischer Weise zu definieren. Dies wurde in der Dissertation von Christoph Bergbauer ausgearbeitet und diese Arbeit führt die dort präsentierten Ideen weiter aus. Im Unterschied formulieren wir die zentralen Begriffe nicht in geometrischer Sprache, sondern mit Hilfe der partiell geordneten Menge der divergenten Subgraphen eines Feynmangraphen. Dieser Ansatz ist inspiriert durch Feichtners Formulierung der wunderbaren Modellkonstruktion aus kombinatorischer Sicht. Diese Betrachtungsweise vereinfacht die Darstellung deutlich und führt zu einem besseren Verständnis der Fortsetzungs- bzw. Renormierungsoperatoren. Darüber hinaus erlaubt sie das Studium der Renormierungsgruppe, d.h. zu untersuchen, wie sich die renormierten Distributionen unter einem Wechsel des Renormierungspunktes verhalten. Wir zeigen, dass eine sogenannte endliche Renormierung sich darstellen läßt als eine Summe von durch die divergenten Subgraphen bestimmten Distributionen. Dies alles unterstreicht den wohlbekannten Fakt, dass perturbative Renormierung zum größten Teil durch die Kombinatorik von Feynmangraphen bestimmt ist und die analytischen Aspekte nur eine untergeordnete Rolle spielen. / The so-called wonderful models of subspace arrangements, developed in by DeConcini and Procesi, based on Fulton and MacPherson''s seminal paper on a compactification of configuration space, serve as a systematic way to resolve the singularities of Feynman distributions and define in this way canonical renormalization operators. In this thesis we continue the work of Bergbauer where wonderful models were introduced to solve the renormalization problem in position space. In contrast to the exposition there, instead of the subspaces in the arrangement of divergent loci we use the poset of divergent subgraphs of a given Feynman graph as the main tool to describe the wonderful construction and the renormalization operators. This is based on a review article by Feichtner where wonderful models were studied from a purely combinatorial viewpoint. The main motivation for this approach is the fact that both, the renormalization process and the model construction, are governed by the combinatorics of this poset. Not only simplifies this the exposition considerably, but it also allows to study the renormalization operators in more detail. Moreover, we explore the renormalization group in this setting, i.e. we study how the renormalized distributions change if one varies the renormalization points. We show that a so-called finite renormalization is expressed as a sum of distributions determined by divergent subgraphs. The bottom line is that - as is well known, at the latest since the discovery of a Hopf algebra structure underlying renormalization - the whole process of perturbative renormalization is governed by the combinatorics of Feynman graphs while the calculus involved plays only a supporting role.
|
59 |
Discrete quantum geometries and their effective dimensionThürigen, Johannes 09 September 2015 (has links)
In einigen Ansätzen zu einer Quantentheorie der Gravitation wie Gruppenfeldtheorie und Schleifenquantengravitation zeigt sich, dass Zustände und Entwicklungen der geometrischen Freiheitsgrade auf einer diskreten Raumzeit basieren. Die dringendste Frage ist dann, wie die glatten Geometrien der Allgemeinen Relativitätstheorie, beschrieben durch geeignete geometrische Beobachtungsgrößen, aus solch diskreten Quantengeometrien im semiklassischen und Kontinuums-Limes hervorgehen. Hier nehme ich die Frage geeigneter Beobachtungsgrößen mit Fokus auf die effektive Dimension der Quantengeometrien in Angriff. Dazu gebe ich eine rein kombinatorische Beschreibung der zugrunde liegenden diskreten Strukturen. Als Nebenthema erlaubt dies eine Erweiterung der Gruppenfeldtheorie, so dass diese den kombinatorisch größeren kinematischen Zustandsraum der Schleifenquantengravitation abdeckt. Zudem führe ich einen diskreten Differentialrechnungskalkül für Felder auf solch fundamental diskreten Geometrien mit einem speziellen Augenmerk auf dem Laplace-Operator ein. Dies ermöglicht die Definition der Dimensionsobservablen für Quantengeometrien. Die Untersuchung verschiedener Klassen von Quantengeometrien zeigt allgemein, dass die spektrale Dimension stärker von der zugrunde liegenden kombinatorischen Struktur als von den Details der zusätzlichen geometrischen Daten darauf abhängt. Semiklassische Zustände in Schleifenquantengravitation approximieren die entsprechenden klassischen Geometrien gut ohne Anzeichen für stärkere Quanteneffekte. Dagegen zeigt sich im Kontext eines allgemeineren, auf analytischen Lösungen basierenden Modells für Zustände, die aus Überlagerungen einer großen Anzahl von Komplexen bestehen, ein Fluss der spektralen Dimension von der topologischen Dimension d bei kleinen Energieskalen hin zu einem reellen Wert zwischen 0 und d bei hohen Energien. Im Spezialfall 1 erlauben diese Resultate, die Quantengeometrie als effektiv fraktal aufzufassen. / In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the effective-dimension observables for quantum geometries. Analysing various classes of quantum geometries, I find as a general result that the spectral dimension is more sensitive to the underlying combinatorial structure than to the details of the additional geometric data thereon. Semiclassical states in loop quantum gravity approximate the classical geometries they are peaking on rather well and there are no indications for stronger quantum effects. On the other hand, in the context of a more general model of states which are superposition over a large number of complexes, based on analytic solutions, there is a flow of the spectral dimension from the topological dimension d on low energy scales to a real number between 0 and d on high energy scales. In the particular case of 1 these results allow to understand the quantum geometry as effectively fractal.
|
60 |
Quantum Field Theory on Non-commutative SpacetimesBorris, Markus 27 April 2011 (has links) (PDF)
The time coordinate is a common obstacle in the theory of non-commutative (nc.) spacetimes. Despite that, this work shows how the interplay between quantum fields and an underlying nc. spacetime can still be analyzed, even for the case of nc. time. This is done for the example of a general Moyal-type external potential scattering of the Dirac field in Moyal-Minkowski spacetime. The spacetime is a rare example of a Lorentzian non-compact nc. geometry. Elements of the associated spectral function algebra are shown to be operationally involved at the level of quantum field operators by Bogoliubovs formula.
Furthermore, a similar task is attacked in the case of locally nc. spacetimes. An explicit star-product is constructed by a method of Kontsevich. It implements a decay of non-commutativity with increasing distance. This behavior should benefit the technical side - diverse interesting formal attempts are discussed.
It is striven for unification of several toy models of nc. spacetimes and a general strategy to define quantum field operators. Within the latter one has to implement the usual quantum behavior as well as a new kind of spacetime behavior. It is shown how this two-fold character causes key difficulties in understanding.
|
Page generated in 0.0919 seconds